Opportunities for SRF Cavities in the ADMX-EFR Project

Quantum Technologies for Fundamental Physics Workshop Erice, Italy

https://quantum.llnl.gov

Gianpaolo (GP) Carosi Sept 3rd, 2023

> Lawrence Livermore National Laboratory

LLNL-PRES-853997

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Axions: A solution to two major mysteries in physics and cosmology

Lawrence Livermore National Laboratory

Axion Dark Matter Searches: The Haloscope Technique

ADMX Currently Operating Project: Experimental Layout

Located at the University of Washington

Lawrence Livermore National Laboratory

LLNL-PRES-853997

ADMX Operations: Tuning & Coupling

Lawrence Livermore National Laboratory

LLNL-PRES-853997

Located at the University of Washington

ADMX Run 1C: Saw Persistent Signal at 896.45 MHz!

Lawrence Livermore National Laboratory

Located at the University of Washington

ADMX-G2 results and near term plans

- Operations in phases that match the cavity tunable bandwidths
- Previous runs with sets of two . tuning rods (runs 1A, 1B, 1C)

 $g_{a\gamma\gamma}$ (GeV⁻¹)

ADMX-G2 results and near term plans

- Operations in phases that match the cavity tunable bandwidths
- Previous runs with sets of two tuning rods (runs 1A, 1B, 1C)
- Upcoming 1D (single rod) 1-1.4 GHz

Lawrence Livermore National Laboratory

ADMX-G2 results and near term plans

- Operations in phases that match the cavity tunable bandwidths
- Previous runs with sets of two tuning rods (runs 1A, 1B, 1C)
- Upcoming 1D (single rod) 1-1.4 GHz
- Switch to frequency locked 4-cavity array for 1.4-1.9 GHz

Lawrence Livermore National Laboratory

ADMX-

FFR

2027-

2029

10-5

Axion Mass [eV]

ADMX-Extended Frequency Range (2-4 GHz)

DOE HEP sponsored *Dark Matter New Initiative* project Picks up where ADMX-G2 ends (~1.9 GHz)

Currently in Design and Prototyping Phase

Aiming for construction start FY25. Aimed to be installed at Fermilab!

New MRI magnet being acquired (9.4 T – 800 mm bore)

	ADMX-G2 Magnet	ADMX-EFR Magnet
Peak Field	7.6 T	9.4 T
Bore diameter	530 mm	800 mm
Magnet length	1117 mm	3100 mm
Cryostat diameter	1295 mm	2580 mm
Stored Energy	16.5 MJ	140 MJ
Weight	6 tons	45 tons
Helium consumption	3 liters/ hour	0.35 liters/hour
Current	204 Amps	220 Amps
Persistent current	No	Yes
Orientation	Vertical	Horizontal
Manufacturer	Wang NMR	GE Medical Systems
Manufacture date	1993	2003

9.4 T 800 mm bore MRI magnet

 10^{-4}

ADMX-Extended Frequency Range

Overall System Concept

- 18 cavities each instrumented with their own quantum amplifier chain and readout.
- In-phase amplitude combing digitally at room temperature

- Takes full advantage of coherence of axion signal relative to incoherent noise
 - SNR goes as \sqrt{N} cavities coherently combined.
 - Scan rate goes as SNR² ~ N. Factor of 18 x faster scanning than non-locked individual cavities
- Maximal flexibility, system repeatability and mass production

Resonator Design currently clamshell cavity

- Current baseline cavity cell is ~1 m long copper cavities with copper tuning rods.
- Two sets of tuning rods diameters (2-3 & 3-4 GHz with same clamshells)
- Piezoelectric actuators for frequency tuning & antenna coupling

length prototypes in dilution refrigerator

Tuning rod wired for thermal timeconstant studies of sapphire axles

What about using superconductors for cavities?

- Extremely low RF resistance is ideal for high Q resonators
- Standard for accelerator cavities with typical $Q_0 \cong 10^{10}$ in zero magnetic field
- ADMX Copper cavities, $Q_0 \cong 10^4 10^5$
- Axion $Q_a > 10^6$

Accelerator Cavity. Image credit: Fermilab SQMS

ADMX Copper Cavity (Run 1D)

The Challenge for ADMX SRF cavities

- **Meissner Effect:** the expulsion of magnetic field upon superconduction (Below critical fields B_{c1} , B_{c2} in Type II SCs)
- **Problem:** SRF cavity quality factor quickly degrades in external magnetic fields due to breakdown of Meissner Effect
 - Development of vortices' or fluxons with magnetic field (normal regions) in Type II Superconductors
 - Magnetic vortices' motion drive up the surface resistance.
 - Maximal loss for surfaces perpendicular to magnetic field with greatest Lorentz forces (end caps) on the fluxons.

Possible Solution: Hybrid Material Cavity

- Since vortex losses are minimal for surfaces parallel to field, only coating the walls of the cavity cuts out most dissipative part
- For an empty cavity, Q of the TM_{010} mode improves by a factor of (1 + L/R) when the barrel is coated with a thin-film superconductor.

Test Cavity Geometries: Multi-mode Measurements with NbTi Clamshell

- Cavity machined out of NbTi Square stock
- Looked at first 3 TM modes Q
- HFSS simulations of the cavity structure yields the geometric factor estimate for each mode and sub-surface
- This over-constrained problem allows us to calculate the wall vs. endcap resistance

Geometric Factor (Ω)	TM ₀₁₀	TM ₀₁₁	TM ₀₁₂
Walls	448	464	512
Top End Cap	4060	2194	2407
Bottom End Cap	4375	2173	237
Total End Caps	2106	1092	1195

NbTi Clamshell Cavity RF losses in Field: endcaps vs walls

- Applied method to show the endcap degradation in a Bulk NbTi clamshell cavity
- NbTi: $B_{c2} > 14 T$, $T_c \cong 8.3 K$
- Thesis work of UW grad student Tom Braine

T. Braine et al. Multi-mode analysis of surface losses in a superconducting microwave resonator in high magnetic fields. *Rev Sci Instrum* 1 March 2023; 94 (3): 033102. <u>https://doi.org/10.1063/5.0122296</u>

Simulations allow calculation of Geometric Factors

B-field tolerant SRF cavity development worldwide

Worldwide there has been excellent progress on field-tolerant SRF cavities for axion searches 3 potential materials (NbTi, Nb3Sn, and YBCO)

- NbTi sputtered cavities as inspired by QUAX group
- Nb3Sn on Niobium led by SQMS (Sam Posen & Anna Grasselino)
- Nb3Sn on Copper collaboration with Florida Statue U. (Lance Cooley)
- HTC (EuBCO+APC) superconducting cavities CAPP

Recent SQMS results with Nb3Sn

Near term 'Hybrid'-SRF ADMX Sidecar (Installing now)

- Sidecar is a 'test'-bed for new axion tech atop the main experiment cavity
- Copper clamshell design with piezoactuated rotor and TWPA readout
- Tuning rod is hollow Nb with a Nb₃Sn coating. (1.75" Diameter) from SQMS!

Copper Cavity Produced by U. Sheffield.

Nb3Sn Tuning Rod from SQMS

FermilaboNbBSn-coating furnace with 9-cell cavity

ADMX-EFR Run Times Estimates

Parameter	Unit	Threshold	Objective
Cavity system full tuning range	GHz	2-4	2-4
Magnetic Field Average	Tesla	9.1	9.4
N Cavities		16	18
Volume per cavity	Liters	12.1/10.4	
Cavity Q, at 4 GHz *		54,000	180,000
Cavity TM010 form factor *		-5%	0.4-0.5
Maximum Cavity Physical Temperature	mК	100	100
Maximum Electronics Physical			
Temperature	mК	25	25
JPA Noise Temperature at 4 GHz *	mК	200	200
JPA Gain	dB	15	21
JPA Tuning range/ Circulator Bandwidth	GHz	0.5	1
Insertion loss (cavity to JPA, max)	dB	2	2
System Noise Temperature at 4 GHz *	mК	500	440
Amplifier squeezing speed up factor		1	1.4
Cavity locking error	% BW	15	5
Power combining efficiency	%	95%	99%
Time Fraction Initial Scan	%	21	28

Instantaneous scan rate to be updated as results of prototyping become clearer. 3 cavity configuration (0.99, 1.00 and 1.005 m) allows to fill in mode-crossings.

Skipped (Mode Crossings) $\sim (10~\pm~3)\%$

ADMX-EFR Run Times Estimates

total runtime: 3 years

Threshold: Q ~ Copper Cavity skips mode crossings

Objective: Q ~ 3 x Q Copper Cavity Includes mode crossings Increased sensitivity reach

Q > 27 x Q_{copper} would allow same DFSZ experiment with only 4 cavities (save cost)

Could run 2-3 GHz & 3-4 GHz simultaneously

Could drive down < DFSZ sensitivity (or < 50% fractional halo density at DFSZ)

ADMX-EFR Run Times Estimates

total runtime: 3 years

Threshold: Q ~ Copper Cavity skips mode crossings

Objective: Q ~ 3 x Q Copper Cavity Includes mode crossings Increased sensitivity reach

Excited to work with partners such as SQMS to develop the best field-tolerant SRF cavities possible to maximize ADMX-EFR scan rate and sensitivity!

Thank You!

Acknowledgements:

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

Lawrence Livermore National Laboratory

NATIONAL LABORATORY

Backup slides

LCQS

Livermore Center for Quantum Science

- Anticipation of important impacts for our missions
 - New paradigms for computing
 - Direct simulation of complex quantum phenomena
 - Unprecedented precision in sensing
- A quantum testbed with "white box" access used by a range of Lab researchers
- In-house expertise for device design and fabrication
- Current program priorities
 - Understand device physics and improve hardware
 - Connect quantum effects with the classical world
 - Integrate quantum into other capabilities through codesign

ADMX started at LLNL

- Built off pioneering experiments at U. of Florida and Rochester/Brookhaven/Fermilab in late 1980s
- ADMX started with the purchase of large (8T 60-cm bore) Solenoid from Wang NMR (located in Livermore over by Costco). 16 MJ of stored energy (220 amps)
- Installed in B436 in the early 1990s and took data there with continuous upgrades until 2010.

I joined as postdoc in 2006

Moved to the U. of Washington in 2010

 Currently operates at the Center for Particle and Nuclear Astrophysics (CENPA) as one of the 3 DOE HEP "Generation 2" Dark Matter projects (alongside LZ and SuperCDMS-SNOLAB)

ADMX: Sidecar operations

Sidecar Publications:

- 1. Christian's thesis
- 2. TWPA paper

30000

25000

20000

Attocube Rotor on 1K plate

5000

Number of Piezo Steps

10000

5000

7000

5000 6000 Frequency (MHz)

4000

0000

JPA (Main Cavity ~ 1 GHz) + TWPA (Sidecar Cavity: 4-6 GHz)

Lawrence Link acquired TWPAs through contacts with IARPA group. Qualified in Megaman

How do we measure Quality factor and Resistance?

- Each mode has an associated Q
- How we measure: $Q = \frac{f_0}{\Delta f}$,

From Scattering Parameters taken on a VNA

- S21: input at port 1, measure port 2.

• Physical definition:
$$Q_0 = \omega \frac{U_{cav}}{P_{loss}} = \frac{G_s}{R_s}$$

 G_s measures the mode field structure's overlap with the cavity interior surface

$$G_{s} = \mu_{0}\omega \frac{\int \left|\vec{H}\right|^{2} dV}{\int \left|\vec{H}\right|^{2} dS}$$

• G_s can be defined for the sub-surfaces of the cavity as well su that:

$$S_{tot} = S_1 + S_2 + \dots + S_n$$

$$\frac{1}{G_{tot}} = \frac{1}{G_1} + \frac{1}{G_2} + \dots + \frac{1}{G_n}$$

$$\frac{1}{Q_{tot}} = \frac{G_1}{R_1} + \frac{G_2}{R_2} + \dots + \frac{G_n}{R_n}$$

1. Measure 2 modes' Q on VNA: Q_1 , Q_2

C

2. Calculate the four geometric factors in HFSS: $G_{1,1}$, $G_{1,2}$, $G_{2,1}$, $G_{2,2}$

3. Python Notebook does the rest:

Weight matrix:

$$C_{ms} = \begin{bmatrix} \frac{G_{1,2}}{G_{1,1} + G_{1,2}} & \frac{G_{1,1}}{G_{1,1} + G_{1,2}} \\ \frac{G_{2,2}}{G_{2,1} + G_{2,2}} & \frac{G_{2,1}}{G_{2,1} + G_{2,2}} \end{bmatrix}$$

C

Geometric Factor of total surface for each mode, and corresponding total mode resistance:

$$G_n = \frac{G_{n,1}G_{n,2}}{G_{n,1} + G_{n,2}}$$
 $\vec{R}_m = \begin{bmatrix} G_1/Q_1 \\ G_2/Q_2 \end{bmatrix}$

Invert mode resistances to surface resistances:

$$\vec{R}_s = C_{ms}^{-1} \vec{R}_m$$

Current Research done: Testing Apparatuses at LLNL

- Main Test System: Quantum Designs[™] Physical Properties Measurement System (PPMS)
 - 16 T Magnet
 - 1" Bore, 100 mm field Height
 - 2 K Cryostat

Left: Top down of PPMS System with RF probe inserted. Right: PPMS RF Probe extraction from bore

