
Quantum computing for HEP applications

Challenges and achievements in the NISQ era

Stefano Carrazza, INFN Milano / Università degli Studi di Milano

September 6th, 2023

Quantum Technologies for Fundamental Physics, EMFCSC, Erice

HEP challenges for LHC and future colliders

Monte Carlo simulation and data analysis are intensive and requires lots of computing power.

1

R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:

2

R&D and adoption of new technologies in HEP

HEP is moving towards new technologies, in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

Examples of initiatives and institutions involved:

2

Quantum Computing topics in HEP

The HEP community is testing quantum computing algorithms in topics related to:

hep-exp

Data analysis

hep-ph

Theoretical modelling

quant-ph

Software / Middleware

3

Application examples

Quantum computing for HEP experiments � arXiv:2307.03236

QC4HEP WG

Goal:

Replace classical ML data analysis methods

with variational quantum computing (QML)

and observe advantage with quantum

computing methods.

How?

• Developing variational models using

classical quantum simulation.

• Adapting problems and deploying strategies

on NISQ hardware.

4

https://arxiv.org/abs/2307.03236

Quantum computing for Theoretical Modelling in HEP � arXiv:2307.03236

Goal:

Design new algorithms for QFT and Hadronic

physics observables, identify advantage from

quantum computing methods.

How?

• Designing hybrid quantum-classical

methods using classical quantum

simulation.

• Deploying classical quantum simulation

techniques on HPC infrastructure.

QC4HEP WG

5

https://arxiv.org/abs/2307.03236

Quantum Machine Learning - ML with Quantum Circuits (credits Robbiati)

6

Quantum Machine Learning - ML with Quantum Circuits (credits Robbiati)

6

Quantum Machine Learning - ML with Quantum Circuits (credits Robbiati)

6

Example 1: Parton Distribution Functions

 Parton distribution functions
(Machine Learning)

7

Determination of parton distribution functions � arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1 Define a quantum circuit: U(θ, x)|0⟩⊗n = |ψ(θ, x)⟩

2 Uw(α, x) = Rz(α3 log(x) + α4)Ry(α1 log(x) + α2)

3 Using zi(θ, x) = ⟨ψ(θ, x)|Zi|ψ(θ, x)⟩:

qPDFi(x,Q0, θ) =
1− zi(θ, x)

1 + zi(θ, x)
.

U l(θl, γl, x)

U(θl,0, x) • Rz(γl,7)

U(θl,1, x) Rz(γl,0) •

U(θl,2, x) • Rz(γl,4)

U(θl,3, x) Rz(γl,1) •

= U(θl,4, x) • Rz(γl,5)

U(θl,5, x) Rz(γl,2) •

U(θl,6, x) • Rz(γl,6)

U(θl,7, x) Rz(γl,3) •

1Results from classical quantum simulation and hardware execution (IBM) are promising:

8

https://arxiv.org/abs/2011.13934

Example 2: Event generation

 Event generation
9

Monte Carlo event generation using style-QGAN � arXiv:2110.06933

Train with a small dataset, use unsupervised machine learning models to learn the

underlying distribution and generate for free a much larger dataset.

10

https://arxiv.org/abs/2110.06933

Style-based quantum generator � arXiv:2110.06933

Quantum generator: a series of quantum layers with rotation and entanglement gates

11

https://arxiv.org/abs/2110.06933

Simulation with LHC generated data � arXiv:2110.06933

Testing the style-qGAN with real data: proton-proton collision pp → tt̄

Training and reference samples for Mandelstam variables (s, t) and rapidity y generated with

MadGraph5 aMC@NLO.

Simulation results: 3 qubits, 2 layers, 100 bins

12

https://arxiv.org/abs/2110.06933

Testing different architectures � arXiv:2110.06933

13

https://arxiv.org/abs/2110.06933

Example 3: Monte Carlo Integration / Sampling

 Monte Carlo Integration
14

Density estimation with adiabatic QML � arXiv:2303.11346

û Determining Probability Density Functions (PDF) by

fitting the corresponding Cumulative Density Function

(CDF) using an adiabatic QML ansatz.

� Algorithm’s summary:

1 Optimize the parameters θ using adiabatic evolution:

Had(τ ;θ) = [1− s(τ ;θ)]X̂ + s(τ ;θ)Ẑ in order to

approximate some target CDF values;

2 Derivate from Had a circuit C(τ ;θ) whose action on

the ground state of X̂ returns |ψ(τ)⟩;

3 The circuit at step 2 can be used to calculate the

CDF;

4 Compute the PDF by derivating C with respect to τ

using the Parameter Shift Rule.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QAML example

cdf
Not trained evolution
Trained evolution
Training points

0

1

2

3

PDF estimation - (x) = (x; 10, 0.5)
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

15

https://arxiv.org/abs/2303.11346

Multi-variable integration with VQCs � arXiv:2308.05657

û Use Variational Quantum Circuits to calculate multi-dimensional integrals: I(α) =
∫ xb

xa
g(α;x)dnx.

� Algorithm’s summary:

1 Train the derivative of a VQC with respect to the integral variables x to approximate the

integrand g(x);

2 The derivatives are computed using the Parameter Shift Rule and this allows the same circuit C
to be used for approximating any integrand marginalisation and the primitive.

0.210

0.220

0.230

I u
(Q

2)

Estimates of Iu(Q2)

0 2500 5000 7500 10000 12500 15000
Q2 (GeV2)

0.990
1.000
1.010

Ra
tio

Approximation
Target result

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1

0.0

0.1

0.2

0.3

0.4

0.5

1 2s
in

(2
x)

Fit of 12sin(2x) with PSR on hardware

Approximation
Target function

16

https://arxiv.org/abs/2308.05657

Middleware challenges

Software challenges

How to design quantum algorithms and deploy on quantum hardware?

• Cloud-based quantum hardware:

• Use tools provided by providers.

• Self-hosted quantum hardware:

• Operate self-hosted quantum hardware.

• Accommodate custom lab setups.

• Bypass restrictions to execute an experiment.

Example

Let’s consider the PDF determination project, it

requires two stages: prototyping and deployment.

17

Software challenges

How to design quantum algorithms and deploy on quantum hardware?

• Cloud-based quantum hardware:

• Use tools provided by providers.

• Self-hosted quantum hardware:

• Operate self-hosted quantum hardware.

• Accommodate custom lab setups.

• Bypass restrictions to execute an experiment.

Example

Let’s consider the PDF determination project, it

requires two stages: prototyping and deployment.

17

Stage 1: Prototyping models / algorithms

Prototyping

1 High-level quantum circuit

programming language

2 Fast classical quantum simulation

for model prototyping

18

Stage 2: Deployment on quantum hardware

Deployment

1 Gates to microwave pulses sequence

compilation (SC qubits)

2 Hardware compatible optimization

algorithms

3 Error-mitigation algorithms

19

Introducing Qibo � arXiv:2009.01845

Qibo is an open-source hybrid operating system for self-hosted quantum computers.

Qibo Language API

Quantum annealing

Quantum circuits

Implementation

Simulation

Qibojit

Efficient device-agnostic

simulation with custom

operators

numpy
Lightweight, fits

well with any CPU

tensorflow

TensorFlow

implementation

simulations

Quantum

hardware

Qibocal

Characterization

Calibration

Validation

Qibolab

Control drivers

Convert gates to pulses

Transpiler

= backends

= tools

Qibosoq
 RFSoCs

https://qibo.science 20

https://arxiv.org/abs/2009.01845
https://qibo.science

Qibo Contributors (September 2023)

21

Classical quantum simulation benchmarks � arXiv:2203.08826

5 10 15 20 25 30 35
Number of qubits

100

101

102

103

104

To
tal

 si
m

ul
ati

on
 ti

m
e (

se
c)

qibojit, qft, double precision
NVIDIA RTX A6000 (cupy)
NVIDIA DGX V100 (cupy)
NVIDIA GTX 1650 (cupy)
AMD Radeon VII (cupy)
NVIDIA RTX A6000 (cupy-multigpu)
AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)

qft variational supremacy qv bv
101

102

To
tal

 d
ry

 ti
m

e (
se

c)

30 qubits - double precision
Qibo
Qibo GPU
Qiskit
Qiskit GPU
HybridQ
HybridQ GPU
Qulacs
Qulacs GPU
ProjectQ

Major features:

• Supports CPU, GPU and multi-GPU.

• NVIDIA and AMD GPUs support.

• Reduced memory footprint.

Qibojit

CPU

Custom operations

using Numba

NumPy tensors

GPU(s)

CuPy tensors

Custom operations using

CuPy JIT

NVIDIA cuQuantum

Specialized operators

for 1 and 2 qubits gates

exploiting sparsity.

In-place updates.

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks
22

https://arxiv.org/abs/2203.08826
https://github.com/qiboteam/qibojit-benchmarks

How to control qubits? � arXiv:2308.06313

Qibolab is the dedicated Qibo backend for quantum hardware control.

Platform

Qubit
NativeGate

Characterization

QubitPair
NativeGate

Characterization

Instrument Port

Channel

• Platform API: support custom allocation of quantum hardware platforms / lab setup.

• Drivers: supports commercial and open-source firmware for hardware control.

• Arbitrary pulse API: provide a library of custom pulses for execution through instruments.

• Transpiler: compiles quantum circuits into pulse sequences matching chip topology.

• Quantum Circuit Deployment: seamlessly deploys quantum circuit models on quantum hardware.

23

https://arxiv.org/abs/2308.06313

Benchmarking instruments performance � arXiv:2308.06313

We compare the ideal pulse sequence execution performance to instruments execution duration.

100 101 102

Experiment duration [s]

Resonator spectroscopy
(20 points)

Resonator spectroscopy
(100 points)

Qubit spectroscopy
(300 points)

Rabi amplitude
(75 points)

Ramsey detuned
(30 points)

T1 experiment
(40 points)

T2 experiment
(32 points)

Single shot classification

Standard RB

Calibration routines benchmarks
Ideal
ZI
RFSoC
QM
QBlox

1 10 100
Experiment duration
(ratio with ideal time)

Zurich Instruments (ZI), Quantum Machines (QM), QBlox and RFSoC FPGA (Qibosoq+QICK). 24

https://arxiv.org/abs/2308.06313

Qubit characterization and calibration � arXiv:2308.06313

Calibration of single and multi-qubit platforms are possible using Qibo.

 Hardware
Characterization

Single Qubit Routines

Gate Set Characterization
Standard Randomized

Benchmarking

Low Level Characterization

Resonator Characterization

Resonator Spectroscopy

Resonator Punchout

Resonator Flux Dependence

Qubit Characterization
Qubit Spectroscopy

Qubit Flux Dependence

Rabi Oscillations

Ramsey
Standard

Detuned

T1 & T2

Single-shot classification

AllXY & Drag Pulse Tuning

Flipping

Dispersive Shift

Readout Characterization
Fidelity

QND-ness

Readout Frequency Optimization

Fast Reset Test

Time of Flight Readout

Two Qubits
Interactions

Chevron

Tune Landscape

25

https://arxiv.org/abs/2308.06313

Full-stack procedure: PDF determination � arXiv:2308.06313

1. High-Level API (Qibo)

• Define model prototype.

• Implement training loop.

• Perform training using simulation.

2. Calibration (Qibocal)

• Calibrate qubit.

• Generate platform configuration.

3. Execution (Qibolab)

• Allocate calibrated platform.

• Compile and transpile circuit.

• Execute model and return results.

10 4 10 3 10 2 10 1 100

x

0.0

0.2

0.4

0.6

0.8

u
f(x

)

u-quark PDF fit on the qubit

Target function
Predictions
2 belt
1 belt

Parameter Value

Ndata 50 points

Nshots 500

MSE 10−3

Electronics Xilinx ZCU216

Training time ¡2h
26

https://arxiv.org/abs/2308.06313

Real-time error mitigation in QML trainings

û Cleaning up the parameters space with a real-time error

mitigation strategy in order to overcome Noise-Induced

Barren Plateaus (NIBP) when training a QML model:

� Algorithm’s summary:

1 The expected values E are mitigated through

Clifford Data Regression (CDR):

Emit = αcdrEnoisy + βcdr;

2 Reduced CDR computational cost by updating

(α, β)cdr periodically during the training;

3 The mitigation removes the bounds and accelerate

the training process.

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Two qubit circuit fit

Target function
BP bound
Exact
No mitigation
Real time mitigation

10 4 10 3 10 2 10 1 100

x

0.0

0.2

0.4

0.6

0.8

1.0

uf
(x

)

u-quark PDF predictions on hardware

Predictions with CDR training
Predictions with raw training
Target
Qubit's assignment fidelity

27

Full-stack deployment: RB and Bell inequality � arXiv:2308.06313

Examples of results executed on quantum hardware (single-qubit) after calibration with Qibo:

0 100 200 300 400 500
sequence length

0.5

0.6

0.7

0.8

0.9

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

Single-qubit randomized benchmarking

exponential fit
mean per sequence
mean over sequences

0 1 2 3 4 5 6
Theta

3

2

1

0

1

2

3

CH
SH

 v
al

ue

CHSH inequality
Classical bound
Bare
Mitigated

28

https://arxiv.org/abs/2308.06313

Outlook

Outlook

We have observed a great set of interesting proof-of-concept applications in HEP.

For the future:

• Improve results quality, moving from prototype to production.

• Mitigate hardware noise by implementing real-time error mitigation techniques.

• Provide software tools for further enhancement of quantum technologies.

• Enhance calibration, characterization and validation techniques.

• Codevelop quantum hardware and instruments for application specific tasks.

29

	Application examples
	Middleware challenges
	Outlook

