

Nb₃Sn for Axion Searches

Sam Posen Quantum Technologies for Fundamental Physics Workshop 3 September 2023

Nb₃Sn SRF cavities
 First Nb₃Sn SRF studies in Tesla-scale field
 Future outlook and Summary

Nb₃Sn Cavities for Particle Accelerators

- Nb has long been the material of choice for SRF accelerators
- Nb₃Sn is under development, and we have shown that it can achieve high Q ~10¹⁰ even at 4 K
- Immediate promise for 'compact accelerators'
- With continued R&D, Nb₃Sn is predicted to exceed Nb maximum field

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Fermilab

Potential Near-Term Applications of Nb₃Sn Cavities

- Nb₃Sn is a potentially enabling technology for CW accelerator applications that could be realized in the near future:
 - Stand-alone cryomodules (e.g. isotope separator, harmonic cavities)
 - Compact high power accelerators (e.g. water treatment)
 - Turnkey/high MTBF energy recovery linacs (e.g. isotope production, EUV sources)

Fermilab

S. Kutsaev et al, *IEEE Trans. App. Superc.* 30, 8, 2020

R.C. Dhuley et al, *Phys. Rev. Accel. Beams.* 25, 041601 (2022).

Y. Morikawa et al, New industrial application beamline for the cERL in KEK, IPAC'19, THPMP012

Coating Mechanism: Vapor Diffusion

SEM images of Nb₃Sn film coated on Nb: a) surface, b) crosssection

5 µm

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Nb

"Phase Locking" as Control for Desired Composition

6

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Diffusion Limited Growth as Control for Uniform Thickness

Fig. 6:

Thickness of a Nb₃Sn layer formed by the vapor diffusion technique as a function of time (reaction temperature 1160° C and tin vapor pressure about 10^{-3} Torr).

M. Peiniger et al., "Work on Nb₃Sn cavities at Wuppertal" Proceedings of The Third Workshop on RF Superconductivity (1988)

- Coating mechanism is diffusion limited – as film becomes thicker locally, less tin is consumed, more re-evaporates and moves to other areas
- Another "self regulating" feedback mechanism to help with uniformity

Fermilab

Nb₃Sn SRF cavities
 First Nb₃Sn SRF studies in Tesla-scale field
 Future outlook and Summary

First Test – Put Existing Cavity into 6 T Field and Measure Q₀

9 05/02/2023 Sam Posen I Nb3Sn Cavities for Axion Searches

Results from First Cavity (Accelerator Type Cavity)

- Q₀ ~4x10⁴ at 6 T
- Q₀ lowered due to flux dissipation – Lorentz force F ~ J × B
- Not expecting best possible results from first test due to geometry – cavity walls highly perpendicular to applied field

M. Checchin and A. Grassellino, "Vortex Dynamics and Dissipation under High-Amplitude Microwave Drive," Phys. Rev. Applied 14, 044018 (2020)

M. Checchin et al. "Frequency dependence of trapped flux sensitivity in SRF cavities," Appl. Phys. Lett. 112, 072601 (2018)

Fermilab

B (DC magnetic field)

Flux motion analysis by Mattia Checchin Details in arXiv:2201.10733 (2022)

Figure of Merit

copper cavities – specialized superconducting cavity geometry will be different

Details in S. Posen et al., Phys Rev Applied (2023) (accepted) Q₀ of 4x10⁴ at 6 T, 4.2 K, 3.9 GHz

M. Checchin et al. "Frequency dependence of trapped flux sensitivity in SRF cavities," Appl. Phys. Lett. 112, 072601 (2018)

B (DC magnetic field)

Flux motion analysis by Mattia Checchin Details in arXiv:2201.10733 (2022)

11 05/02/2023 Sam Posen I Nb3Sn Cavities for Axion Searches

Fermilab

Second Cavity – Specialized Geometry

- Second cavity designed to minimize $\mathbf{\hat{z}} \cdot \mathbf{\hat{n}} |\mathbf{B}_{\mathrm{RF}}|^2$

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Results of Second Cavity

Fermilab 🚟

Comparison to Previous Results

- Challenging to compare to other cavities due to different frequencies and fields, but clearly much better than copper, and among the highest Q₀ measured in multi-tesla fields
- Superconducting cavities from other groups (table) also show promising results SRF cavities have potential for axion searches

	Source	Material	f (GHz)	<i>B_a</i> (T)	<i>T</i> (K)	
	This work	Nb₃Sn	3.9	6.0	4.2	(5.3±0.3)×10 ⁵
	[1]	NbTi/Cu	9.08	5	4.2	2.95×10 ⁵
	[2]	Nb₃Sn	9	8	4.2	6×10 ³
	[2]	REBCO	9	11.6	4.2	7×10 ⁴
	[3]	YBCO	6.93	8.0	4.2	3.2×10 ⁵

[1] D. Alesini *et al.*, "Galactic axions search with a superconducting resonant cavity," *Phys. Rev. D*, vol. 99, no. 10, 101101, (2019).
[2] J. Golm *et al.*, "Thin Film (High Temperature) Superconducting Radiofrequency Cavities for the Search of Axion Dark Matter," 3–7, (2021).
[3] D. Ahn *et al.*, "Superconducting cavity in a high magnetic field," *arxiv:2002.08769*, (2020).

• Recently reported Q₀ of 1e7 with HTS tapes, fixed frequency – not yet published to my knowledge

SUPERCONDUCTING QU MATERIALS & SYSTEMS

Comparison to Theoretical Model

Details in 'Measurement of high quality factor superconducting cavities in tesla-scale magnetic fields for dark matter searches' S. Posen et al., arXiv:2201.10733 (2022)

Fermilab

www.S

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER Nb₃Sn SRF cavities
 First Nb₃Sn SRF studies in Tesla-scale field
 Future outlook and Summary

Taking a look out at the horizon...

First Exploration of SQMS/ADMX Team-up

- We have been working with Gp Carosi, Andrew Sonnenschein, and their team to design and fabricate a Nb₃Sn tuning rod for ADMX Sidecar
- To my knowledge, this would be the first hybrid (NC-SC) tuneable superconducting cavity in multi-tesla magnetic field
- If we improve Q₀, could be an excellent stepping off point for continued joint ADMX/SQMS efforts towards superconducting cavities for axion haloscopes

From Gp's talk

9 GHz Nb₃Sn Cavity Made at FNAL for INFN Frascati

Characterization of Q_0 vs B of the Nb_3Sn cavity at LNF

Picture of the setup: the Nb_3Sn cavity fabricated at FNAL is attached to the coldest temperature stage of the LNF dilution refrigerator.

When the DR is closed, the cavity is in a high magnetic field of up to 9T, thanks to the SC magnet on the right.

T cavit	y	130 mK				
T nois	e	5 K				
B _{av}	8.447 T					
$V_{\rm cav}$	0.068 L					
C ₀₁₀	0.69					
β	0.08					
Q ₀	135000					
freq	8.99554 GHz					

INFN

Extracted unloaded quality factor in magnetic field. At 0 T, the Q_0 value reaches 1.6×10^9 . The coupling has beeen estimated at zero field at resonance and then rescaled properly at higher fields.

Go see the poster by

A. Rettaroli

Some Future Directions

Materials

A. Romanenko et al, Phys. Rev. Applied 13, 034032 (2020)

Sensing

Sensing

From ADMX

Summary

- Nb₃Sn superconducting radiofrequency cavities are a promising technology for particle accelerators – high Q₀ at 4 K, potential for very high accelerating field
- For completely different reasons than our interest for accelerators (i.e. due to its high H_{c2}), Nb₃Sn cavities are also promising for axion haloscopes
- First studies show Q_0 of $5x10^5$ in a 6 T field at 4 K
- A number of promising future directions!

• BACKUP

23 05/02/2023 Sam Posen I Nb3Sn Cavities for Axion Searches

Advantages of Nb₃Sn Cavities: Higher Q₀ at High Temperature

- Nb₃Sn has substantially higher T_c than Nb (18 K vs 9 K)
- High Q₀ at relatively high temperatures
 - Potential for high $Q_0 > 10^{10}$ in ~4.5 K operation in liquid helium
 - Potential for replacing cryoplant with cryocoolers
 - Even eliminating liquid helium via conduction cooling
- Impacts for high duty factor applications, especially small and medium-scale

Fermilab

Advantages of Nb₃Sn Cavities: Higher Superheating Field

- Decades of R&D have made it possible to operate Nb cavities at higher and higher accelerating gradients, enabling new accelerator-based science over the years
- Developed mitigation methods for many limitation mechanisms
- State-of-the-art Nb cavities are limited very close to the superheating field H_{sh} of Nb
- Predicted H_{sh} of Nb₃Sn ~2x that of niobium
- Reaching H_{sh} would correspond to ~100 MV/m – currently far from this, but substantial progress

Methods for Fabricating Nb₃Sn Coatings

- Many different manufacturing methods attempted for Nb₃Sn SRF cavities, including:
 - Multilayer sputtering -
 - Liquid tin dipping
 - Molten salts electrodeposition
 - Mechanical plating
 - Metal-organic CVD
 - E-beam co-evaporation
 - Bronze Process .
 - Cold evaporation
- Work continues on these, but so far no good RF results
- The only method to have produced promising RF results so far is Vapor Diffusion

Preliminary r.f. results were not encouraging. A low-power Q value of 1.6×10^7 was obtained at 4.2 K when the method was applied to a single-cell

🗲 Fermilab 🛛 🗠

Coating Mechanism: Vapor Diffusion

27

Technique development: Saur and Wurm, Die Naturwissenchaften 1962, Hillenbrand et al. IEEE Transactions on Magnetics 1977, Peiniger et al, SRF'88.

Vapor Diffusion Nb₃Sn Microstructure

- Some similarities to Nb₃Sn in magnet wires, but different fabrication process has some key features for SRF:
 - Strict control of impurities **no copper** (NC: small levels can degrade Q~10¹⁰)
 - Can achieve very clean grain boundaries
 - Relatively smooth surface to avoid field enhancement
- Requires high temperatures uses niobium substrate, but niobium material cost typically is relatively small fraction overall

SEM images of Nb₃Sn film coated on Nb: a) surface, b) cross section

Fermilab Nb₃Sn Coating System

First and only Nb₃Sn coating chamber capable of coating 1.3 GHz 9-cell cavities or 5-cell 650 MHz cavities

Fermilab Solution Solution Superconducting Quantum Materials & Systems center

Nb Coating Chamber (protects furnace from Sn)

Installation of New Door

Fermilab Nb₃Sn Coating Furnace

1.3 GHz 1-cell (previous state of Nb₃Sn R&D)

🛟 Fermilab 🛛 🗠 S 🧕

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Start with Evaluation of Nb₃Sn in Samples

Microstructure Evaluation

Sample run (A5)

5 µm

Critical Temperature 18 K

Nb₃Sn

SINGLE

SUPERCONDUCTING QUANTUM

MATERIALS & SYSTEMS CENTER

Coherence Length

- Superconductor's coherence length ξ: length scale for wavefunction of cooper pairs
- Disorder with size > ξ can cause interruption of superconductivity
 - Nb ξ ~ 30 nm
 - $Nb_3Sn \xi \sim 3 nm$
 - HTS ξ can be <nm!
- Expect Nb₃Sn is less "forgiving" than Nb for surface defects
- For current state-of-the-art Nb₃Sn, expect this to be gradient limit – working on reducing defects

Especially helpful to have "self-regulating" coating mechanism considering length scales. $\xi \sim 3$ nm but cavity size is ~ 1 m. Self-regulation helps to reduce likelihood of defects that can degrade performance.

Fermilab

References – Nb₃Sn SRF Manufacturing Methods

- **CVD**: V. Cernusko. "Preparation and critical currents of vapour-deposited Nb₃Sn compound," *Czech J. Phys. B.* Vol. 26, pp. 1156-1160, 1976.
- **CVD**: L. Hand, "CVD superconducting RF cavities: past, present, and future," Cornell Physics Department, n.d.
- **Review**: R. Sharma. "A Review on A-15 Superconductors for RF Cavity Applications," *International SRF Thin Films Workshop*, INFN, 2006.
- **Dipping**: S. Deambrosis et al. "A15 superconductors by thermal diffusion in 6 GHz cavities," *Proc. SRF14*, Berlin, Germany, pp. 155-158, 2009.
- **Sputtering**: A. Rossi, "Nb₃Sn films by multilayer sputtering," *Proc. SRF14*, Berlin, Germany, pp. 149-154, 2009.
- **Mechanical**: S. Deambrosis et al. "The progress of Nb₃Sn and V₃Si," *Proc. SRF14*, Berlin, Germany, pp. 392-399, 2009.
- **MOCVD**: G. Carta et al. "Attempts to deposit Nb₃Sn by MOCVD," *International SRF Thin Films Workshop*, INFN, 2006.
- **E-Beam**: L. Allen et al. "RF surface resistance of high-Tc superconducting A15 thin films." *IEEEE Transactions on Magnetics*," vol. MAG19, no. 3, 1983.
- **Bronzing**: M. Hakimi. "Bronze-processed Nb₃Sn for RF applications," *Journal of Less-Common Metals*, vol. 139, pp. 159-165, 1988.
- **Sn Layers**: J. Hasse et al. "On the microwave absorption of superconducting Nb₃Sn," *Z. Physik*, vol. 271, pp. 265-268, 1974.
- **Molten Salts**: V.N. Kolosov. "Evaluation of high-frequency superconductivity of Nb₃Sn coatings obtained by joint electrochemical deposition," *Refractory Metals in Molten Salts*, pp. 239-244, 1998.

SUPERCOND