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Introduction
Q: How can we detect weakly coupled physics?


• Gravitational waves (black hole mergers, stochastic background, …)


• Axions (dark matter, solar, terrestrially sourced, produced in situ, …)


An A: Through weak, continuous measurement of quantum sensors


• PVM (  and ) vs POVM ( ) 


There’s a simple theoretical framework in which to formulate these systems.
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Fabry-Pérot interferometer
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How do physics systems couple to this?
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Gravitational wave detection I

Hint = −
1
2 ∫ d3x hμνTμν

PD Frame⟶
1
2

ML··h ̂xm

̂xm , ̂pm
Gravitational wave (GW) imprints as a force on the test mass (LIGO/VIRGO/…)

L
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X̂, ̂Y·pm ⊃ i[Hint, pm]

= −
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ML··h



Gravitational wave detection II

Gravitational wave imprints directly on electromagnetic field (CAST, …)

Hint = −
1
2 ∫ d3x hμνTμν

⟶ ⟨B ⋅ h ⋅ ε⟩V V1/2(sin ϕ X̂+cos ϕ ̂Y) X̂, ̂Y
volume V

B



An axion dark matter detector

Axion DM imprints on EM field with stochastic phase

Hint = gaγγ ∫ d3x aE ⋅ B

⟶ gaγγ⟨B ⋅ ε⟩V V1/2a0(sin ϕ(t) X̂+cos ϕ(t) ̂Y) X̂, ̂Y
volume V

B



Input and output modes
How do we monitor what is happening inside the cavity?

Xout(t) = Xin(t) + κX(t)
If the in/outgoing modes are linearly coupled to cavity, we have I-O relations [Gardiner, Collett ’84]

Yout(t) = Yin(t) + κY(t)

κmeasurement rate

Xin, Yin

Xout, Yout



I-O for GW I

Yout(ω) =
χYX(ω)

−2 κ G2 χ2
c χm Xin(ω) +

χYY(ω)

(1 + κ χc) Yin(ω)

+
κ
2

G M L ω2 χc χm

χYh(ω)

h(ω)
χc(ω) = (iω −

κ
2 )−1

χm(ω) = [m (ω2
M − ω2)]−1

Estimator for gravitational wave strain: hest(ω) =
1

χYh
Yout(ω)

ωc( ̂x) ∼ ω0(1 + G
̂x

L )

Read  via homodyne detection:Yout
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Noise in GW detector

Shh(ω) = ⟨hest(ω)hest(−ω)⟩

= |χYh |−2 ( |χYX |2 Sin
XX

shot−noise

+ |χYY |2 Sin
YY

back−action

)

Increasing the optomechanical coupling G 

increases both  and  — optimise!χYh χYX



A Quantum “Limit”

Heisenberg Uncertainty Principle    implies that, if  and  

are uncorrelated,

Sin
XX ⋅ Sin

YY ≥
1
4

⟨[Xin, Yin]⟩
2

Xin Yin

Δ2Y(t) ≥ ∫
∞

−∞
dω eiωt ( | χYX |2 Sin

XX +
| χYY |2

4Sin
XX

)

which is minimised for  [Caves ’81]Sin
XX =

χYY

2 χYX

The noise is bounded: Δ2Y(t) ≥ ∫
∞

−∞
dω eiωt |χYX χYY |

We measure an integrated signal, whose noise is characterized by ;Δ2Y(t) = ∫
∞

−∞
dω eiωt Sout

YY (ω)



Beyond the Standard Quantum Limit

Sout
YY = |χYX |2 Sin

XX + |χYY |2 Sin
YY

+2 Re (χYX χ*YY) Sin
XY

Two ways to beat the SQL:

2.   Back-action evasion 
(BAE): χYX → 0

Sout
YY = |χYY |2 Sin

YY

 in a Y-eigenstate Sout
YY → 0

1.   Squeeze/rotate: Sin
XY ≠ 0

̂S(r, θ)



Beyond SQL for GWs
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I-O for homodyne axion search

Measurement noise arises only from variance in :Yin

Yout = χYYYin + χYa a

Saa =
χYY

χYa
Sin

YY

Fixed cavities have no back-action.

χc(ω) = (iω −
κ
2 )−1

ωc = ω0

X-Y susceptibility for a fixed mirror: χYX = − 2 κ G2 χ2
c χm

χm→0
⟶ 0



Homodyne detection as back-action evasion

|βeiω0t⟩

Homodyne detection lets us measure the Schrödinger picture operator YS(t) =
1

2
(aiω0taS + e−iω0ta†

S )

Since , the observable is conserved: aH(t) = e−iω0taS
dYH

dt
= i[H, YH] + ∂tYS = 0

No back-action when measuring conserved quantities. Despite BAE, still 
may be better to measure number operator (see previous talks)!

(If mirror is free to move, , so no BAE in general)aH(t) = e−i ∫ ωc( ̂x) dtaS ≠ e−iω0taS

|a⟩



Lossy cavities and axions
Cavity loss implies we have other input/output ports apart from measurement port:

Saa = |χma |−2 ( |χmm |2 Sm
YY + |χll |

2 Sl
YY)

Ym
out = χmmYm

in + χmlYl
in + χmaa

The axion frequency/mass is unknown; 

maximise the Fisher information/scan rate by tuning  κm = 2e−2rκl

Ym
in

Ym
out

Yl
inYl

out

κm

κl



Axion sensitivity



Conclusions

• Input-output theory gives a useful, unified framework in which to 
understand noise (including quantum, thermal, intrinsic losses, etc.) 
in weak, continuous measurements


• There are simple pipelines to go from physical couplings, to signal 
and noise, to physics reach of many detectors

Thank you!


