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Introduction

Q: How can we detect weakly coupled physics?
* Gravitational waves (black hole mergers, stochastic background, ...)
* Axions (dark matter, solar, terrestrially sourced, produced in situ, ...)

An A: Through weak, continuous measurement of quantum sensors

There’s a simple theoretical framework in which to formulate these systems.



Fabry-Perot interferometer

e L
Hlight — wc(xm) (X2 T Yz) Hmass — EMwZ\Z4 XIZW T M

|
—p?,

How do physics systems couple to this?



Gravitational wave detection |
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Gravitational wave (GW) imprints as a force on the test mass (LIGO/VIRGO!...)



Gravitational wave detection I
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Gravitational wave imprints directly on electromagnetic field (CAST, ...)



An axion dark matter detector
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Axion DM imprints on EM field with stochastic phase



Input and output modes

How do we monitor what is happening inside the cavity?
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If the in/outgoing modes are linearly coupled to cavity, we have |-O relations [Gardiner, Collett '84]
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-O for GW |

Read Y via homodyne detection:
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Estimator for gravitational wave strain: hest(a)) = — out(a))
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Noise in GW detector
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shot—noise back—action

Increasing the optomechanical coupling G
increases both yy, and yyy — optimise!
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A Quantum “Limit”
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We measure an integrated signal, whose noise is characterized by AZY(¢) = dw e' S Om(a))
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Heisenberg Uncertainty Principle ;}‘X | (X, Y. 1) | implies that, if X, and Y;_

are uncorrelated,
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which is minimised for AYY | [Caves '81]
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The noise is bounded: AZY(t) > dw e'®" | vy Xyyl




Beyond the Standard Quantum Limit

Two ways to beat the SQL:

1. Squeeze/rotate: S)l(nY = () 2. Back-action evasion
(BAE): yyy — 0O
Syy = ‘)(YX‘ZS)i(nx‘l' U(YY‘zS)i/%/ Sy = \)(YY\zSIi}}
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Beyond SQL for GWs
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|-O for homodyne axion search
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Measurement noise arises only from variance in Y. :
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Fixed cavities have no back-action.



Homodyne detection as back-action evasion

Homodyne detection lets us measure the Schrédinger picture operator Y(7) = 7 (aiwofaS + e‘i%’fa;)
2
| iy | dYy .
Since ay(f) = e "*'aq, the observable is conserved: ke iI[H, Yyl +0Yy=0
l |'Beia)0t>
\ w .
No back-action when measuring conserved quantities. Despite BAE, still |a) ~ ‘»_"* *
may be better to measure number operator (see previous talks)! -

(If mirror is free to move, ay(f) = e/ *W g, £ ¢7lg . so no BAE in general)



Lossy cavities and axions

Cavity loss implies we have other input/output ports apart from measurement port:
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The axion frequency/mass is unknown;
maximise the Fisher information/scan rate by tuning k,, = De~?" K
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Conclusions

* Input-output theory gives a useful, unified framework in which to
understand noise (including quantum, thermal, intrinsic losses, etc.)
IN weak, continuous measurements

* There are simple pipelines to go from physical couplings, to signal
and noise, to physics reach of many detectors

Thank you!



