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Probability

Finite system has a finite set of energies }

Deterministic

[ ° ?
Continuous observables and symmetries Observables?

Could an electron in an atom have a well defined position?

q Infinite
q Degeneracy
Sacrifice Determinism.

Rotation
Preserve finite set of energy states, continuous symmetries and observables

Quantum Mechanics

Bell Inequalities, Kochen-Specker, SSC Theorems
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Electron Coupled to Electromagnetism

Electron paths do not Paths of two electrons

interact via interact causally (QFT)
electromagnetism

Why can’t path talk to itself?

Ay — A+ e(Ay)

Juv =7 Guuv + €<g,uu>
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Experimental Tests

Interferometry - interaction between paths

Take an ion - split its wave-function

Coulomb Field of one path interacts with the other path

Gives rise to phase shift that depends on the

V1—p? . . .
intensity p of the split

Use intensity dependence to combat systematics
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Implementation

Putioninanion trap

Place in spatial superposition, want a way to read out
relative phase

Harmonic Oscillator States: |0>, |1>

lon Electronic States: |S>, |D>
Steps
(1) Initial State: a |0,S> + $]|0,D>
(2) Send |0,S> -> |1,D>
State: (a |0> + |1>) |D>

Spatial Superposition



Implementation
State: (a |0> + B |1>) D>

Free Evolution fortime T

(@]0) + Be'2F111)) | D)



Implementation
State: (a |0> + B |1>) D>

Free Evolution fortime T
(a|0) + Be>FT 1)) | D)

(3) Send [1,D> -> |0,S> (oz\(), D) + 6eiAET\O, S})



Implementation
State: (a |0> + B |1>) D>

Free Evolution fortime T
(a|0) + Be>F11)) | D)
(3) Send |1,D> -> |0,S> (oz\(), D) + 6eiAET\O, S})

(4) Final Splitter

1 1
0.D) = 7= (0.D) +10.5))  10.8) =

(10, D) =10, 5))




Implementation
State: (a |0> + B |1>) D>

Free Evolution fortime T
(a|0) + Be>F11)) | D)
(3) Send |1,D> -> |0,S> (oz\(), D) + 6eiAET\O, S})

(4) Final Splitter

1 1
0.D) = 7= (0.D) +10.5))  10.8) =

Final State \% ((a+ 6ei5ET) 0,D) + (a — 6ei5ET) 0,5))

(10, D) =10, 5))




Implementation
State: (a |0> + B |1>) D>

Free Evolution fortime T
(a|0) + Be>F11)) | D)
(3) Send |1,D> -> |0,S> (oz\(), D) + 6eiAET\O, S})

(4) Final Splitter

1 1
|07D> 7 \/§(|O,D>—|—|O,S>) ‘O>S> ’ \/§(|O,D>—‘O,S>)
Final State \% ((a+ 6ei5ET) 0,D) + (a — 6ei5ET) 0,5))

Countionsin |0, D> vs |0, S>



Results

40Ca* lon

T~10ms
(lon decoherence)

0(1200) measurements total

Trap Localization ~10 nm

€ S DX 10~ 12



Macroscopic Effects
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Measurement in Quantum Mechanics

Not some mysterious process

Interaction between quantum state and measuring device

/S QT %a QK - Bl
)

) Ap) & |A;)

V) @ [Ag) = 2 ¢il1) ® A
Prediction of Quantum Mechanics (“Many Worlds”), Not an interpretation

Pick: <Aj|Ai> _ 5” \ ploy = Z@ Cchm <Z| “Interpret” as direct

sum of “worlds”




Linear Quantum Mechanics

M

Spin Experimentalist

Along x
J Initial State : [x(0)>

Represents Full Quantum State (spin, experimentalist...)



Linear Quantum Mechanics

M

Spin Experimentalist

Along x
J Initial State : [x(0)>

Represents Full Quantum State (spin, experimentalist...)

Measure spin along y.
Based on outcome, turn on voltage source at Xi or Xa.
What is the quantum state after measurement?
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Macroscopic Superposition

M

Spin
Along x

Turn on Voltage at X1 Xl

Measure
_—
CI|Ong y Spin Down

Turn on Voltage at X2

Prediction of QM
(Many Worlds)
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Linear Quantum Mechanics
Which Voltage sensors light up?

x> = |U>|V1>|E1> + |D>|V2>|E2>

LD eA V"
<
X, _ [/
‘ Compute Transition Matrix Elements
E— V7 \\ _
A § ) UI(VII(ErleA, (1) ¥ (21) 71 (21) [x) # 0
X« = A (UNVA(BrleAy (w2) ¥ (22) 79 (w2) [x) = 0
’ X2 — "; l

(V1|Au (z2) V1) =0
But in both |V1>, [V2>: (X| AL (1) |x) #0,(x|AL, (z2)|x) # O



Non-Linear Quantum Mechanics

LD eA, UMY + e e(x| AL x) P+ P

X, _ [} T

State Dependent Non-linear Term

X2 — FRe But in both |V1>, |V2>:

(x| A (1) |x) # 0,(x|Au (z2) [x) # O

Xk [N

X2 : ";




Non-Linear Quantum Mechanics

LD eA, UMY + e e(x| AL x) P+ P

T

— S
A — " State Dependent Non-linear Term
X2 V"! o But in both |V1>, |V2>:

R (X[ A (1) [x) # 0, (x| Ay (z2) [x) # 0
A i
X2 — r‘; Communication between “worlds”

Consequence of Causality - trace over entangled particles

Non-linearity visible despite Environmental De-coherence!
Polchinski: “Everett Phone”
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Experimental Tests

Key Point: Create macroscopic superposition
Create Expectation value of EM/Gravity

Search for Expectation value
1

E
1 Off: {T, T + dT} Voltmeter

On:{T, T+dT} Voltmeter
Off: {T+dT, T+2dT} <cEin{T+dT, T+2dT}?

¢

?

On: {T+dT, T+2dT} e Ein{T, T+ dT}?
L
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Experimental Tests

Key Point: Create macroscopic superposition
Create Expectation value of EM/Gravity
Search for Expectation value

Even Null Result is Interesting: GMV — <T,uy>



Conclusions

1. Quantum Field Theory can be generalized to include non-linear, state dependent
time evolution

2. Conventional tests of gquantum mechanics in atomic and nuclear systems do NOT
probe causal non-linear quantum mechanics

3. Straightforward set of experimental tests possible to probe non-linear quantum
mechanics

4. Motivation to test other extensions as well - e.g. Lindblad Decoherence
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. O
%5t = Hx)

At zeroth order, this is just standard QFT

At first order, use zeroth order solution - expectation value is simply a background field

Perform standard QFT on this background field to compute first order correction

Applies to all orders : To compute term of given order, only need lower order terms
Lower order terms enter as background fields

Single Particle states? Causality for Multi-particle states?
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Single Particle
H D ydW¥ =y (¢ + é(x|dlx)) VW

Suppose we have a Y particle - how does its wave-function evolve?

To zeroth order, Y just sources the o field

Straightforward Computation of Expectation Value

. (x|¢ (z) |x) = [ d*a"y* (') (2') Gr (x — )

2 _— /

Charge Density of Causal Green’s Function
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Single particle equation derived from field theory
Equation depends upon theory (Yukawa, ®4 etc)
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Schrodinger Equation
H D ydUY = (yoé + e(x|o|x)) YW

Single particle equation derived from field theory
Equation depends upon theory (Yukawa, ®4 etc)

iaqjéi’}c) = (H + ¢y [ d*2"U* (2) ¥ (') G (x;27)) ¥ (¢, x)

Hermitean Form of Hamiltonian implies conserved norm

Maintain Probabilistic Interpretation
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E i (v
i cij (t) o () B
1) =
U (x,y;t

2,]



Entangled Systems
W (z,y;t) = Zcij (t) i (z) Bj (y)

2,]

How do multi-particle systems evolve?

H O ydUV = (yod + e(x|o[x)) V¥
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Entangled Systems
W (z,y;t) = Zczj (t) i (z) Bj (y)

2,]

How do multi-particle systems evolve?

H D ydUY = (yoé + e(x|o|x)) YW

(xlolx) = /d3w1d3y1d7\‘1’ (1,91;7) |° (Gr (t, 237, 21) + Gr (t,y; 7y 11) + Gr (t,257,91) + Gr (8, y; T, y1))

To change evolution, need to change ¢

® changes via causal Green'’s function - naturally comes from field theory!
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Gauge Theories and Gravitation

Linear QFT Lagrangian, Shift bosonic field by expectation value

To Path Integral, add:

iSQ—I—ifd4CE<€ (AM+€7<X‘A“|X>) J“—|—€§,<X|FMV‘X>F“’V>

Background Field

€

Gravitation

iSo+i | d*a(eq (xlgun [x)9" 60 9)
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Constraints
What does this do to the Lamb Shift?

Proton at Fixed Location

2S and 2P electron have different charge distribution

Different expectation value of electromagnetic field

Level Splitting!

< X | A " | X> J:u BUT: Cannot decouple center of mass and relative co-ordinates
Proton wave-function spread over some region (e.g. trap size ~100 nm)

Expectation value of electromagnetic field diluted
In neutral atom - heavily suppressed, except at edges!

£ <102

Similarly, kills possible bounds on QCD and gravity
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Constraints

Leading Constraint?

For € > O (repulsive interaction)

Too large a repulsion, Cant trap ion in trap
€<10°

No direct limit on € < O (attractive interaction)
Perhaps from mapping of ion in trap?
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Measurement in Non-Linear Quantum Mechanics

Interaction between quantum state and measuring device

- %a QK - 8l
v) Ao) i) ®[Ai)

In linear QM, just need to know the basis vectors
Interaction Hamiltonian independent of unknown quantum state

Pick: <AJ|AZ> — (Sf,;j

Key Point: Non-linear Hamiltonian depends upon unknown quantum state

No Guarantee:(A;|A;) =

Medasurement

W) @ [Ag) = D, cilt) ® |A;) + 62@,3- di j|i) ® |Aj) Noise



Atom Aging

Interferometry - interaction between paths

Decaying Radioactive nucleus

@ x (0)) = |X)

s O =@ EIX) @)

(X|Aulx) = (X|A,|X) ce™ "

Time dependent self-interaction - time dependent
shift to the energy of atomic states!
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Delicate Non-Linearity
Suppose |[X>=|U>

Alex performs experiment on July 6 - discovers non-linear quantum mechanics!

1

X) = 7 (1U)|0v) +|D)|Op))

O wants to repeat experiment

But |Op> runs experiment on 9 AM on July 20

Stateon 9 AMon July 10

-
E

O Suppose |Ou> decides to run experiment at 9 AM on July 10
E

1

_ b (JU)|T) + |D)|R))
X) = 7

V2

(13100 - 1D)(00) )
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Delicate Non-Linearity

Stateon 9 AMon July 10 Compare with State on July 6
1 (I)IT) +D)|R)) | b
0 = (01100 2R D)o, 0 = 5 (V)IT) +D)IR))

(UNOu(U(T|(Er|eA, (xr) ¥ (xr) ¥V (xr) [X) = %<U\ (T|(Er|eA, (xr) ¥ (xr) YV (zr) [X)

Effect is 1/2 of prior effect!
But, full effect if Oy and Op perform experiment at same time!

Quantum Pollution: Without adequate care, superpositions may diverge wildly,
preventing exploitability. Not automatic - but need careful protocols!

Particles have been scattering for 13 billion years. Cosmological dilution?
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All we need is the expectation value. Non-Linear effects are resistant to decoherence.

For e.g. when we repeat the experiment, it is ok for Oy and Op to be two different
individuals - all we care is that the fields are turned on at the same space-time points
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Cosmological Relaxation of Non-Linear QM?
LD eA, YUy + e e{x|ALx)UyH WP

All we need is the expectation value. Non-Linear effects are resistant to decoherence.

For e.g. when we repeat the experiment, it is ok for Oy and Op to be two different
individuals - all we care is that the fields are turned on at the same space-time points

Relevant Irrelevant
Superpositions where expectation Scattering where expectation
values of fields are very different values are not significantly changed
9 AM ; 9 AM ? o
AV
¢ - ¢ W -
1I0OAM @& OAM @&
@
AV
? v —- ? v —-
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Classical Universe?

Suppose | X> =|U>

U(t=0)> =

NN VN
/ ime Evolve\

u)> =I§>+3512> U(t)> =5If>+|2>

Can quantum events (scattering, decay etc.) lead to wildly different classical outcomes?
Clearly Possible - e.g. Human choosing to act differently based on quantum event
But, fundamentally - this is because humans can be quantum amplifiers

Are there natural quantum amplifiers, for e.g. in chaotic systems?



