

The Quantum Price of Particle Physics

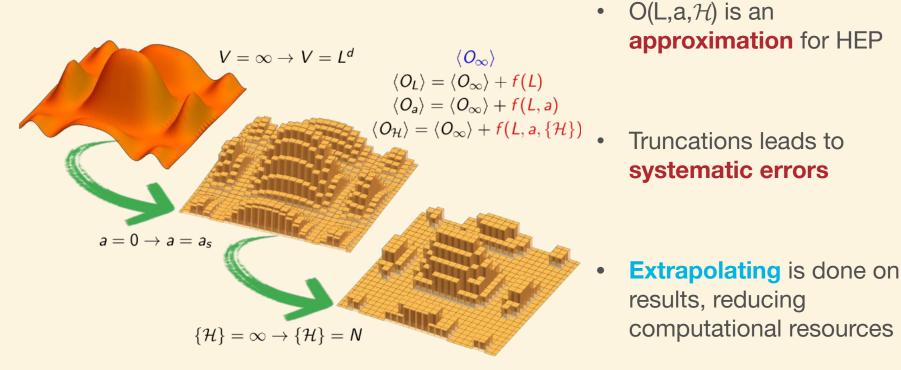
Hank Lamm

6 September, 2023

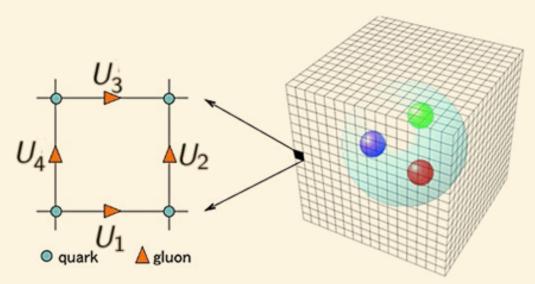
Theoretical High Energy Physics demands Quantum Computing

- The world is quantum, and we are lucky anything is amenable to classical computers
 - Large-scale quantum computers can tackle computations in HEP otherwise inaccessible
 - This opens up new frontiers & extends the reach of LHC, LIGO, EIC & DUNE

LO Parton Showers	Scattering Phase Shifts	High Pileu Event Reconstru		Quantum Gravity	nctions Ab-initio
	Low Pileup Event Reconstruction		in Early Universe symmetry	QCD Equation of S	Hadron-Hadron Scattering tate
QCD Thermodynamic Low-l		Ab-initio Nuclear Physics	Lattice Chiral Gauge Theories	Dynamical Properties of Quark Gluon Plasma	
Hadronic Spectrosco	onic (g-2) _µ	N°LO+ Parton Showers	Neutrinos in Supernova		Generalized n Distributions
Classicall Tractabl	•	Во	oundary Haze		Quantum Advantage


While broad, these topics often are formulated as lattice field theories

Quantum Simulation for High-Energy Physics


Bauer, Davoudi et al. - PRX Quantum 4 (2023) 2, 027001 Wonderful survey of physics questions, methods, and outstanding problems in field

2 06/09/2023 Hank Lamm | The Quantum Price of Particle Physics

Take it to the limit

3+1d Lattice QCD

- Put the 4-component, 3 color spinor for quark on each site in lattice
- Put the **3x3 matrix of complex numbers** for each gluon on each link of lattice
- Perform a Monte Carlo by sampling field configurations
- Modern simulations performed on **100⁴ lattices** w/ **yrs** of supercomputing time
- 4 06/09/2023 Hank Lamm | The Quantum Price of Particle Physics

Sign problems stymie lattice field theory because....

$|\psi angle$ is a **complex-valued** probability amplitude

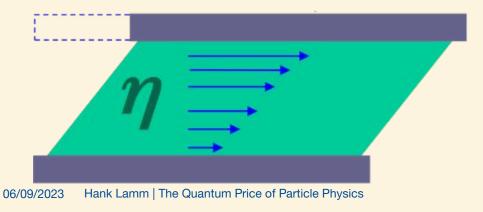
All I need is...(the industrial workforce of a small country)

 $\langle \psi_0 | e^{-iHt} {\cal O} e^{iHt} | \psi_0
angle$

- Prepare a state
- Time evolve the state
- Perform a measurement

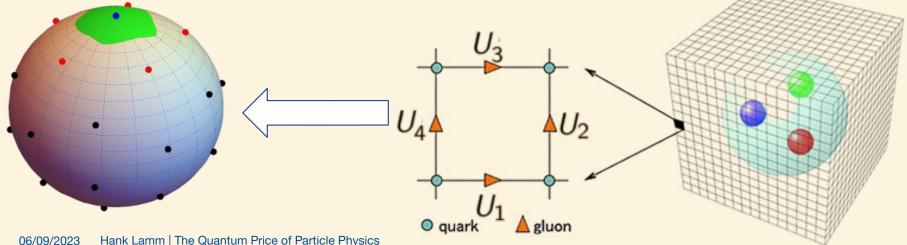
As a "near-term" target, consider the viscosity of QCD

• $\eta = rac{V}{T} \int_0^\infty \langle T_{12}(t) T_{12}(0)
angle$


Quantum algorithms for transport coefficients in gauge theories NuQS Collaboration - *Phys.Rev.D* 104 (2021) 9, 094514 Formulates lattice operators and propose correlators

• A good goal allows for focus while introducing all the necessary pieces

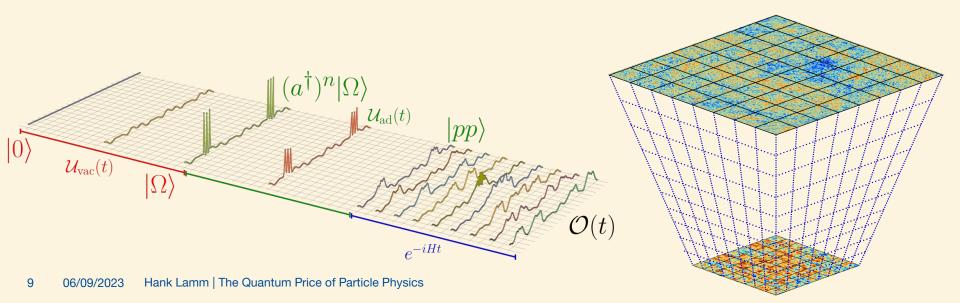
Viscosity of pure-glue QCD from the lattice Altenkort et al. - 2211.08230 [hep-lat] State of the art lattice results, but massive uncertainties persist


7

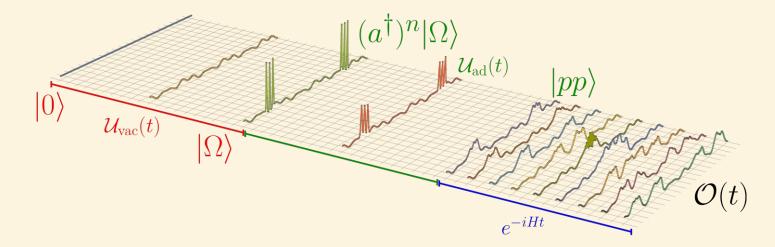
$$\eta/s = 0.15 - 0.48, T = 1.5T_c \ \zeta/s = 0.017 - 0.059, T = 1.5T_c$$

Qubit Costs for Lattice Field Theory

- Lattice field theory discretizes spacetime into a lattice of (L/a)^d sites
 - $L \rightarrow \infty$ and $a \rightarrow 0$ must be taken
- Matter fields are placed on sites, gauge fields on links
 - Fermionic matter need **F** qubits per site
 - Gauge links are bosonic and need efficient truncation Λ qubits per link
 - So logical qubit cost is: $(d\Lambda + F)(L/a)^d$



Gate Costs for Lattice Field Theory


- Approximating $U(T)=e^{-iHT}$ can corresponds to a lattice of size Ta $_t$

- $a_t \rightarrow 0$ or equivalent limit must be taken

• Logical gate cost is heuristically: $rac{T}{a_t} imes [\mathcal{O}(1)(d\Lambda+F)(L/a)^d]^{\mathcal{O}(1)}$

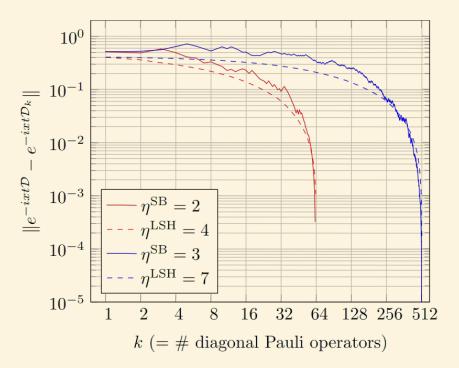
It's one calculation, Hank. What could it cost?

O(10¹¹) q and O(10⁵⁵) T-gates which is < 3 yrs on an exascale QC

Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer Kan and Nam - 2107.12769 [quant-ph] Rough, conservative, model- and algorithm-dependent estimates for viscosity and heavy-ion collisions

Compare to O(10⁷) q and O(10²⁰) T-gates for RSA Cracking and Chemistry

10 06/09/2023 Hank Lamm | The Quantum Price of Particle Physics


What will QCD viscosity take? Qubits: $\mathcal{E}(d\Lambda + \mathcal{F})(L/a)^d$ Gates: $rac{T}{a_t} imes [G_q\,\mathcal{E}(d\Lambda + \mathcal{F})(L/a)^d]^\mathcal{G}$

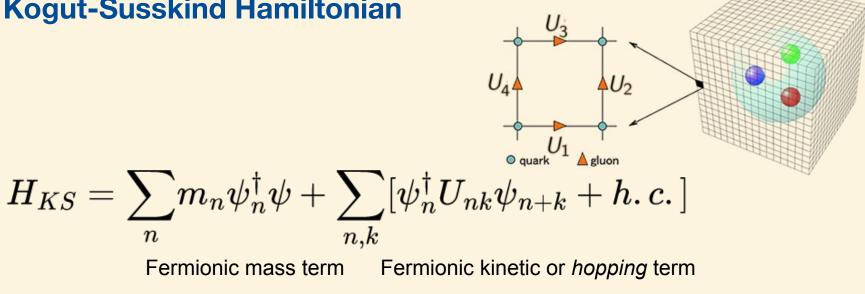
- What dimension, d? (3)
 - Note: universality errors
- How will you truncate Λ ? (9 64-bit $\mathbb{C} \sim 10^3$)
 - Note: truncation errors
- How large will you take L? (r_{proton}~1fm)
 - Note: finite volume errors
- What QEC is needed, \mathcal{E} ? (1-10⁸)
 - Note: quantum noise errors
- How small will you take a_t?
 - Note: Trotter errors

- What is F? (Staggered=12; Wilson=24)
 - Note: a_t scaling of errors
- How small will you take a? (1fm⁻¹~ 200 MeV)
 - Note: **discretization errors**
- How efficient is your algorithm G_a?
 - Note: *shrug* errors
- How well approximated are your gates ${\cal G}$?
 - Note: gate synthesis errors
- How long do you need to run for (T)?
 - Note: Signal resolution errors

What didja get?

- Qubit costs: 10³-10¹¹
 - 10q for SU(3) might be reasonable
 - a~0.5 fm, L~3 fm
 - Perhaps we drop fermions
 - Perhaps lower dimensions
- Gate costs: 10⁷-10⁶⁰
 - a_t~0.1 fm, T~1 fm
 - Perhaps sloppy synthesis
 - Perhaps improved algorithms

General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory Davoudi, Shaw, Stryker - 2212.14030 [hep-lat] Understanding the synthesis and Trotter errors, along with algorithmic choices in 1+1 SU(2)


But we don't today have a good sense of **theoretical** errors...

Does considering the NISQ era make sense?

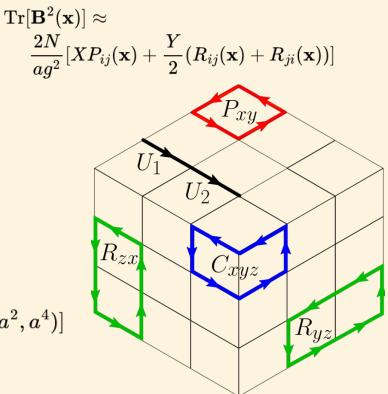
... if not, the questions we need to address change

- Scalable, networked qudits
 - Considerations of bandwidth
- Quantum error correction
 - Potentially huge overhead
- Gate set limitations
 - Must synthesize
 - Count nontransverse T-gates

Kogut-Susskind Hamiltonian

$$+\sum_{n}E_{n}^{2}+\sum_{n,k}\operatorname{ReTr}U_{p}$$
Gauge **E** field Gauge **B** or *plaquette* term

Hamiltonian Formulation of Wilson's Lattice Gauge Theories Kogut & Susskind Phys.Rev.D 11 (1975) 395-408 Formulated O(a²) lattice Hamiltonian for LGT with staggered matter

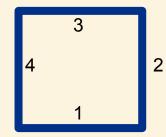

Symanzik-Improved Hamiltonian

$$egin{aligned} & \mathrm{Tr}[\mathbf{E}^2(\mathbf{x})] pprox \ & rac{g^2}{2a} \mathrm{Tr}[X \mathcal{E}_i(\mathbf{x}) \mathcal{E}_i(\mathbf{x}) + Y \mathcal{E}_i(\mathbf{x}) U_i(\mathbf{x}) \mathcal{E}_i(\mathbf{x}+a \hat{i}) U_i^\dagger(\mathbf{x})] \end{aligned}$$

Which is related to the continuum:

$$K=rac{X+Y}{2}E_i^2+rac{5Y-X}{12}E_i\partial_i^2E+\mathcal{O}(ea^2,a^4)$$

$$egin{aligned} Vpprox a^d [(X+4Y){
m Tr}(F_{ij}^2)\ &+rac{a^2}{12}(X+10Y){
m Tr}(F_{ij}\{D_i^2+D_j^2\}F_{ij})+\mathcal{O}(e^2a^2,a^4)] \end{aligned}$$

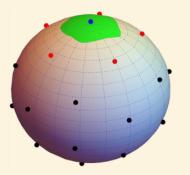


 H_{I} should require >2^d fewer qubits with comparable gate counts to H_{KS}

Improved Hamiltonians for Quantum Simulation of Gauge Theories Carena, Lamm, Li, Liu *PRL 129 (2022) 5* Developed quantum circuits for O(a⁴) pure-gauge Hamiltonian

Group Primitives as subroutines

$$H_{KS,1} = \sum_{i= ext{color}} E_{1,i}^2(n) + \sum_{k= ext{direction}} ext{ReTr} U_1 U_2 U_3^\dagger U_4^\dagger$$


• Inversion gate:
$$\mathfrak{U}_{-1} |g\rangle = |g^{-1}\rangle$$

• Multiplication gate: $\mathfrak{U}_{\times} |g\rangle |h\rangle = |g\rangle |gh\rangle$
• Trace gate $\mathfrak{U}_{\mathrm{Tr}}(\theta) |g\rangle = e^{i\theta \operatorname{Re} \operatorname{Tr} g} |g\rangle$
 $|U_1\rangle = \mathfrak{U}_{\times} = \mathfrak{U$

• Fourier Transform gate: $\mathfrak{U}_F \sum_{g \in G} f(g) |g\rangle = \sum_{\rho \in \hat{G}} \hat{f}(\rho)_{ij} |\rho, i, j\rangle$

General Methods for Digital Quantum Simulations of Gauge Theories Lamm, Lawrence, Yamauchi - *Phys.Rev.D* 100 (2019) 3, 034518 Constructed this general formalism for group independent implementation

How to choose a digitization?

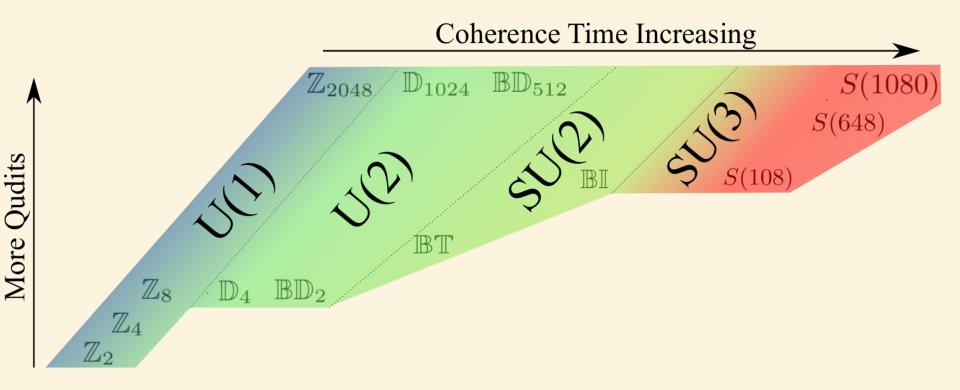
• Must map ∞-dimensional Hilbert space of bosons to finite quantum register

$$H_{KS,1} = \sum_{i=\text{color}} E_{1,i}^2(n) + \sum_{k=\text{direction}} \text{ReTr} U_1 U_2 U_3^{\dagger} U_4^{\dagger}$$

Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis Ciavarella, KIco, Savage *Phys.Rev.D* 103 (2021) 9, 094501 Qubit implementation of SU(3) with irrep truncations

Mixed basis

Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT Gustafson, Lamm, Lovelace, Musk - *Phys.Rev.D* 106 (2022) 11, 114501 Qubit and Qudit gates for approximating SU(2) with subgroups


A new basis for Hamiltonian SU(2) simulations Bauer, D'Andrea, Freytsis, Grabowska Formulated an alternative basis that contains parts of E & B basis

Well, what keeps you up at night?

arbitrary precision, gauge fixing, quantum noise, error correction, gate costs, classical simulatability

17 06/09/2023 Hank Lamm | The Quantum Price of Particle Physics

The ladder of discrete gauge theories in HEP calculations

Gluon Field Digitization for Quantum Computers NuQS collaboration - *Phys.Rev.D* 100 (2019) 11, 114501 Demonstrated that S(1080) approximates certain 3+1d SU(3) observables


How do we represent discrete groups?

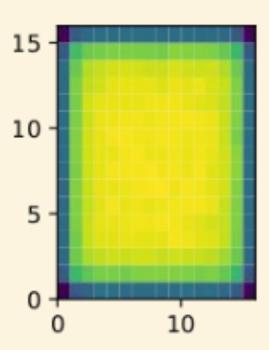
• Ordered product of generators

$$egin{aligned} h_{\{o_k\}} &= \prod_k \lambda_k^{o_k} = h_d \ \mathbb{D}_4: & h_d = s^a r^b \ \mathbb{Q}_8: & h_d = (-1)^a \mathbf{i}^b \mathbf{j}^c \ \mathbb{B}\mathbb{T}: & h_d = (-1)^a \mathbf{i}^b \mathbf{j}^c \mathbf{l}^d \ \mathbb{\Sigma}(\mathbf{36} imes \mathbf{3}): & h_d = \omega_3^a \mathbf{C}^b \mathbf{E}^c \mathbf{V}^d \ o |abcd \cdots
angle \end{aligned}$$

These integers are not all binary, so naturally more robust and easier on qudits!

Robustness of Gauge Digitization to Quantum Noise Gustafson, Lamm - 2301.10207 [hep-lat] Discusses quantum registers with qubits, qudits for U(1), SU(2), SU(3)

An quicosotetrit implementation of \mathfrak{U}_{-1} using the $X^{(a,b)}$ gate.

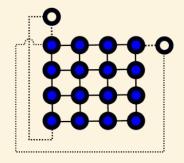

$${\mathcal F}_2^{N_q(N_q-1)}={\mathcal F}_{2_q^N}$$

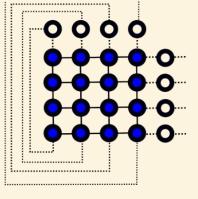
Can multimode qudits provide nonabelian QEC and virtual gates?

Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT Gustafson, Lamm, Lovelace, Musk - *Phys.Rev.D* 106 (2022) 11, 114501 Derived and implemented using custom QEM necessary primitives for HEP simulations The 2T-qutrit, a two-mode bosonic qutrit Denys & Leverrier - Quantum 7, 1032 (2023) Created logical qutrit from nonabelian code constellation

Group Primitives for Different Hardware

Periodic Boundary Conditions are HIGHLY desirable

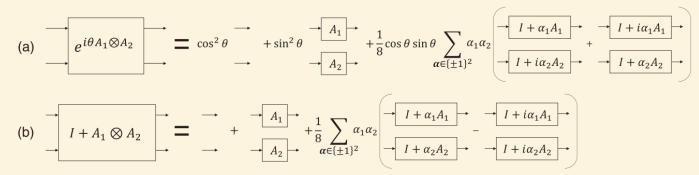



21

$$N_{qubits}^{OBC} pprox x(a)^d imes N_{qubits}^{PBC}$$

Typical x(a) can be **2-5**

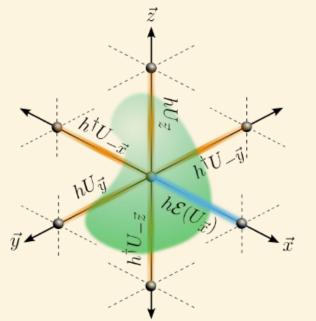
Is 125x more qudits easier that quantum networking?



SWAP all boundaries 06/09/2023 Hank Lamm | The Quantum Price of Particle Physics SWAP thru routing

Boundaries connected

Multigrid and Circuit Knitting


Figure 1. Decomposition of (a) a non-local gate and (b) a non-local non-destructive measurement into a sequence of local operations. A_1 and A_2 are operators such that $A_1^2 = I$ and $A_2^2 = I$.

Constructing a virtual two-qubit gate by sampling single-qubit operations Mitarai, Fujii - New J. Phys. 23 023021 2021 A particularly good explanation and lit review of topic

- Circuit Knitting has <O(9^N) scaling
- Quasiprobabilities increase costs
 - Sign problem!
- Reduce this for LFT through multigrid techniques?

QEC for LFT

- Given a register, prioritize error channels for mitigation and correction
- Reduction of large theoretical error at lower cost

Robustness of Gauge Digitization to Quantum Noise Gustafson, Lamm - 2301.10207 [hep-lat] Classification of Gauge Violating noise for qubits, qudits for U(1), SU(2), SU(3)

23 06/09/2023 Hank Lamm | The Quantum Price of Particle Physics

TABLE I. \mathcal{N}_i vs	. G for $U(1)$	subgroups:	\mathbb{Z}_N where	$N = 2^n$
-----------------------------	----------------	------------	----------------------	-----------

Binary	Gray	Qudits	G
\hat{Y}_0	\hat{Y}_0	$\hat{B}^{(i,j)}, \hat{Z}^{(i)}$	
	$\hat{B}_{a\neg 0}, \hat{Z}_a$	$\hat{\mathcal{V}}^m$	\mathbb{Z}_2
$\hat{X}_{a\neg 0}$			$\mathbb{Z}_{2^{n-d}}$
$\hat{Z}_a, \ \hat{Y}_{a\neg 0}$	\hat{X}_0		$\mathbb{Z}_{2^{n-1}}$
\hat{X}_0		$\hat{\chi}^m$	\mathbb{Z}_N

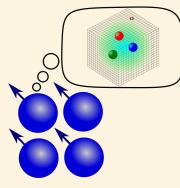


FIG. 2. $\mathcal{P}_{\mathbb{G}}(t_b)$ for \mathbb{Z}_8 versus t_b using $|g\rangle$, $|r\rangle$, and $|s\rangle$ for depolarizing and dephasing channels.

Endgame

- The road to quantum practicality in HEP will be long and winding
- We do not have anything close to realistic game plan
- Material fabrication, cryogenics, hardware design, quantum software stack, and classical communication **all profoundly affect** the questions we can ask in HEP

But also can be affected by HEP

