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HEP challenges for LHC and future colliders

Monte Carlo simulation and data analysis are intensive and requires lots of computing power.
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R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:
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Quantum Computing topics in HEP

The HEP community is testing quantum computing algorithms in topics related to:

hep-exp

Data analysis

hep-ph

Theoretical modelling

quant-ph

Software / Middleware
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Application examples



Quantum computing for HEP experiments � arXiv:2307.03236

QC4HEP WG

Goal:

Replace classical ML data analysis methods

with variational quantum computing (QML)

and observe advantage with quantum

computing methods.

How?

• Developing variational models using

classical quantum simulation.

• Adapting problems and deploying strategies

on NISQ hardware.
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Quantum computing for Theoretical Modelling in HEP � arXiv:2307.03236

Goal:

Design new algorithms for QFT and Hadronic

physics observables, identify advantage from

quantum computing methods.

How?

• Designing hybrid quantum-classical

methods using classical quantum

simulation.

• Deploying classical quantum simulation

techniques on HPC infrastructure.

QC4HEP WG
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Quantum Machine Learning - ML with Quantum Circuits (credits Robbiati)
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Example 1: Parton Distribution Functions

  Parton distribution functions
(Machine Learning)
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Determination of parton distribution functions � arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1 Define a quantum circuit: U(θ, x)|0⟩⊗n = |ψ(θ, x)⟩

2 Uw(α, x) = Rz(α3 log(x) + α4)Ry(α1 log(x) + α2)

3 Using zi(θ, x) = ⟨ψ(θ, x)|Zi|ψ(θ, x)⟩:

qPDFi(x,Q0, θ) =
1− zi(θ, x)

1 + zi(θ, x)
.

U l(θl, γl, x)

U(θl,0, x) • Rz(γl,7)

U(θl,1, x) Rz(γl,0) •

U(θl,2, x) • Rz(γl,4)

U(θl,3, x) Rz(γl,1) •

= U(θl,4, x) • Rz(γl,5)

U(θl,5, x) Rz(γl,2) •

U(θl,6, x) • Rz(γl,6)

U(θl,7, x) Rz(γl,3) •

1Results from classical quantum simulation and hardware execution (IBM) are promising:
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Example 2: Event generation

  Event generation
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Monte Carlo event generation using style-QGAN � arXiv:2110.06933

Train with a small dataset, use unsupervised machine learning models to learn the

underlying distribution and generate for free a much larger dataset.
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https://arxiv.org/abs/2110.06933


Style-based quantum generator � arXiv:2110.06933

Quantum generator: a series of quantum layers with rotation and entanglement gates
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Simulation with LHC generated data � arXiv:2110.06933

Testing the style-qGAN with real data: proton-proton collision pp → tt̄

Training and reference samples for Mandelstam variables (s, t) and rapidity y generated with

MadGraph5 aMC@NLO.

Simulation results: 3 qubits, 2 layers, 100 bins

12

https://arxiv.org/abs/2110.06933


Testing different architectures � arXiv:2110.06933
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Example 3: Monte Carlo Integration / Sampling

  Monte Carlo Integration
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Density estimation with adiabatic QML � arXiv:2303.11346

û Determining Probability Density Functions (PDF) by

fitting the corresponding Cumulative Density Function

(CDF) using an adiabatic QML ansatz.

� Algorithm’s summary:

1 Optimize the parameters θ using adiabatic evolution:

Had(τ ;θ) = [1− s(τ ;θ)]X̂ + s(τ ;θ)Ẑ in order to

approximate some target CDF values;

2 Derivate from Had a circuit C(τ ;θ) whose action on

the ground state of X̂ returns |ψ(τ)⟩;

3 The circuit at step 2 can be used to calculate the

CDF;

4 Compute the PDF by derivating C with respect to τ

using the Parameter Shift Rule.
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Multi-variable integration with VQCs � arXiv:2308.05657

û Use Variational Quantum Circuits to calculate multi-dimensional integrals: I(α) =
∫ xb

xa
g(α;x)dnx.

� Algorithm’s summary:

1 Train the derivative of a VQC with respect to the integral variables x to approximate the

integrand g(x);

2 The derivatives are computed using the Parameter Shift Rule and this allows the same circuit C
to be used for approximating any integrand marginalisation and the primitive.
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Middleware challenges



Software challenges

How to design quantum algorithms and deploy on quantum hardware?

• Cloud-based quantum hardware:

• Use tools provided by providers.

• Self-hosted quantum hardware:

• Operate self-hosted quantum hardware.

• Accommodate custom lab setups.

• Bypass restrictions to execute an experiment.

Example

Let’s consider the PDF determination project, it

requires two stages: prototyping and deployment.
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Stage 1: Prototyping models / algorithms

Prototyping

1 High-level quantum circuit

programming language

2 Fast classical quantum simulation

for model prototyping
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Stage 2: Deployment on quantum hardware

Deployment

1 Gates to microwave pulses sequence

compilation (SC qubits)

2 Hardware compatible optimization

algorithms

3 Error-mitigation algorithms
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Introducing Qibo � arXiv:2009.01845

Qibo is an open-source hybrid operating system for self-hosted quantum computers.

Qibo Language API

Quantum annealing

Quantum circuits

Implementation

Simulation

Qibojit

Efficient device-agnostic 

simulation with custom 

operators

numpy
Lightweight, fits

well with any CPU

tensorflow

TensorFlow 

implementation 

simulations

Quantum 

hardware

Qibocal 

Characterization

Calibration

Validation

Qibolab

Control drivers

Convert gates to pulses

Transpiler

= backends

= tools

Qibosoq
  RFSoCs  

https://qibo.science 20

https://arxiv.org/abs/2009.01845
https://qibo.science


Qibo Contributors (September 2023)
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Classical quantum simulation benchmarks � arXiv:2203.08826
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ProjectQ

Major features:

• Supports CPU, GPU and multi-GPU.

• NVIDIA and AMD GPUs support.

• Reduced memory footprint.

Qibojit

CPU

Custom operations 

using Numba

NumPy tensors

GPU(s)

CuPy tensors 

Custom operations using

CuPy JIT

NVIDIA cuQuantum

Specialized operators 

for 1 and 2 qubits gates 

exploiting sparsity.

In-place updates.

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks
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How to control qubits? � arXiv:2308.06313

Qibolab is the dedicated Qibo backend for quantum hardware control.

Platform

Qubit
NativeGate

Characterization

QubitPair
NativeGate

Characterization

Instrument Port

Channel

• Platform API: support custom allocation of quantum hardware platforms / lab setup.

• Drivers: supports commercial and open-source firmware for hardware control.

• Arbitrary pulse API: provide a library of custom pulses for execution through instruments.

• Transpiler: compiles quantum circuits into pulse sequences matching chip topology.

• Quantum Circuit Deployment: seamlessly deploys quantum circuit models on quantum hardware.
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Benchmarking instruments performance � arXiv:2308.06313

We compare the ideal pulse sequence execution performance to instruments execution duration.
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Zurich Instruments (ZI), Quantum Machines (QM), QBlox and RFSoC FPGA (Qibosoq+QICK). 24
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Qubit characterization and calibration � arXiv:2308.06313

Calibration of single and multi-qubit platforms are possible using Qibo.
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Full-stack procedure: PDF determination � arXiv:2308.06313

1. High-Level API (Qibo)

• Define model prototype.

• Implement training loop.

• Perform training using simulation.

2. Calibration (Qibocal)

• Calibrate qubit.

• Generate platform configuration.

3. Execution (Qibolab)

• Allocate calibrated platform.

• Compile and transpile circuit.

• Execute model and return results.
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Real-time error mitigation in QML trainings

û Cleaning up the parameters space with a real-time error

mitigation strategy in order to overcome Noise-Induced

Barren Plateaus (NIBP) when training a QML model:

� Algorithm’s summary:

1 The expected values E are mitigated through

Clifford Data Regression (CDR):

Emit = αcdrEnoisy + βcdr;

2 Reduced CDR computational cost by updating

(α, β)cdr periodically during the training;

3 The mitigation removes the bounds and accelerate

the training process.
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Full-stack deployment: RB and Bell inequality � arXiv:2308.06313

Examples of results executed on quantum hardware (single-qubit) after calibration with Qibo:
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Outlook



Outlook

We have observed a great set of interesting proof-of-concept applications in HEP.

For the future:

• Improve results quality, moving from prototype to production.

• Mitigate hardware noise by implementing real-time error mitigation techniques.

• Provide software tools for further enhancement of quantum technologies.

• Enhance calibration, characterization and validation techniques.

• Codevelop quantum hardware and instruments for application specific tasks.
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