

ightarrow

'FRPOOI

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology, QUEST – DMC

- **Detection of sub-GeV dark matter with a** igodolquantum-amplified superfluid ³He calorimeter
 - Phase transitions in extreme matter

Linked through beyond-standard model physics, and experimental approach of combining quantum sensors with ³He at ultralow temperatures

Science and Technology **Facilities Council**

Quantum sensors operated in ultralow temperatures regime, 100 μ K

Lucas, M., Danilov, A.V., Levitin, L.V. *et al.* Quantum bath suppression in a superconducting circuit by immersion cooling. *Nat Commun* **14**, 3522 (2023)

Andrew Casey, QTFP - EMFCSC (Erice, Italy) Sep 2023

ROYAL HOLLOWA'

Quantum sensors operated in ultralow temperatures regime, 100 µK

Nanofabrication facilities

What mass range are we trying to find?

What mass range are we trying to find?

What mass range are we trying to find?

Optimising Search

Lower cross-sections:

- More exposure, igodolmaximise interaction rate
- Lower backgrounds

Lower the mass range

Reduce the energy thresholds

Superfluid ³He is most complex system for which we already have the "Theory of Everything"

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST DMC

Collision WIMP - ³He atom (mass 3 versus argon - 39.948, xenon -131.293)

ULTIMA: D.I. Bradley, et al., Nucl. Instrum. Methods A 370, 141 (1996); C.B. Winkelmann, et al., Nucl. Instrum. Methods A 559, 384 (2006); C.B. Winkelmann, et al., Nucl. Instrum. Methods A 574, 264 (2007).

⁴He target HeRald: S. A. Hertel, A. Biekert, J. Lin, V. Velan, and D. N. McKinsey Phys. Rev. D **100**, 092007 (2019)

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST DMC

- Collision WIMP ³He atom (mass 3 versus argon 39.948, xenon -131.293)
- Heat as quasiparticle excitations

QUEST DMC

Light from de-excitation, threshold for ionization is ~ 20 eV

ULTIMA: D.I. Bradley, et al., Nucl. Instrum. Methods A 370, 141 (1996); C.B. Winkelmann, et al., Nucl. Instrum. Methods A 559, 384 (2006); C.B. Winkelmann, et al., Nucl. Instrum. Methods A 574, 264 (2007).

⁴He target HeRald: S. A. Hertel, A. Biekert, J. Lin, V. Velan, and D. N. McKinsey Phys. Rev. D **100**, 092007 (2019)

- Collision WIMP ³He atom (mass 3 versus argon 39.948, xenon -131.293)
- Heat as quasiparticle excitations
- Light from de-excitation, threshold for ionization is ~ 20 eV

QUEST DMC

- Cooper pairs with L = S = 1
- 18-component order parameter
 - L_z = -1, 0, 1
 S_z = -1, 0, 1
- Multiple superfluid phases
 - A-phase: Anderson-Brinkman-Morel
 - B-phase: Balian-Werthamer
- Broken Cooper pairs = thermal excitations with energy $\Delta \sim 10^{-7} \text{ eV}$

Vibrating sensors as quasiparticle detectors

QUEST DMC

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

3He-B bolometry offers direct

Power applied to radiator, fW

Optimising beam/wire geometry for and both He and SQUID response

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST DMC

Optimising beam/wire geometry for and both He and SQUID response

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST DMC

SQUID readout of nanowire

2-stage SQUID amplifier (PTB) IEEE Trans. Appl. Supercond. 17 (2007)

Vacuum characterisation of SQUID nanowire readout. 315 nm wire, 8.5 mT, 4.2 K

QUEST DMC

Optimising beam/wire geometry for and both He and SQUID response

QUEST DMC Simulation model of full system:

- Quasiparticle (QP) production fluctuations
- Readout noise conventional vs SQUID
- Shot noise fluctuations on incident QPs

Resulting **energy thresholds**:

- Conventional readout: 39 eV
- SQUID readout: 0.71 eV

[400nm diameter wire at 0.12 T/Tc]

Simulation of decays, radiopurity screening (Boulby, database)

Material	Up 238 U	Lower ²³⁸ U	$^{210}\mathrm{Pb}$	Upper 232 Th	Lower 232 Th	$^{235}\mathrm{U}$	^{137}Cs	$^{40}\mathrm{K}$	⁶⁰ Co	$^{54}\mathrm{Mn}$
Concrete	1.6E + 05	1.5E + 04	1.0E + 07	7.6E + 03	7.6E + 03	7.2E + 03	8.0E + 02	4.2E + 04	7.0E + 02	0.0E + 00
Aluminium	8.3E + 03	1.5E + 01	7.1E + 01	3.6E + 02	3.3E + 02	6.0E + 01	9.4E-01	3.1E + 00	$1.1E{+}00$	0.0E + 00
Superinsulation	6.8E + 02	2.0E + 02	3.9E + 03	2.0E + 02	2.0E + 02	$4.9E{+}00$	0.0E + 00	3.5E + 03	4.0E + 02	0.0E + 00
Stainless Steel	1.6E + 01	2.5E + 00	8.2E + 01	3.1E + 00	3.9E + 00	1.2E-01	2.0E + 00	6.2E + 00	5.2E + 00	1.7E + 00
Steel	1.2E + 01	1.2E + 01	1.2E + 04	4.9E + 00	4.9E + 00	3.0E + 00	2.0E + 00	3.4E + 01	$3.0E{+}01$	1.0E + 00
Araldite	3.60E + 00	4.80E + 00	1.45E + 01	3.40E + 00	2.20E + 00	2.60E-02	2.00E + 00	2.55E + 01	8.00E + 00	0.00E + 00
Stycast	1.05E+01	9.50E + 00	1.49E + 01	1.28E + 01	6.20E + 00	7.62E-02	2.00E+00	1.22E+02	$1.00\mathrm{E}{+}01$	0.00E + 00

QUEST DMC

Ionisation energy channel

- Superconducting devices:
- TES, Nanowires, mKIDs
- SiPMs (developed for Darkside) normally operated at LN2 consists of matrix of single photon avalanche diodes. High gain and single photo-electron resolution.
- In the first instance use as Veto rather than measure energy partition fraction.

QUEST

Test of SiPMs at 4K

Simulation of decays, radiopurity screening (Boulby, database)

Background	Events/cell/day [all energies]			
Cosmic rays	162.4			
Radiogenic	32.8			
PP neutrino	0.01			
CN neutrino	0.0003			

Cosmic ray detector around the target (90% veto efficiency).

Even better – go underground! UKRI preliminary infrastructure bid

QUEST DMC

Optimising beam/wire geometry for and both He and SQUID response

Spin dependent sensitivity projection for:

• 5 x 0.3 cm³ cells

QUEST DMC

• 6 month run with 50% duty cycle

Systematics: background rate, energy scale and galactic escape velocity.

Future Prospects: ULT Underground

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST DMC

Future Prospects: ULT Underground

• Cryogen-free microkelvin platforms, rapid access to ULT

QUEST DMC

High performance cryogen-free microkelvin platform J. Nyéki, M. Lucas, P. Knappová, L.V. Levitin, A. Casey, J. Saunders, H. van der Vliet, and A.J. Matthews, Phys. Rev. Applied 18, L041002 (2022) 60 (a) (b) 140 h 6 h 50 1.0 Ē 0.9 40 atur 0.8 30 am 0.7 20 0.6 10 0.5 4 6 0 2 0.4 mK Time (h) Time (d)

Summary

- QUEST-DMC designed, and are constructing an experiment for the direct detection of sub-GeV dark matter with a quantum-amplified superfluid ³He calorimeter
- New mass regime, sensitivity to spin-dependent interactions, predict 10 eV threshold.
- 1st Experimental measurement run due to start end of 2023
- Future plans, to exploit more sensitive quantum sensors (for both QP and Ionisation channels), low radiogenic background cryostats, underground lab?

QUEST DMC

Core Team

	EXPERIMENTAL	Tineke Salmon				
ROYAL HOLLOWAY	Dr. Samuli Autti	Prof. John Saunders				
ORIVERSITY OF LONDON	Dr. Andrew Casey	Robert Smith				
I ancaster 🔀	Nathan Eng	Dr. Michael Thompson				
University	Dr. Paolo Franchini	Dr. Viktor Tsepelin				
	Prof. Richard Haley	Dr. Vladislav Zavyalov				
IUS	Dr. Petri Heikkinen	Dr. Dmitry Zmeev				
University of Sussex	Dr. Sergey Kafanov	THEORY				
TY.OR.	Dr. Elizabeth Leason	Dr. Neda Darvishi				
	Dr. Lev Levitin	Prof. Mark Hindmarsh (Leading WP2)				
	Prof. Jocelyn Monroe (Leading WP1)	Prof. Stephan Huber				
	Dr. Theo Noble	Prof. John March-Russell				
OXFORD	Dr. Jonathan Prance	Dr. Stephen West				
onnond	Dr. Xavier Rojas	Dr. Quang Zhang				
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology						

Andreev Scattering

- P wave superfluid, Retroreflection, reverses velocity but not momentum (Fermi Momentum)
 - When the superfluid is in motion (around beam), canting of the dispersion curve results in a strong damping term.

Hybrid Quantum Interference Device (HyQUID)

V T Petrashov, et al. Phys Rev Lett 74, 5268 (1995)

- HyQUID sensor based on Andreev interferometer with two SN contacts
- Current biased, dV/dI output is periodic with flux Φ

Graphene-based tunable SQUIDs

M. D. Thompson, et al. Appl. Phys. Lett. **110**, 162602 (2017)

Using Quantum Computing architecture to address multiple bolometers.

The superfluid ³He calorimeter at ULT

- The existing LANC ND to cool five 1 cm³ cells, each 0.1 gm of ³He, to 80 μK, instrumented with nanowires.
- Held in a box made of ultra-low radioactivity materials.
- The bath will be shielded inside a copper cryostat, cooled by a ⁴He-filled reservoir.
- Quasiparticles generated by a scattering event propagate ballistically until they are detected by a nanowire.
- Photon detection for veto

QUEST DMC

Energy deposition as variation of the resonance width

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST DMC

