

Credit: I am deeply in debt with <u>V. Bonvicini</u> for many slides INFN Present and Future Perspectives on QT / QIS

Quantum Technologies for Fundamental Physics

Erice, Sep. 2nd, 2023 Prof. Marco Pallavicini - INFN Exec Board

- INFN in a nutshell
 - A Touch of History
 - The Institute today and its Mission
 - Current main scientific endeavours

- INFN interest for Quantum
 - Quantum sensing
 - Quantum technologies
 - QM fundamentals
 - Quantum computing

Origins and birth (1920 to 1951)

Roma 1930. From left: Oscar D'Agostino, Emilio Segrè, **Edoardo Amaldi,** Franco Rasetti and Enrico Fermi.

The early years

AdA and Adone, the Italian primacy in high-energy research

Adone 1969/1993

The reorganisation of the INFN and international collaborations

Super Proton Synchrotron (SPS) 1981/1984

The W and Z bosons, the Italian Supercomputing and the birth of the LNGS

Laboratori Nazionali del Gran Sasso 1987

LEP, Superconducting cyclotron, top quark, Daphne and EGO

Labec, Babar, LHC, Borexino

AMS, Higgs boson, neutrinos and gravitational waves, dark matter search

INFN facilities

Profile of expenditure for research, personnel, operations and equipment

6700 people [INFN employees or associated University staff] 25% graduate students, post docs and contracts

579 M€

Base budget
from MUR
292 M€

Special projects 121 M€

PNRR projects 166 M€

An international DNA

The **5 research lines** and the National Scientific Committees

Transfer of Knowledge to Society

Transfer of Knowledge to Society

Transfer of Knowledge to Society

INFN

- Four main lines, the first two are the main focus:
 - Quantum sensing: using wave functions as probes or detectors
 - New particle detectors
 - Single photon detection in low frequency domains
 - Innovative dark matter detectors

• Quantum technologies

• Using INFN technologies to develop new Quantum Devices

Quantum computing

- Which fundamental physics problems can be addresses ?
- Which algorithms ?
- Quantum devices to explore fundamental quantum mechanics

• INFN and QIS/QT

- Adopt all technologies that can allow **better research in fundamental physics** (e.g., detect very low energy quantum states).
- Use Quantum computers/simulators to support our research (from Lattice QCD, to event classification in LHC, to Life Science applications, ...).
- Contribute to QC/QT with HEP-derived knowledge, know-how, technology (theory, SC resonant cavities, mK cryogenics,...).

• How?

- Team with other players, in Italy and elsewhere, sharing scientific interests and/or technology
- Develop a sound know-how and an expert workforce
- Develop a synergistic effort to increase the INFN role in the relevant areas
- **Main QIS/QT** current activities (carried on in INFN-financed experiments, within PNRR-financed projects, and in International projects):
 - Theory/algorithms
 - Technology:SC platform, Photonic platform, Cryogenic detectors (TES, KIDs, JJ,...), QLparametric amplifiers, qubits for QC and sensing
 - Experiments: measurement of ν mass, Axion (and light DM) search, EDM, QML and quantum algorithms for HEP

• Quantum Computing in National Center for HPC

- Applied quantum algorithms
 - Exploit the potential of Quantum Computing to **change the paradigm of classification and reconstruction algorithms** used in fundamental physics research
 - Tackle classification problems within the framework of Q. Machine Learning
 - Study correlations amongst the features of a dataset, by measuring the entanglement correlations between qubits, and therefore extracting information on the underlying physics
 - Quantum algorithms can be employed to efficiently reconstruct physics objects, such as charged particle tracks, specifically to reduce combinatorial background during the initial seeding stage

- Superconducting qubits
 - Qubit circuit design
 - Qubit **control**
 - Test and Development of **Quantum Amplifiers** for fast qubit readout
 - Tests and Measurements

- **5 Labs** instrumented with dilution refrigerators and RF electronics
 - Synergies with many INFN experiments

PNRR funded activities (IV): NQSTI

Istituto Nazionale di Fisica Nucleare

- National Quantum Science and Technology Institute
 - A national consortium that will:
 - Team up Italian entities carrying out competitive and innovative research in QST.
 - Stimulate future industrial innovation in this field.
 - Provide a forum in which novel ideas and opportunities are transferred to companies.
 - Favour successful Italian participation to European and international programs

- Precise Electric Dipole Moments (EDM) for e and p (n) exploring Long Coherence Spin in Molecules
- Macro-Coherent sensors for Dark Matter (neutrino?) detection
 - Axions, WIMPS, relic neutrinos (?), exotic physics
- Atomic Ion Source with High Charge State for Atomic Clocks
 - See e.g., S. A. King et al., Nature 611, 43-47 (2022)
- Photonics
- Integration of different QT platforms
- Many more....

- A low energy portal to BSM physics
 - EDM violates T and P
 - In QFTs respecting CPT implies CP violation through mechanisms different from CKM and PNMS phases
 - EDM's in SM are tiny ($d_e < 10^{-38}~e\cdot cm,~d_n < 10^{-34}~e\cdot cm)$ but most BSM extensions include new CPV phases

- It probes scales unreachable to LHC and well beyond FCC too.
- Paramagnetic molecules confined in **long coherence time** conditions

One example: PHYDES experiment (CSN V)

Molecules = atoms with extra knobs

• QCD should show CPV

Axions

- Large non-perturbative CP violating interactions from QCD \Rightarrow large n EDM
- **Not seen!** Θ extremely small: naturalness problem for the SM!
- Peccei Quinn solution: Θ is a field accounted by a new symmetry that becomes spontaneously broken (at very high energies!)
 - Axion field is goldstone boson of such a broken symmetry
 - Axion mass inversely proportional to this energy scale
- Axions and ALPs
 - Abundantly created during BB
 - Valid candidates for DM
 - Essentially a classical boson field today because of cosmic cooling
- Experimental axion search exploits axion coupling to matter and radiation
 - Coupling to magnetic fields (conversion to photons)
 - Interaction with spins
 - Induction of EDM on particles

Example: QUAX (CSN II)

- QUAX exploits both axion-electron couplings and axion-photon couplings, both close to quantum-limit
 - Electron: Josephson parametric amplifiers are the key tools
 - Photon: Wide Bandwidth Traveling Wave Parametric Amplifier
 - Calls for single photon counting at 10 GHz

Microwave single photon counting

- Single Microwave Photon Detectors (SMPDs) developed in the context of Quantum Information Science have the potential to greatly improve the sensitivity and the search speed at haloscopes
 - A pilot experiment is ongoing with researchers from INFN (Padova, LNL) and the Quantronics group (CEA Saclay)
 - Tunable, high-Q cavity
 - Its TM_{010} mode $v_c \sim 7.3$ GHz is read-out by a SMPD

Coherent Quantum Network of SC Qubits as a Highly Sensitive Detector of Microwave Photons

A substantial variation of the transmission properties was measured in a transistor-type detector based on 10 flux qubits when power was applied to the "base" terminal.

IEEE Transactions on Applied Superconductivity DOI 10.1109/TASC.2023.3263807

A key international agreement with DOE

SQMS Roadmap: from material discovery to quantum advantage

INFN is a contributing partner

- Theory + Technology challenge, driven by HEP technology
 - LNF, LNGS, LNL, GGI, Padua, Florence, Ferrara, Rome, Trieste, Milan-Bicocca (~30 people)
- Three Focus Areas + development of the QIS ecosystem (Workforce Development):
 - Focus Area 1
 - Materials for 2D and 3D quantum systems
 - Characterisation of SC components (e.g., cavities and qubits), including the assessment of the impact of environmental perturbation in the very **low radioactivity environment of the LNGS**
 - Development of appropriate mitigation techniques against environmental perturbation
 - Focus Area 2
 - Quantum Device Integration, Prototypes and QPUs
 - mK State-of-the-art cryogenics, low-noise facility for the characterisation and test of quantum devices.
 - Focus Area 3
 - Quantum Physics & Sensing, INFN contributes in:
 - Improvements to the design and sensitivity of haloscope detectors at high frequency (~10 GHz), including the continued development of high-Q cavities in high B fields.
 - Demonstration of the use of these detectors for Dark Matter searches.
 - Theoretical support for all areas and activities

- The explicit involvement in QT is **new** but its **roots are as old as the institute**
 - QT is seen as:
 - a portal to new sensors and devices for fundamental research
 - **a new computing tool** for fundamental research problems (lattice QCD e.g. but also data analysis)
 - a probe to QM fundamentals (theory and experiment)
 - **a new technology** to develop and transfer to industry and society
 - **Substantial investments** recently, also benefiting from PNRR
 - No conclusion, just the beginning of a beautiful long journey

Thank you. Have a nice, productive and beautiful week in Erice