

Searching for the X17 boson at MEG II

Francesco Renga INFN Roma

MEG II at the Paul Scherrer Institut (PSI)

The MEG II Cockroft Walton accelerator

Search strategy

- X17 produced in p + Li reactions at ~ 1 -1.08 MeV
- X17 -> e+e⁻ reconstructed in the MEG II magnetic spectrometer (Drift chamber + timing counters)
 - Excellent momentum resolution O(100 keV)
 - Excellent intrinsic angular resolution O(10 mrad)
 - Challenges and limitations
 - partial angular acceptance
 - dedicated design of the target region (cooling, low material budget)

Target region

- 400 µm-thickness carbon fiber vacuum chamber to minimize multiple scattering
- 5 µm LiF on 10 µm copper (@ INFN Legnaro)
- 2 µm LiPON on 25 µm copper (@ PSI)

Li target at COBRA center 45° slant angle

Target arm Cu for heat dissipation

Carbon fiber vacuum chamber

Thickness: 400 µm, Diameter: 98 mm Length: 226 mm

Ancillary gamma detectors

Bismuth Germanate (BGO) crystal matrix (4x4)

Lanthanum Bromide (LaBr3) crystal

- > background studies
 > target stability monitor
 > normalization
- Plans to use the LXe calorimeter for a more precise and larger acceptance measurement of the photon spectrum

Measured gamma ray spectrum

Data taking campaigns

- Data taking performed during the winter shutdown of the PSI proton accelerator complex
 - no conflict with the MEG II experimental program
- 12 days of engineering run in 2022:
 - test of LiF and LiPON target from 1 to 10 μA
 - background studies
 - trigger and DAQ development

Trigger configuration

- The trigger exploits hit multiplicity in drift chamber (CDCH) and timing counter
- Lesson learned from 2022 run:
 - converting gammas from 6 MeV Fluorine line overcrowd the trigger when the LiF target is used —> only good for calibration of ancillary detectors, LiPON has to be used for X17 search
 - cannot exploit zero-suppression techniques to increase the DAQ speed (tracking efficiency strongly deteriorated)
 - CDCH multiplicity condition (18 hits on each detector end) strongly suppresses the trigger contamination from external photon conversion (EPC) and Compton

Data taking campaigns

- Data taking performed during the winter shutdown of the PSI proton accelerator complex
 - no conflict with the MEG II experimental program
- 12 days of engineering run in 2022:
 - test of LiF and LiPON target from 1 to 10 μ A
 - background studies
 - trigger and DAQ development

· 25 days of run in 2023 with LiPON target

- 10 µA
- 50-100 Hz DAQ rate

Beam and target stability

2/5/23 0:00:00 2/7/23 0:00:00 2/9/23 0:00:00 2/11/23 0:00:00 2/13/23 0:00:00 2/15/23 0:00:00 2/17/23 0:00:00 2/19/23 0:00:00 2/21/23 0:00:00 2/23/23 0:00:00

Event reconstruction

 MEG II software has been revised to reconstruct e⁺e⁻ pairs

Future prospects

- Short run with LXe calorimeter, for a better determination of the gamma spectrum over a larger angular acceptance
- Work ongoing to complete the analysis of the 2023 data within this year:
 - main challenge: data-driven evaluation of acceptance and resolutions
- Possible additional data taking in the next years, during the winter shutdowns

Conclusions

- MEG II can search for the X17 in ⁷Li(p,e+e-)⁸Be
- After a test run in 2022, a successful 25-day run was performed in February 2023:
 - Stable gamma production and efficient trigger and DAQ configuration
 - Intensive activity on e⁺e⁻ reconstruction
 - Possibility of an accurate measurement of the gamma spectrum from an upcoming run with LXe calorimeter

Backup

Li targets

- Li is highly reactive and flammable: targets are usually Li-compounds
 - LiF, Li2B407, Li2O, SiO2, Li3PO4, Li4SiO4, LiPON
- The high <u>conductivity</u> and <u>stability</u> of solid solutions of Li₃PO₄ and Li₄SiO₄ in ambient air has been the starting point of a large number of activities of the development of thin-film batteries
- The difficulty to <u>deposit lithium</u> <u>orthosilicate</u> has been overcome by sputtering trilithium phosphate in a nitrogen atmosphere and in this way incorporating nitrogen as further anion (lithium <u>phosphorus</u> oxynitride 'Lipon') for improving the <u>ionic conductivity</u> and <u>thermal stability</u>
 - <u>Li_{3-X}PO_{4-Y}N_{X+Y}</u>
 - Typical Temperature during target preparation <u>~300</u> <u>deg</u>

