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Motivation: Cavity Experiments Scale Poorly to High Mass

 Sensitivity of resonant cavity axion search technique doesn’t scale favorably with

Mmass:
* Cavity size matched to axion Compton wavelength A = h/m,¢c

« Axion to photon conversion power proportional to volume « A3 o 1/m3
* “Swiss watch problem”— need large numbers of small cavities to maintain signal
pOWer as mass increases.
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Axion-Induced Electromagnetic Radiation from Conducting

Surface in Magnetic Field

e Axions interact with a static magnetic
field producing an oscillating parallel
electric field in free space
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* A conducting surface in this field emits a
plane wave perpendicular to surface.
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* Radiated power is low:
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e But no detector tuning is required.
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Magnetic Field Configuration

* Need to maximize component of magnetic field parallel to radiating surface B
* Spherical dish geometry not a good match to conventional magnet types.

BRASS experiment: Planar array of
permanent magnets

Spherical dish radiator from Horns et al.
concept paper:
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Le Hoang Nguyen, Patras 2019
“Dish antenna” (Horns et al., 2012) http://wwmexp.desy.de/groups/astropartlcle/brass/brassvxeb.htm



Large Solenoids

* How to use large volume solenoids to detect axions?

B,2V Magnet Application/ Location F|eId Bore Energy | Cost
(T2m3) Technology (m) (MJ) | (SM)
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Compilation by Mark Bird, NHMFL



“Coaxial Dish”: Optical Concentrator for Solenoid Magnets
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* Rays emitted from cylindrical inner surface of solenoid are focused to a
point after two reflections.



Design Legacy- 19t Century Lighthouse Mirrors

. In 1809, Bordier-Marcet invented the
‘Fanal Sidereal’ reflector where two
parabolic reflecting surfaces were
placed one above the other. Each of
the reflecting surfaces had a central
hole where the lamp flame was
placed. The Fanal Sidereal reflector
was first used in the harbor
lighthouse in Honfleur, France and
the design was patented in 1812.

Bordier-Marcet's ‘Fanal Sidereal Reflector. (1809) Fanal Sidereal Lantern. (1811)
From https://uslhs.org/reflectors



https://uslhs.org/reflectors

Three Strategies to Measure Signal

Heterodyne Single Photon Counting
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* high resolution

e.g., nanowire detectors
e Standard Quantum Thermal g

Conductance G

Limit (SQL): SNSPDs, KIDs, QCDs, ...
kg Tooise = hf 7 down to ~ 1 photon/day

Thermal Reservoir
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Sensitivity Projections-- Futuristic

* Assume the use of largest magnets
currently available.

1078

e 10 Tesla field x 10 m?2 bore area ->
102> W signal power for KSVZ 1010/
axions.

10—12_

Haloscopes
(ADMX and Others)

* Not enough signal power for
detection with current state-of-art
sensors. E.g. bolometer with 10-2° 1071
W/Sgrt(Hz) noise equivalent power.

|9Ayy| (Gev~1)

100 days integration
Dish: 4 = 10 m?
Magnet: B =10T

1016 _6,;/ e - - - - .
* However, sensor field is rapidly 10 10 10 10 10 10 10

Axion Mass (eV)
changing- new quantum
technologies.




BREAD Sensitivity with State of Art THz Sensors
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Proof of Concept Experiments: GigaBREAD and InfraBREAD

GigaBREAD: 10-20 GHz InfraBREAD: 300 THz experiment (~1 micron) with

experiment with HEMT amplifier Superconducting Nanowire Detectors (SNSPDs)

Horn
Antenna with
Axial position

SNSPD @ 800 mK

adjustment
400 mm diameter I_
Coaxial Dish 1
Room ;
temperature 4
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GigaBREAD Parts & Assembly




Simulation of GigaBREAD Axion Response

 COMSOL Simulation of system response to axion-induced oscillating electric field.
* Includes effect of horn antenna impedance mismatch to signal mode.
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GigaBREAD Reflection Measurements

Network
Analyzer
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Thermal Emission from Dish at Room Temperature
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FPGA- Based Data Acquisition

* Off-the-shelf Xylinx FPGA board

averages 4 million frequency channels

in real time.

e Can search for a 1- MHz wide signal
over 2-GHz bandwidth with negligible
dead time.
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First Dark Matter Search with GigaBREAD

e 3.5dayruninanRF
shielded room at

x10-20 Excess Noise Power
University of Chicago. >0
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* Room temperature T 1.
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a m p I iﬁe r ~1OO Ke IVi n % os _ B RSSO LA LR E Lt TSP IR
added noise. 0.0
* No magnet (dark 0.5
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* Scanning of vertical
horn antenna position.




Kinetic mixing

First Dark Photon Search with GigaBREAD

* 3.5 days of scanning at room temperature.
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https://cajohare.github.io/AxionLimits/

Next Step— Axion Search at Argonne Natl Lab
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InfraBREAD Dish Requirements

Focal plane Intensity Distribution

* At optical wavelengths, need best 4~ BREAD

possible focusing to limit size of
photosensor.

e Dark matter velocity dispersion
limits focal spot to ~1 mm for a
meter scale device.

e Reflector surface deviations need
to be controlled at few micron
level.

* Achievable by industry standard
optical machining process (single
point diamond turning) on various

substrates (e.g. aluminum) { '

Measuring focal spot dispersion with laser

Spherical
~ dish dish
1-meter
distance

0.0 0.5 1.0 1.5 2.0
Radius r [mm]




First Diamond Turned Reflector
Segment from LLNL

* Single point diamond turning— standard technique for metal
optics fabrication.

* Can achieve nanometer- level precision and smoothness.

* First of five segments for InfraBREAD meets requirements.

 Measure 12 nm RMS surface roughness by optical scattering.

* ~ 1% signal power loss to diffuse reflections.




SNSPD Testing for InfraBREAD

e Superconducting Nanowire Single Photon Detectors
(SNSPDs) for BREAD supplied by MIT and JPL groups (See
Matt Shaw’s talk at this meeting)

 Largest devices made to date are 1 mm?, well matched to
our requirements.

* Measurements of efficiency and dark counts underway at
Fermilab. Similar devices have achieved < 1 count per day
backgrounds
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InfraBREAD Sensitivity Projection

1 photon/day
dark rate
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[Hochberg et al.,
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summary

* The BREAD “cylindrical dish” design allows use
of existing large—bore, high-field solenoids for
broadband axion searches.

* Can provide a (small) signal for any mass
where Compton wavelength fits inside the
device.

* We developed fabrication techniques for
BREAD reflector which will enable experiments
from microwave to infrared (micro-eV to eV
scale)

* Next challenge is low-noise readout! QCD
axion discovery with this technique will
require new generations of photon counting
sensors with dark counts as low as ~1 count
per day.
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. : [Liu et al, BREAD collab.,
EX I Stl n g Se n SO rS arXiv:2111.12103, PRL 128 (2022) 131801]

E Top NEP Asens

Phot
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(GENTEC [04, ]_20] 293 1- 10_8 7-(-2.52 [https://www.gentec-eo.com/]
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Single Photon Counters

[Echternach et al., Nat. Astron. 2, 90-97 (2018)],

DCR 2
QCDet [27 125] 0015 Hz =4 006 [Echternach et al., J. Astron. Telesc. Instrum. Syst. 7, 1-8 (2021)]

DCR __ —4 2 [Hochberg, et al., Phys. Rev. Lett. 123, 151802 (2019)]
SNSPD [1247 830] 03 Hz ]‘O 04 [Verma, et al., arXiv:2012.09979 [physics.ins-det] (2020)]




