ULTRAFAST TIME-RESOLVED X-RAY ABSORPTION SPECTROSCOPY

Frederico Alves Lima

Ecole Polytechnique Fédérale de Lausanne Swiss Light Source - Paul Scherrer Institut

Outline

Introduction

- Structure vs. function
- Ultrafast phenomena
- How to obtain structural information
 - **XAS** and time-resolved XAS
- **Interesting results**
 - Spin-crossover model [Fell(bpy)₃]²⁺
 - Photo-detachment of Myoglobin
- Summary

Is function structure or dynamics?

Structure

- X-ray crystallography
- electron microscopy
- atomic force microscopy
- electron diffraction
- X-ray absorption spectroscopy
- NMR

Side view of the light-harvesting complex II in chlorophyll (PDB)

Dynamics

- Laser spectroscopy
- NMR
- time-resolved diffraction
- X-ray absorption spectroscopy

Rotating hydrated myoglobin molecule http://uweb.cas.usf.edu/chemistry/faculty/space/ B. Space & J. Belof (University of South Florida)

http:/bilder.desy.de

What are the length scales involved ?

http://www.newgrounds.com/portal/view/525347

What are the timescales involved ?

Where can we do that?

Synchrotron radiation

 \blacksquare Synchrotron radiation \rightarrow relativistic accelerated charges

Synchrotron radiation

http://www.diamond.ac.uk/Home/About/Films/technology.html

The Swiss Light Source

☑ 3rd generation synchrotron light source located one hour from Zürich

2.4 GeV energy, operating on top-up mode

Up to Sept. 2009 only femtosecond hard x-ray source in the world

Ultrafast X-ray Sources: picosecond

MicroXAS beamline

- tunable hard x-ray in-vacuum undulator (4-20 keV)
- Si (111), Ge(111) & Si(311) monochromator crystals
- micro-focus capability (< 1mm²)
- 10¹² photons/second

PHOENIX beamline

- tunable 'tender' x-ray in-vacuum undulator (0.8-8 keV)
- Si (111), KTP, Be, InSb monochromator crystals
- micro-focus capability (< 1mm²)
- 10¹¹-10¹² photons/second

Using fast avalanche photodiodes and either boxcar integrators or track-and-hold circuits we can selectively measure using only the camshaft pulse giving us 70 ps time resolution

Ultrafast X-ray Sources: femtosecond

- An ultrashort (fs) laser pulse co-propagate with an electron bunch causing a modulation on its energy
- Electrons with different energy are further separate in space via dispersive elements on the synchrotron ring

R. Schoenlein, et al., Science, 287:2237-2240 (2000)
R. Schoenlein, et al., Appl. Phys. B, 71:1-10 (2000)
P. Beaud, et al., Phys. Rev. Lett. 99, 174801 (2007)

The FEMTO slicing source at the SLS

- tunable from 4 to 14 keV
- 140 ± 30 fs x-ray pulse duration
- timing stability of < 30 fs RMS over days
- 10⁵ photons/second

How the (time-resolved) experiments are done

X-ray Absorption Spectroscopy

An x-ray photon is absorbed by an atom when its energy is transferred to a core-level electron which is ejected from the atom.

Photo-electron effect

The photo-electrons are emitted as spherical waves which are damped out rapidly due to inelastic effects caused by the extended valence orbitals of the nearby-lying atoms.

http://xafs.org/

Energy

щ

The (x-ray) absorption process depends whether or not there's an *available state* for the photo-electron.

Neighboring atoms scatter the modification of the absorption emitted photo-electron coefficient µ. X-ray Absorption Fine-Structure photo-electron $\lambda \sim (E - E_0)^{-1/2}$ XAFS XANES x–rav Absorption core-level Probability **Absorbing Atom** Scattering Atom

Aqueous [Fe^{II}(bpy)₃]²⁺

- Light-induced spin crossover effect
- **O** Porphyrin-like model system (Myoglobin)
- Magnetic switching and data storage
- Model system in the group of *polypyridine photosensitizers*

Gawelda, W., et al., J. Am. Chem. Soc., 129, 8199 (2007).

Aqueous [Fe^{II}(bpy)₃]²⁺

Aqueous [Fe^{II}(bpy)₃]²⁺: Femtosecond XAS planning

With a loss of 4 orders of magnitude of x-ray photons we need to be smart about the experiment

The largest transient signal is at the B feature which is a multiplescattering feature sensitive to the Fe-N bond distance

The picosecond experiments suggest it will take 30-60 minutes per data point to acquire S/N of ~ 4:1

Proposal

Tune the energy to the maximum transient signal (7126 eV) and perform a time scan

Aqueous [Fe^{II}(bpy)₃]²⁺: Femtosecond XAS results

arrives in the highspin state directly from the ³MLCT in ~150 fs

Aqueous [Fe^{II}(bpy)₃]²⁺: Conclusions

Picosecond EXAFS has successfully resolved the transient high-spin state structure of a spin-crossover molecular system in solution to sub-Å resolution

Femtosecond XANES has allowed us to watch the arrival of an excited molecular system in its high-spin state

By combining ultrafast optical techniques and ultrafast x-ray techniques we have completely characterized the structure and dynamics of a molecular spin-crossover system

Aqueous [Fe^{II}(bpy)₃]²⁺ revised

The newly-implemented MHz data scheme allows the collection of high-quality data

More details of the transient excited-state structures can be studied

kHz

MHz

Gawelda, W., et al., PRL 98 057401 (2007).

Lima, F. A., et al., in preparation (2011).

The increased S/N allows the collection of high-quality data in less time

Possibility to investigate subtle details of the transient structure.

Allows the measurement of highlydiluted systems, e.g., proteins in solution

Biological systems: Myoglobin

Myoglobin is an oxygen transport/storage protein that has the ability to bind small molecules such as O2, CO, NO and CN

Small changes in the ligand character have profound spectroscopic effects

620

We can knock this ligand off with a photon of green or blue light

Proof-of-principle: MbCO

- First ever time-resolved x-ray experiment¹
- ☑ Alternative data-collection strategy due to the high repetition rate and long photoexcited lifetime
- ☑ Liquid sample under physiological conditions

MbNO - dynamics of ligand detachment

How fast is the geminate recombination?

Existence of a 6-coordinate domed structure on MbNO?²

¹ D. Nutt et al. J. Phys. Chem. **B 109**, 21118 (2005)
 ² S. Kruglik et al. PNAS **107**, 13678 (2010)

What's the spin-state & electronic structure of the Fe atom on the transient structure?

What's the geometry of the transient structure?

☑ Is there more than one excited state structure?

Can we see a bound MbON structure?¹

 Fast dynamics (ca. 200 ps) captured on the fly
 Small discrepancy from the predicted signal might be an indication of a 30 ps domed ligated (6coordinated) configuration. ¹

¹ Kruglik, S.G., et al., PNAS **107** (31) pp. 13678 (2010).

Summary

The potential inherent to time-resolved XAS is enormous, we can measure structural changes in excited systems on the timescale of atomic motion

Solution Structures and/or more complex systems

The ultrafast structural dynamics of excited-state biological systems under physiological conditions can be followed

Extending the technique to the soft x-ray regime will allow the study of L-edges of transition metals and K-edges of C, N, O, etc

More to come with new sources of ultrafast x-rays: XFEL

LSU

Chris Milne Renske van der Veen Hannelore Rittman-Frank Marco Reinhard Susanne Karlsson Frank van Mourik Majed Chergui

LSU alumni Wojciech Gawelda Christian Bressler Dimali Amarasinghe Amal El Nahhas Van-Thai Pham Andrea Cannizzo

Acknowledgments

FEMTO Steve Johnson Paul Beaud Ekaterina Vorobeva Andrin Caviezel Gerhard Ingold Alex Oggenfuss Simon Mariager

MicroXAS Daniel Grolimund Camelia Borca Marcus Willimann Beat Meyer Rafael Abela

PHOENIX

Markus Janousch Thomas Huthwelker Reto Wetter

Funding: Swiss NSF, SLS, EPFL

For more information on ultrafast structural dynamics visit <u>http://lsu1.epfl.ch/dyna/</u>

 I_0

 \Box The intensity of an x-ray beam passing through a material of thickness **t** is given by the absorption coefficient μ .

$$\blacksquare$$
 Beer-Lambert law $\Longrightarrow I = I_0 e^{-\mu t}$

 $\ensuremath{\textcircled{O}}$ $\ensuremath{\mu}$ depends strongly on x-ray energy **E**, atomic number **Z**, on the density $\ensuremath{\rho}$ and on the atomic mass **A**

$$\mu \approx \frac{\rho Z^4}{AE^3}$$

☑ X-ray absorption fine structure function:

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\Delta \mu_0(E)}$$

X-ray Absorption Spectroscopy

Fermi's Golden Rule

 $\mu(E) \propto |\langle i \mid H \mid f \rangle|^2$

 $|f\rangle = |f_0\rangle + |\Delta f\rangle$

 $\mu(E) \propto |\langle i \mid H \mid f \rangle|^2 [1 + |\langle i \mid H \mid \Delta f \rangle \frac{\langle f_0 \mid H \mid i \rangle}{|\langle i \mid H \mid f_0 \mid^2} + C.C.]$

 $\mu(E) = \mu_0(E) [1 + \chi(E)]$

Aqueous [Fe^{II}(bpy)₃]²⁺: (picosecond) Data analysis

optimize ground-state structures and parameters

generate a set of EXAFS spectra for a given model by moving specific coordinates

Calculate the transient spectrum

 $\Delta \chi_i^{TH}(\Delta R_i, E') = \chi_i^{ES}(\Delta R_i, E') - \chi^{GS}(E)$

Minimize the reduced chi squared function

$$\chi_{r}^{2}(i, f, \Delta E_{0}) = \frac{1}{N-1} \sum_{j=1}^{N} \left(\frac{x_{j}/f - \Delta \chi_{i,j}^{TH}(\Delta R_{i}, E')}{\sigma_{j}^{x}/f} \right)^{2}$$

Fe-N(Å)	Error(Å)	f(%)	$\Delta E_0(\mathrm{eV})$	Source
0.2	± 0.02	$\frac{1}{22}$	-2.8 ± 0.5	EXAFS analysis
0.19	± 0.03	21.5 ± 1.5	-2.5	MXAN analysis with fixed ΔE_0
0.2	± 0.04	22	-2.5 ± 0.5	MXAN analysis with fixed f
0.203	-0.035, +0.012	22 ± 1	-2.5 ± 0.5	this analysis with $f=22\%$ and $\Delta E_0=-2.5$ eV
0.2005	-0.0165, +0.0135	17 ± 1	-1.2 ± 0.6	this analysis 90% confidence levels
0.203	± 0.008	17 ± 1	-1.2 ± 0.6	this analysis 95% confidence levels

¹ W. Gawelda, et al., JCP 124520, 130 (2009)

Myoglobin - expected signal on TR-XAS

MbCO - expected signal on TR-XAS

F. Lima. D. Amarasinghe, C. Milne, private data

MbNO - expected signal on TR-XAS

F. Lima. D. Amarasinghe, C. Milne, private data

Myoglobin - static XAS and radiation damage

blá blá blá

- blá blá blá
- 🗹 blá blá blá
 - 🗹 blá blá blá
- blá blá blá
 - Se blá blá blá