

Advances in SRF cavity architectures for quantum computing

Tanay Roy

SQMS division, Fermilab

Quantum Technologies for Fundamental Physics Workshop, Erice, Italy

3 Sep 2023

Report number: FERMILAB-SLIDES-23-283-SQMS

Basic Requirements for a Quantum Computer

Different Platforms

Tanay Roy - Fermilab

Superconducting Circuits

Transmon: Anharmonic Oscillator

Harmonic Oscillator

Anharmonic Oscillator

Operating Temperature

Traditional Multi-qubit Architecture

Linear or planar geometry

Computational space: 2^N

Can we do **better**?

UCSB, Nature 519 (7541)

IBM

Problem of Relaxation

IBM

 $T_1 \sim 100 \ \mu s$ Q: a few 10^6

Can we do **better**?

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Tanay Roy - Fermilab

Zoo of Cavities

Science 342, 6158

Yale, U. Pittsburgh

(a)

(b)

U. Chicago, Rutgers

Tanay Roy - Fermilab

High-Q 3D SRF Cavities

High-Q 3D Cavities as Qudits

Romanenko et al. PRApplied 13, 034032

$$T_1^{|1\rangle} > 300 \text{ ms}$$

$$T_1^{|2\rangle} > 150 \text{ ms}$$

$$T_1^{|10\rangle} > 150 \text{ ms}$$

 $T_1^{|10\rangle} > 30 \text{ ms}$

Qudit

Still much better than transmon qubits

Transmon vs. Cavity Drive

Qudit Operation

Universal Gate Set

First Milestone

Incorporate Transmon into a TESLA cavity

First Milestone

Incorporate Transmon into a TESLA cavity

First Milestone

Incorporate Transmon into a TESLA cavity

Achieved photon counting

Key to Dark Matter detection

Second Milestone

ΔE

Δe

1.5

1.0 Delay time (ms) 2.0

|2>

 $|1\rangle$

|0>

1

2

1

o Parity

-1

FERIALS & SYSTEMS CENTER

Tanay Roy - Fermilab

Δe

ΔE

0.2

0.0

0.5

Multqudit Architecture

Outlook

- Improve single-cell devices
 - Optimize transmon design, placement
 - Investigate other SRF cavity geometries
- ✤ Scaling up
 - Develop modular architecture
 - Connect several modules

Find new applications

Brand New SQMS Facility at Fermilab

SON SECONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Tanay Roy - Fermilab

Thank You!

SON Same Superconducting Quantum materials & systems center