Hunt for light primordial black hole dark matter with UHF-GWs

Advent of gravitational waves

Credits: LIGO-Virgo-KAGRA Collaborations/Frank Elavsky, Aaron Geller/Northwestern

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Compact object masses. Each circle represents a different compact object and the vertical scale indicates the mass as a multiple of the mass of our Sun. Blue circles represent black holes and orange circles represent neutron stars. Half-blue / half-orange mixed circles are compact objects whose classification is uncertain.

GW spectrum

- CMB scales: inflation $(10^{-18} \text{ Hz} \le f \le 10^{-16} \text{ Hz})$
- PTA scales: supermassive BH mergers, cosmic strings, ...
- LISA scales: galactic compact binaries, supermassive BH mergers, extreme mass ratio inspirals, phase transitions, cosmic strings, ...
- LIGO scales: BH/NS binaries, phase transitions, GW bursts, ...

New physics from UHF-GWs

• Natural frequency for a self-gravitating body

$$f_0 \simeq \sqrt{\frac{G\bar{\rho}}{4\pi}}$$
 —

good estimate for binary orbital frequency and pulsation frequency

New physics from UHF-GWs

• Natural frequency for a self-gravitating body

$$f_0 \simeq \sqrt{\frac{G\bar{\rho}}{4\pi}}$$
 –

good estimate for binary orbital frequency and pulsation frequency

• Astrophysical object of mass M and radius $R \ge 2GM$:

UHF-GW initiative

[Muia et al., 2020]

Challenges and Opportunities of Gravitational Wave Searches at MHz to GHz frequencies

N. Aggarwal^a, O.D. Aguiar^b, A. Bauswein^c, G. Cella^d, S. Clesse^e, A.M. Cruise^f,
V. Domcke^{g,*}, D. G. Figueroa^h, A. Geraciⁱ, M. Goryachev^j, H. Grote^k, M. Hindmarsh^{l,m},
F. Muia^{n,*}, N. Mukund^o, D. Ottaway^{p,q}, M. Peloso^{r,s}, F. Quevedo^{n,*}, A. Ricciardone^{r,s},
J. Steinlechner^{t,*}, S. Steinlechner^{u,*}, S. Sun^v, M.E. Tobar^j, F. Torrenti^z, C. Unal^x,
G. White^y

Abstract

The first direct measurement of gravitational waves by the LIGO/Virgo collaboration has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational wave searches at frequencies above the LIGO/Virgo band, with a particular focus on the MHz and GHz range.

UHF-GW initiative

[Muia et al., 2020]

Challenges and Opportunities of Gravitational Wave Searches at MHz to GHz frequencies

N. Aggarwal^a, O.D. Aguiar^b, A. Bauswein^c, G. Cella^d, S. Clesse^e, A.M. Cruise^f, V. Domcke^{g,*}, D. G. Figueroa^h, A. Geraciⁱ, M. Goryachev^j, H. Grote^k, M. Hindmarsh^{l,m}, F. Muia^{n,*}, N. Mukund^o, D. Ottaway^{p,q}, M. Peloso^{r,s}, F. Quevedo^{n,*}, A. Ricciardone^{r,s}, J. Steinlechner^{t,*}, S. Steinlechner^{u,*}, S. Sun^v, M.E. Tobar^j, F. Torrenti^z, C. Unal^x, G. White^y

Abstract

The first direct measurement of gravitational waves by the LIGO/Virgo collaboration has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational wave searches at frequencies above the LIGO/Virgo band, with a particular focus on the MHz and GHz range.

https://www.ctc.cam.ac.uk/activities/UHF-GW.php

Nancy Aggarwal

UC Davies

CERN

Mike Cruise

University of Birmingham

Francesco Muia

University of Cambridge

Fernando Quevedo

University of Cambridge

Andreas Ringwald

DESY

today

today

today

Cosmological signals

Characteristic frequency

$$f_0 \simeq \frac{10^{-7}}{\epsilon} \left(\frac{T_p}{\text{GeV}}\right) \left(\frac{g_*(T_p)}{100}\right)^{1/6} \text{Hz}$$

$$\epsilon = \frac{\lambda_p}{1/H_p} = \frac{\text{GW wavelength at production}}{\text{horizon size at production}} \le 1$$
 (causality)

Cosmological signals

Characteristic frequency

$$f_0 \simeq \frac{10^{-7}}{\epsilon} \left(\frac{T_p}{\text{GeV}}\right) \left(\frac{g_*(T_p)}{100}\right)^{1/6} \text{Hz}$$

$$\epsilon = \frac{\lambda_p}{1/H_p} = \frac{\text{GW wavelength at production}}{\text{horizon size at production}} \le 1$$
 (causality)

For $\epsilon \sim 1$

detection	production time	production T
$10^{-5}{\rm Hz}$	$10^{-11} \sec (10^{-11})$	100 GeV
0.16 Hz	$10^{-19} \sec$	$10^6 \mathrm{GeV}$
1.6 kHz	$10^{-27} \sec^{-27}$	$10^9 \mathrm{GeV}$
1.6 MHz	$10^{-33} \sec^{-33}$	$10^{13}\mathrm{GeV}$
1.6 GHz	$10^{-39} \sec^{-39}$	$10^{16}\mathrm{GeV}$

beyond LIGO

~GUT/string scale

Cosmological signals

Characteristic frequency

$$f_0 \simeq \frac{10^{-7}}{\epsilon} \left(\frac{T_p}{\text{GeV}}\right) \left(\frac{g_*(T_p)}{100}\right)^{1/6} \text{Hz}$$

$$\epsilon = \frac{\lambda_p}{1/H_p} = \frac{\text{GW wavelength at production}}{\text{horizon size at production}} \le 1$$
 (causality)

For $\epsilon \sim 1$

	production T	production time	detection
	100 GeV	$10^{-11} \sec (10^{-11})$	$10^{-5}{\rm Hz}$
	$10^6 \mathrm{GeV}$	$10^{-19} \sec$	0.16 Hz
beyon	$10^9 \mathrm{GeV}$	$10^{-27} \sec^{-27}$	1.6 kHz
	$10^{13}\mathrm{GeV}$	$10^{-33} \sec^{-33}$	1.6 MHz
↓ ~GUT	$10^{16}\mathrm{GeV}$	$10^{-39} \sec (10^{-39})$	1.6 GHz

beyond LIGO

~GUT/string scale

- Stochastic signal: superposition of independent signals emitted by a huge number of uncorrelated regions
 - Homogeneous and isotropic
 - Unpolarized
 - Gaussian

Amplitude of cosmological signals

 $h_0^2 \Omega_{\rm ow}^{\rm BBN} \sim 10^{-6}$

$$h_c \simeq 1.3 \times 10^{-21} \left(\frac{1 \text{ kHz}}{f}\right) \sqrt{h_0^2 \Omega_{gw}(f)}$$

BBN bound $h_c \lesssim 3 \times 10^{-24} \left(\frac{1 \text{ kHz}}{f}\right)$

 $n_c \sim$

f_0	h_c
$10^2 \mathrm{Hz}$	3×10^{-23}
MHz	3×10^{-27}
GHz	3×10^{-30}

[Muia et al., 2020]

Late Universe

General properties

- Coherent signals are possible
- Strain: $h_c \lesssim 10^{-20}$
- Frequency: $f \gtrsim 10 \,\mathrm{kHz} \leftrightarrow \mathrm{BSM}$ physics

 $f_{\rm ISCO} \simeq 4.4 \times 10^3 \,\mathrm{Hz} \left(\frac{M_{\odot}}{m_1 + m_2}\right)$

For a comprehensive list of references and an exceptional introduction to PBHs, please check G. Franciolini PhD thesis

Constraints

EG γ , V e^{\pm} , INT/SPI, ISO-X: evaporation HSC, EROS, OGLE, Icarus: lensing LVC: gravitational waves Xr, XRayB: X-rays observations Planck D/S, μ -dist.: CMB distortions DGH: Dwarf Galaxy heating DF: dynamical friction n/p: neutron to proton ratio

[Carr et al., 2020]

 $f_{\rm ISCO} \simeq 4.4 \times 10^3 \,\mathrm{Hz} \left(\frac{M_{\odot}}{m_1 + m_2}\right)$

For a comprehensive list of references and an exceptional introduction to PBHs, please check G. Franciolini PhD thesis

Constraints

EG γ , V e^{\pm} , INT/SPI, ISO-X: evaporation HSC, EROS, OGLE, Icarus: lensing LVC: gravitational waves Xr, XRayB: X-rays observations Planck D/S, μ -dist.: CMB distortions DGH: Dwarf Galaxy heating DF: dynamical friction n/p: neutron to proton ratio

[Carr et al., 2020]

$$f_{\rm PBH}(M) \equiv \frac{\Omega_{\rm PBH}(M)}{\Omega_{\rm DM}}$$
$$f_{\rm tot} = \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} = \int \frac{dM}{2M} f_{\rm PBH}(M)$$

only region that still admits 100% of dark matter in PBHs is $(10^{-16}-10^{-11})\,M_{\odot}$

all constraints are derived under specific assumptions

 $f_{\rm ISCO} \simeq 4.4 \times 10^3 \,\mathrm{Hz} \left(\frac{M_{\odot}}{m_1 + m_2}\right)$

For a comprehensive list of references and an exceptional introduction to PBHs, please check G. Franciolini PhD thesis

Constraints

EG γ , V e^{\pm} , INT/SPI, ISO-X: evaporation HSC, EROS, OGLE, Icarus: lensing LVC: gravitational waves Xr, XRayB: X-rays observations Planck D/S, μ -dist.: CMB distortions DGH: Dwarf Galaxy heating DF: dynamical friction n/p: neutron to proton ratio

[Carr et al., 2020]

$$f_{\rm PBH}(M) \equiv \frac{\Omega_{\rm PBH}(M)}{\Omega_{\rm DM}}$$
$$f_{\rm tot} = \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} = \int \frac{dM}{2M} f_{\rm PBH}(M)$$

all constraints are derived under specific assumptions

only region that still admits 100% of dark

important to provide complementary and independent probes

• A PBH is formed when a mode re-enter the horizon if the related density perturbation is above a certain threshold

• A PBH is formed when a mode re-enter the horizon if the related density perturbation is above a certain threshold

• A PBH is formed when a mode re-enter the horizon if the related density perturbation is above a certain threshold

• The PBH mass is determined by the amount of energy contained in a horizon patch at formation

$$M \sim \frac{c^3 t}{G} \sim 10^{15} \left(\frac{t}{10^{-23} \,\mathrm{sec}}\right) \mathrm{g}$$

Image taken from G. Franciolini PhD thesis

• A PBH is formed when a mode re-enter the horizon if the related density perturbation is above a certain threshold

Image taken from G. Franciolini PhD thesis

 $M \sim \frac{c^{3}t}{G} \sim 10^{15} \left(\frac{t}{10^{-23} \, \text{sec}}\right) \text{g}$

- The PBH mass is determined by the amount of \bullet energy contained in a horizon patch at formation
- PBHs evaporate through Hawking radiation

 $\frac{\delta \rho}{\rho} \gtrsim 0.3$

$$\tau = \frac{10240\pi}{N_{\rm eff}^{\rm evap}} \frac{m_{\rm PBH}^3}{m_p^4} \simeq 10 \,{\rm Gyr} \left(\frac{N_{\rm eff}^{\rm evap}}{100}\right)^{-1} \left(\frac{m_{\rm PBH}}{3 \times 10^{-19} \,M_{\odot}}\right)^3 \qquad \longrightarrow \qquad \begin{array}{c} {\rm can \ be \ DM \ for} \\ M \gtrsim 10^{-18} \,M_{\odot} \end{array}$$

We adopt state-of-the art models for PBH binary formation and evolution

[Raidal et al., 2018] [Ali-Haimoud et al., 2017]

We adopt state-of-the art models for PBH binary formation and evolution [Raidal et al., 2018] [Ali-Haimoud et al., 2017]

• Standard formation scenario: collapse during radiation domination of Gaussian perturbations imprinted during the inflationary era.

We adopt state-of-the art models for PBH binary formation and evolution [Raidal et al., 2018] [Ali-Haimoud et al., 2017]

- Standard formation scenario: collapse during radiation domination of Gaussian perturbations imprinted during the inflationary era.
 - PBHs are expected to follow a Poisson spatial distribution at formation
 - a pair of PBHs decouple from Hubble expansion when gravitational attraction starts dominating over Hubble flow
 [Nakamura et al., 1997]
 [Yoka et al., 1998]
 [Yoka

We adopt state-of-the art models for PBH binary formation and evolution [Raidal et al., 2018] [Ali-Haimoud et al., 2017]

- Standard formation scenario: collapse during radiation domination of Gaussian perturbations imprinted during the inflationary era.
 - → PBHs are expected to follow a Poisson spatial distribution at formation
 - a pair of PBHs decouple from Hubble expansion when gravitational attraction starts dominating over Hubble flow
 [Nakamura et al., 1997]
 [Yoka et al., 1998]
 [Yoka
 - → Initially, radial motion
 - Acquires angular momentum due to tidal torques from surrounding overdensities
 - → Shrinks due to loss of energy due to GW emission

We adopt state-of-the art models for PBH binary formation and evolution [Raidal et al., 2018] [Ali-Haimoud et al., 2017]

- Standard formation scenario: collapse during radiation domination of Gaussian perturbations imprinted during the inflationary era.
 - → PBHs are expected to follow a Poisson spatial distribution at formation
 - a pair of PBHs decouple from Hubble expansion when gravitational attraction starts dominating over Hubble flow
 [Nakamura et al., 1997]
 [Yoka et al., 1998]
 [Yoka
 - → Initially, radial motion
 - → Acquires angular momentum due to tidal torques from surrounding overdensities
 - → Shrinks due to loss of energy due to GW emission
- Merger rate at time t:

 $\psi(M) = \frac{1}{\rho_{\text{PBH}}} \frac{d\rho_{\text{PBH}}(M)}{dM}$ PBH mass distribution

$$\frac{d^2 R_{\text{PBH}}}{dm^2} = \frac{7.5 \times 10^{-2}}{\text{kpc}^3 \times \text{yr}} f_{\text{PBH}}^{\frac{53}{57}} \left(\frac{t}{t_0}\right)^{-\frac{34}{37}} \left(\frac{M_{\text{tot}}}{10^{-12} M_{\odot}}\right)^{-\frac{32}{37}} \left(\frac{m}{M_{\text{tot}}}\right)^{-1.84} \frac{S(M_{\text{tot}}, f_{\text{PBH}}, \psi) \ \psi^2(m)}{\int_{\text{Raidal et al., 2018]}} S(M_{\text{tot}}, f_{\text{PBH}}, \psi) \ \psi^2(m)$$

We adopt state-of-the art models for PBH binary formation and evolution [Raidal et al., 2018] [Ali-Haimoud et al., 2017]

- Standard formation scenario: collapse during radiation domination of Gaussian perturbations imprinted during the inflationary era.
 - → PBHs are expected to follow a Poisson spatial distribution at formation
 - a pair of PBHs decouple from Hubble expansion when gravitational attraction starts dominating over Hubble flow
 [Nakamura et al., 1997]
 [Yoka et al., 1998]
 [Yoka
 - → Initially, radial motion
 - Acquires angular momentum due to tidal torques from surrounding overdensities
 - → Shrinks due to loss of energy due to GW emission
- Merger rate at time t:

 $S \equiv S_1 \times S_2$

 $\psi(M) = \frac{1}{\rho_{\text{PBH}}} \frac{d\rho_{\text{PBH}}(M)}{dM}$ PBH mass distribution

$$\frac{d^2 R_{\text{PBH}}}{dm^2} = \frac{7.5 \times 10^{-2}}{\text{kpc}^3 \times \text{yr}} f_{\text{PBH}}^{\frac{53}{57}} \left(\frac{t}{t_0}\right)^{-\frac{34}{37}} \left(\frac{M_{\text{tot}}}{10^{-12} M_{\odot}}\right)^{-\frac{32}{37}} \left(\frac{m}{M_{\text{tot}}}\right)^{-1.84} \frac{(M_{\text{tot}}, f_{\text{PBH}}, \psi)}{S(M_{\text{tot}}, f_{\text{PBH}}, \psi)} \psi^2(m)$$
[Raidal et al., 2018]

 S_1 : interactions at formation epoch between binary and DM inhomogeneities

[Hutsi et al., 2021]

 S_2 : effect of successive disruption of binaries that populate PBH clusters

[Quinlan et al., 1989]

- Late-time dynamical capture: PBH binary formation is induced by GW capture in the [Bird et al., 2016] present age dense DM environments
 - → subdominant with respect to early universe formation
 - → increasingly less relevant for light PBHs

 $\frac{R_{\rm PBH}^{\rm cap}}{=} \sim m_{\rm PBH}^{\frac{265}{777}}$ $R_{\rm PBH}$

- Late-time dynamical capture: PBH binary formation is induced by GW capture in the [Bird et al., 2016] present age dense DM environments
 [Quinlan et al., 1989]
 - subdominant with respect to early universe formation
 - → increasingly less relevant for light PBHs

R_{PBH}

- Late-time dynamical capture: PBH binary formation is induced by GW capture in the [Bird et al., 2016] present age dense DM environments
 [Quinlan et al., 1989]
 - subdominant with respect to early universe formation
 - → increasingly less relevant for light PBHs

R_{PBH}

- Accretion could affect individual masses, spins and the binary's orbital geometry
 on light PBH binaries is irrelevant and cannot affect the merger rate
- Clustering at formation due to local non-Gaussianities of primordial perturbations
 [De Luca et al., 2021]

 maximum theoretical merger rate

- Late-time dynamical capture: PBH binary formation is induced by GW capture in the [Bird et al., 2016] present age dense DM environments
 [Quinlan et al., 1989]
 - subdominant with respect to early universe formation
 - → increasingly less relevant for light PBHs

Clustering at formation due to local non-Gaussianities of primordial perturbations
 [De Luca et al., 2021]
 maximum theoretical merger rate
 average distance of PBH merger smaller
 by at most 2 orders of magnitude

 $Heat B = 10^{-1}$ $Heat B = 10^{-1}$ $Heat B = 10^{-1}$ $Heat B = 10^{-1}$ $f_{PBH} = 10^{-2}$ $f_{PBH} = 10^{-3}$ $f_{PBH} = 10^{-3}$

 Local DM enhancement —— correction for sources that are closer to the Earth than O(100) kpc

 Local DM enhancement — correction for sources that are closer to the Earth than O(100) kpc

DM density profile:
$$\rho(r - \hat{r}) = \begin{bmatrix} \rho_{\text{DM}}(r_{\odot}) & r - \hat{r} < r_{\odot} \\ \rho_{\text{DM}}(r - \hat{r}) & r - \hat{r} > r_{\odot} \end{bmatrix} \qquad \rho_{\text{DM}}(r) = \frac{\rho_0}{\frac{r}{r_0} \left(1 + \frac{r}{r_0}\right)^2}$$

 $\rho_{\rm DM}(r_{\odot}) = 7.9 \times 10^{-3} M_{\odot}/{\rm pc}^{3}$

 $r_0 = 15.6 \,\mathrm{kpc} \qquad r_\odot = 8 \,\mathrm{kpc}$

 Local DM enhancement —— correction for sources that are closer to the Earth than O(100) kpc

DM density profile: $\rho(r - \hat{r}) =$ [Pujolas et al., 2021]

$$\rho_{\rm DM}(r_{\odot}) \qquad r - \hat{r} < r_{\odot} \qquad \rho_{\rm DM}(r) = \frac{\rho_0}{\frac{r}{r_0} \left(1 + \frac{r}{r_0}\right)}$$

 $\overline{\rho_{\rm DM}(r_\odot)} = 7.9 \times 10^{-3} M_\odot/\rm pc^3$

 $r_0 = 15.6 \,\mathrm{kpc}$ $r_\odot = 8 \,\mathrm{kpc}$

local DM overdensity enhances the merger rate $R_{\rm PBH}^{\rm local}(r) = \delta(r)R_{\rm PBH}$ $\delta(r) \equiv \frac{\rho_{\rm DM}(r)}{\bar{\rho}_{\rm DM}} \subset (1 \div 2 \times 10^5)$

DM density profile: $\rho(r - \hat{r}) =$ [Pujolas et al., 2021]

local DM overdensity enhances the merger rate $R_{\rm PBH}^{\rm local}(r) = \delta(r)R_{\rm PBH}$ $\delta(r) \equiv \frac{\rho_{\rm DM}(r)}{\bar{\rho}_{\rm DM}} \subset (1 \div 2 \times 10^5)$

distance enclosing region with one event per year

$$1 = N_{\rm yr} = \Delta t \times \int_0^{d_{\rm yr}} dr \, 4\pi r^2 \, R_{\rm PBH}(r)$$
$$\Delta t = 1 \, \rm yr$$

$$\rho_{\rm DM}(r_{\odot}) \qquad r - \hat{r} < r_{\odot} \qquad \rho_{\rm DM}(r) = \frac{\rho_0}{\frac{r}{r_{\rm c}} \left(1 + \frac{r}{r_{\rm c}}\right)^2}$$

$$\rho_{\rm DM}(r_{\odot}) = 7.9 \times 10^{-3} M_{\odot}/{\rm pc}^3$$

 $r_0 = 15.6 \,\mathrm{kpc}$ $r_{\odot} = 8 \,\mathrm{kpc}$

characteristic size of a region containing at least a merger event per year

Assumption: narrow PBH mass distribution

PBH inspiral transient signal

- GW signal from a BH inspiral $h_0 = \frac{4}{d_L} (Gm_c)^{5/3} (\pi f)^{2/3}$ $h_i(t) = h_0 F_i(\theta) G_i(t) \simeq 9.77 \times 10^{-34} \left(\frac{f}{1 \text{ GHz}}\right)^{2/3} \left(\frac{m_{\text{PBH}}}{10^{-12} M_{\odot}}\right)^{5/3} \left(\frac{d_L}{1 \text{ kpc}}\right)^{-1}$ $i = +, \times m_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$
- Can the signal be considered approximately monochromatic?

$$N = \frac{f^2}{\dot{f}} \simeq 2.16 \times 10^6 \left(\frac{f}{\text{GHz}}\right)^{-\frac{5}{3}} \left(\frac{m_{\text{PBH}}}{10^{-9} M_{\odot}}\right)^{-\frac{5}{3}} \longrightarrow \text{number of cycles a binary spends at a given frequency}$$

• Time to merger

$$\tau(f) \approx 83 \sec\left(\frac{m_{\rm PBH}}{10^{-12} M_{\odot}}\right)^{-5/3} \left(\frac{f}{\rm GHz}\right)^{-8/3}$$

$m_{\rm PBH}$	$\tau(1\mathrm{GHz})$	$\tau(0.1 \mathrm{GHz}) - \tau(1 \mathrm{GHz})$
$10^{-6} M_{\odot}$	$9 \times 10^{-9} \mathrm{sec}$	$3.8 \times 10^{-6} \operatorname{sec}$
$10^{-8} M_{\odot}$	$1.8 \times 10^{-5} \mathrm{sec}$	0.008
$10^{-10} M_{\odot}$	0.038	17.8
$10^{-12} M_{\odot}$	83	38442

PBH inspiral stochastic signal

Unresolved PBH mergers contribute to a stochastic gravitational wave background

$$h_c \approx \left[\frac{3}{4\pi^2} \left(\frac{H_0}{f}\right)^2 \Omega_{\rm gw}(f)\right]^{1/2} \sim 2 \times 10^{-31} \left(\frac{f}{\rm GHz}\right)^{-1} \left(\frac{\Omega_{\rm gw}}{10^{-7}}\right)^{1/2}$$

PBH inspiral stochastic signal

Unresolved PBH mergers contribute to a stochastic gravitational wave background

$$h_c \approx \left[\frac{3}{4\pi^2} \left(\frac{H_0}{f}\right)^2 \Omega_{\rm gw}(f)\right]^{1/2} \sim 2 \times 10^{-31} \left(\frac{f}{\rm GHz}\right)^{-1} \left(\frac{\Omega_{\rm gw}}{10^{-7}}\right)^{1/2}$$

stationary stochastic background — no issue with time integration

• Superradiance requires $1/m_a \sim 2Gm_{PBH}$

[Arvanitaki et al., 2012] [Aggarwal et al., 2022] [Unal, 2023]

axion mass $m_a \simeq \frac{M_\odot}{m_{\rm PBH}} \, 10^{-10} \, {\rm eV}$

- Superradiance requires $1/m_a \sim 2Gm_{PBH}$
- Standard scenario → no spin →

[Arvanitaki et al., 2012] [Aggarwal et al., 2022] [Unal, 2023]

axion mass $m_a \simeq \frac{M_\odot}{m_{\rm PBH}} \, 10^{-10} \, {\rm eV}$

no superradiance

[Arvanitaki et al., 2012] [Aggarwal et al., 2022] [Unal, 2023]

• Superradiance requires $1/m_a \sim 2Gm_{\text{PBH}}$

axion mass
$$m_a \simeq \frac{M_\odot}{m_{\rm PBH}} \, 10^{-10} \, {\rm eV}$$

- Standard scenario → no spin → no superradiance
 - → PBH mergers generates a spinning remnant with $\chi \simeq 0.68$ → superradiance

[Arvanitaki et al., 2012] [Aggarwal et al., 2022] [Unal, 2023]

• Superradiance requires $1/m_a \sim 2Gm_{\text{PBH}}$

axion mass
$$m_a \simeq \frac{M_\odot}{m_{\rm PBH}} \, 10^{-10} \, {\rm eV}$$

- Standard scenario → no spin → no superradiance
 - → PBH mergers generates a spinning remnant with $\chi \simeq 0.68$ → superradiance
- Axion cloud form around a rotating BH

[Arvanitaki et al., 2012] [Aggarwal et al., 2022] [Unal, 2023]

• Superradiance requires $1/m_a \sim 2Gm_{\text{PBH}}$

axion mass
$$m_a \simeq \frac{M_\odot}{m_{\rm PBH}} \, 10^{-10} \, {\rm eV}$$

- Standard scenario → no spin → no superradiance
 - PBH mergers generates a spinning remnant with $\chi \simeq 0.68 \longrightarrow$ superradiance

Axion cloud form around a rotating BH --- extract rotational energy from BH

- (superradiance instability)
- lose energy into GWs

[Aggarwal et al., 2022] [Unal, 2023]

[Arvanitaki et al., 2012]

• Superradiance requires $1/m_a \sim 2Gm_{PBH}$

levels similar to the hydrogen atom

axion mass
$$m_a \simeq \frac{M_\odot}{m_{\rm PBH}} \, 10^{-10} \, {\rm eV}$$

- Standard scenario → no spin → no superradiance
 - → PBH mergers generates a spinning remnant with $\chi \simeq 0.68$ → superradiance

 Axion cloud form around a rotating BH --- extract rotational energy from BH (superradiance instability) – lose energy into GWs

 'gravitational atom' with energy

- Superradiance requires $1/m_a \sim 2Gm_{PBH}$
- [Arvanitaki et al., 2012] [Aggarwal et al., 2022] [Unal, 2023]

axion mass $m_a \simeq \frac{M_{\odot}}{m_{\rm DBH}} 10^{-10} \, {\rm eV}$

- Standard scenario → no spin → no superradiance
 - \rightarrow PBH mergers generates a spinning remnant with $\chi \simeq 0.68 \rightarrow$ superradiance

Axion cloud form around a rotating BH --- extract rotational energy from BH

'gravitational atom' with energy levels similar to the hydrogen atom

 Axions can transition between levels or annihilate into a graviton

long-lived, monochromatic GW source

- (superradiance instability)
- lose energy into GWs

- Superradiance requires $1/m_a \sim 2Gm_{\text{PBH}}$
- Standard scenario → no spin
 - PBH mergers generates a spinning remnant with $\chi \simeq 0.68 \longrightarrow$ superradiance
- Axion cloud form around a rotating BH

'gravitational atom' with energy levels similar to the hydrogen atom

 Axions can transition between levels or annihilate into a graviton

long-lived, monochromatic GW source

$$f \simeq 2 \,\mathrm{MHz} \left(\frac{m_a}{10^{-9} \,\mathrm{eV}}\right) \sim 2 \times 10^2 \,\mathrm{GHz} \left(\frac{m_{\mathrm{PBH}}}{10^{-6} \,M_{\odot}}\right)^{-1}$$

 $\tau \propto 0.13 \,\mathrm{yr}$

 $m_{\rm PBH}$

signal duration

axion mass
$$m_a \simeq \frac{M_\odot}{m_{\rm PBH}} \, 10^{-10} \, {\rm eV}$$

no superradiance

- extract rotational energy from BH (superradiance instability)
- lose energy into GWs

[Ejlli et al., 2014] [Ringwald et al., 2020]

• Graviton-photon conversion in a static magnetic field:

 $\begin{array}{c} z \\ GW \\ \swarrow \\ L \\ \end{array} \\ \begin{array}{c} EM \\ GW \\ GW \\ GW \\ \end{array} \\ \end{array}$

$$\overrightarrow{E}^{(1)} \simeq h \overrightarrow{B}_{ext} kcz \exp(i(kz - \omega t))$$

$$\overrightarrow{B}^{(1)} \simeq h \overrightarrow{B}_{ext} kz \exp(i(kz - \omega t))$$

[Boccaletti et al., 1970] [De Logi et al., 1977] [Ejlli et al., 2014] [Ringwald et al., 2020]

• Graviton-photon conversion in a static magnetic field:

[Boccaletti et al., 1970] [De Logi et al., 1977] [Ejlli et al., 2014] [Ringwald et al., 2020]

• Graviton-photon conversion in a static magnetic field:

[Boccaletti et al., 1970] [De Logi et al., 1977] [Ejlli et al., 2014] [Ringwald et al., 2020]

• Graviton-photon conversion in a static magnetic field:

[Boccaletti et al., 1970] [De Logi et al., 1977] [Ejlli et al., 2014] [Ringwald et al., 2020]

 Not possible to detect the chirp phase of light PBHs

$$\Delta t \sim \mathcal{O}(1) \times \frac{1}{f_{\rm ISCO}} \lesssim 10^{-8} \, {\rm sec}$$

Ideal sources:

- superradiance
- early inspiral phase of PBHs
- stochastic backgrounds

 Limitation: coherence between GW and EM requires

$$f \gg \frac{0.45}{\pi} \frac{L}{A} \simeq 4.3 \times 10^7 \,\text{Hz} \left(\frac{L}{1 \,\text{m}}\right) \left(\frac{1 \,\text{m}}{\sqrt{A}}\right)^2$$

can only be used at very
high frequency
 $f \gg 10^8 \,\text{Hz}$

Detector parameters

IAXO	$B = 2.5 \mathrm{T}$	$L = 20 \mathrm{m}$	$A = 3.2 \mathrm{m}^2$	$f \subset (0.5 \div 1) \times 10^9 \mathrm{Hz}$
MADMAX	$B = 2.5 { m T}$	$L = 20 \mathrm{m}$	$A = 3.2 \mathrm{m}^2$	$f \subset (2 \div 4) \times 10^9 \mathrm{Hz}$
HSPD	$B = 1 \mathrm{T}$	$L = 1 \mathrm{m}$	$A = 1 \mathrm{m}^2$	$f \subset (2.8 \div 5.1) \times 10^{10} \mathrm{Hz}$

[see S. Ellis' talk] [see K. Peter's talk] [Berlin et al., 2022] [see A. Berlin's talk] [see B. Giaccone's talk] [Berlin et al., 2021]

• Sensitivity

$$h_0 = 3 \times 10^{-22} \left(\frac{0.1}{\eta_n}\right) \left(\frac{8 \text{ T}}{|\mathbf{B}|}\right) \left(\frac{0.1 \text{ m}^3}{\text{Vol}}\right)^{\frac{5}{6}} \left(\frac{10^5}{Q}\right)^{\frac{1}{2}} \times \left(\frac{1}{1 \text{ K}}\right)^{\frac{1}{2}} \left(\frac{1 \text{ GHz}}{f}\right)^{\frac{3}{2}} \left(\frac{\Delta f}{10 \text{ kHz}}\right)^{\frac{1}{4}} \left(\frac{1 \min}{\Delta t}\right)^{\frac{1}{4}}$$

where $\Delta f \simeq f/Q$

• Related experiments: ADMX, HAYSTAC, CAPP, ORGAN, SQMS.

[see S. Ellis' talk] [see K. Peter's talk] [Berlin et al., 2022] [see A. Berlin's talk] [see B. Giaccone's talk] [Berlin et al., 2021]

• Sensitivity

$$h_0 = 3 \times 10^{-22} \left(\frac{0.1}{\eta_n}\right) \left(\frac{8 \text{ T}}{|\mathbf{B}|}\right) \left(\frac{0.1 \text{ m}^3}{\text{Vol}}\right)^{\frac{5}{6}} \left(\frac{10^5}{Q}\right)^{\frac{1}{2}} \times \left(\frac{1}{1 \text{ K}}\right)^{\frac{1}{2}} \left(\frac{1 \text{ GHz}}{f}\right)^{\frac{3}{2}} \left(\frac{\Delta f}{10 \text{ kHz}}\right)^{\frac{1}{4}} \left(\frac{1 \text{ min}}{\Delta t}\right)^{\frac{1}{4}}$$

where $\Delta f \simeq f/Q$

- Related experiments: ADMX, HAYSTAC, CAPP, ORGAN, SQMS.
- Signal longer than the ring-up time of the cavity

 $m_{
m PBH} \lesssim 10^{-9} \, M_{\odot}$ ADMX $m_{
m PBH} \lesssim 10^{-10} \, M_{\odot}$ SQMS

[see S. Ellis' talk] [see K. Peter's talk] [Berlin et al., 2022] [see A. Berlin's talk] [see B. Giaccone's talk] [Berlin et al., 2021]

Sensitivity

$$h_0 = 3 \times 10^{-22} \left(\frac{0.1}{\eta_n}\right) \left(\frac{8 \text{ T}}{|\mathbf{B}|}\right) \left(\frac{0.1 \text{ m}^3}{\text{Vol}}\right)^{\frac{5}{6}} \left(\frac{10^5}{Q}\right)^{\frac{1}{2}} \times \left(\frac{1 \text{ GHz}}{1 \text{ K}}\right)^{\frac{3}{2}} \left(\frac{1 \text{ GHz}}{f}\right)^{\frac{3}{2}} \left(\frac{\Delta f}{10 \text{ kHz}}\right)^{\frac{1}{4}} \left(\frac{1 \text{ min}}{\Delta t}\right)^{\frac{1}{4}}$$

where $\Delta f \simeq f/Q$

- Related experiments: ADMX, HAYSTAC, CAPP, ORGAN, SQMS.
- Signal longer than the ring-up time of the cavity

 $m_{
m PBH} \lesssim 10^{-9} M_{\odot}$ ADMX $m_{
m PBH} \lesssim 10^{-10} M_{\odot}$ SQMS

Resonant LC circuits

[Domcke et al., 2022]

- Suitable to probe the chirp phase at $f \sim 1 \,\mathrm{MHz}$ for $m_{\mathrm{PBH}} \simeq 10^{-5} \,M_{\odot}$.

[see S. Ellis' talk] [see K. Peter's talk] [Berlin et al., 2022] [see A. Berlin's talk] [see B. Giaccone's talk] [Berlin et al., 2021]

Sensitivity

$$h_0 = 3 \times 10^{-22} \left(\frac{0.1}{\eta_n}\right) \left(\frac{8 \text{ T}}{|\mathbf{B}|}\right) \left(\frac{0.1 \text{ m}^3}{\text{Vol}}\right)^{\frac{5}{6}} \left(\frac{10^5}{Q}\right)^{\frac{1}{2}} \times \left(\frac{1 \text{ GHz}}{1 \text{ K}}\right)^{\frac{3}{2}} \left(\frac{1 \text{ GHz}}{f}\right)^{\frac{3}{2}} \left(\frac{\Delta f}{10 \text{ kHz}}\right)^{\frac{1}{4}} \left(\frac{1 \text{ min}}{\Delta t}\right)^{\frac{1}{4}}$$

where $\Delta f \simeq f/Q$

- Related experiments: ADMX, HAYSTAC, CAPP, ORGAN, SQMS.
- Signal longer than the ring-up time of the cavity

 $m_{
m PBH} \lesssim 10^{-9} \, M_{\odot}$ ADMX $m_{
m PBH} \lesssim 10^{-10} \, M_{\odot}$ SQMS

Resonant LC circuits

[Domcke et al., 2022]

- Suitable to probe the chirp phase at $f \sim 1 \,\mathrm{MHz}$ for $m_{\mathrm{PBH}} \simeq 10^{-5} \,M_{\odot}$.
- Related experiments are ADMX SLIC, ABRACADABRA, BASE, SHAFT, WISPLC.
- Sensitivity scales as Vol^{7/6}
 - → interesting prospects with DMRadio

Microwave cavities & Resonant LC circuits

Detector parameters

DMR	$B = 4 \mathrm{T}$	$Vol = 100 \mathrm{m}^3$	$f \subset (0.1 \div 30) \mathrm{MHz}$		
ADMX	$B = 7.5 { m T}$	Vol = 136 L	T = 0.6 K	$Q = 8 \times 10^4$	$f \subset (0.65 \div 1.02)\mathrm{GHz}$
SQMS	$B = 5 \mathrm{T}$	Vol = 100 L	T = 1 K	$Q = 10^{6}$	$f \subset (1 \div 2) \operatorname{GHz}$

Conclusions

- The Ultra-High-Frequency band is very well motivated from the theoretical point of view and worth studying.
- Technological progress is still necessary in order to make a first GW detection.
- A few detector proposals appeared after we published our paper.

Conclusions

- The Ultra-High-Frequency band is very well motivated from the theoretical point of view and worth studying.
- Technological progress is still necessary in order to make a first GW detection.
- A few detector proposals appeared after we published our paper.

https://indico.cern.ch/event/1257532/

Thank you!