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Outline

» Breakdown test of an X-band metamaterial (MTM) accelerator structure for
short-pulse structure wakefield acceleration (SWFA)
— Metamaterial structures are good for SWFA applications
— Short-pulse acceleration is good for breakdown mitigation

= Other ongoing and planned work
— Sub-terahertz structures for high-gradient high-efficiency acceleration using
shaped bunches
— Beam collective effects in complex electron bunches
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Towards compact accelerators-

» Develop physics understanding of RF breakdown
— High-gradient and breakdown science community

» Explore novel accelerator concepts to mitigate RF breakdown
— Advanced Accelerator Concepts (AACs) community
» Plasma-based accelerators
» Laser-based accelerators
» Accelerators on a chip
» Terahertz (THz) accelerators
 Structure wakefield acceleration: short pulse — high gradient
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Short-pulse acceleration

= Acceleration using O(ns) RF pulses is a promising approach:
— Suggested by empirical studies

Breakdown rate (BDR) « E307°

— and by early evidence:

* in beam-driven experiments: | ¢ and in high-power testing:
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Mitigation of breakdown risks using short pulses

= Common initiators of breakdown may not have time to develop
— Examples:

* Pulsed heating |
- Multipactor current takes time to grow Multipactor current growth
o _ in a 17 GHz structure
— Could be mitigated by using short RF pulses
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SWFA-based short-pulse RF source

._’_A" Metallic disk-loaded, 400 MW, 6 ns FWHM Metamaterial, 565 MW, 6 ns FWHM

Witness
Beam

= SWFA power extractors as short-pulse RF power sources

= Flexibility in the choice of output frequency
— Harmonic of the bunch train frequency of 1.3 GHz
— Power extractor frequencies at AWA :
« 7.8 GHz, 11.7 GHz (our X-band frequency), 26 GHz, sub-THz




SWFA-based breakdown test stand
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= High-power tests of accelerator structures (without witness beam)
= Powered by an X-band power extractor from the drive beam



MTM structures fulfill SWFA requirements

= Special requirements for efficient wakefield extraction and acceleration
— High shunt impedance (r/Q)
— High group velocity (v,)
» For power extractor, P = ¢k, |v,| (1 )2 2

1-vg/c

» For accelerator, short filling time required for short pulses

» Reversing the group velocity improves performance
— General rule: beam aperture |, 7/Q 1, vy |

Structure Beam Aperture (mm) Group Velocity r/Q (kQ/m)
Alumina-loaded tube 6.0 0.106 c 10
Metallic disk-loaded 6.0 0.016 ¢ 16.5
Metallic disk-loaded 17.6 0.22c 3.9

Photonic bandgap 6.3 0.015¢c 14.5

MTM ‘wagon wheel’ 6.0 -0.1588 ¢ 21




Metamaterial power extractor

= A series of metamaterial power extractors at
11.7 GHz tested at AWA

» Highest peak power as 565 MW from a train of
eight bunches with a total charge of 355 nC
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Metamaterial accelerator design

= Efficient structure design to explore gradient limitation

— Optimized for high transient gradient with 6 ns (FWHM)
input RF pulses

— Negative group velocity in the fundamental TM mode
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Breakdown test stand

Light
diagnostics

= Vacuum chamber built with
breakdown diagnostics
— Dark electrons (Faraday
cup)
— Light (photodiode and
camera)

Vacuum
pump
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Representative pulse

= Conditioned with over 3 x 10° pulses Short pulse — wide band
» Peak gradient of 190 MV/m with 115 MW of input RF power £
= Unconventional time structure due to the short-pulse length ?
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Voltage (kV)

Breakdown insensitive acceleration regime (BIAR)
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Sub-THz structures for high-efficiency
& high-gradient collinear acceleration

= Integration of wakefield structures + shaped beams Particle-in-cell simulations

— Emittance exchange (EEX) beamline at AWA 50- @
0

* Transverse-to-longitudinal EEX

» Shaped drive beam
— Higher “transformer ratio” 36 35 34 33 35
— Longer interaction length 501
— Higher efficiency

0 —

Gradient (MV/m) Gradient (MV/m)

= Optimization study using masks + EEX | | | |
— Previous bunch shaping study with nonlinear optics S A
(12 sextupole and 12 octupole magnets)
— Our current plan doesn’t require new major hardware
or beamline changes at AWA

* 110 GHz metallic disk-
loaded structure

« Excited by a longitudinally-
shaped 10 nC electron
bunch, 2.5 mm long

A. Zholents, Proc. IPAC’18, TUPMF010
W. H. Tan, et al., PRAB 24 051303 (2021) 15




Experiment preparation

= Structure fabrication
— Copper plates manufactured by precision
laser cutting
— Complete clamped structure

» EEX Beamline reconfiguration

» First run planned for Nov.-Dec. 2023

(1) Gunl (2) Emittance exchange | (3) Wakefield (4) Phase space
& linac Transverse One of the : Structure | measurement
deflecting

Vacuum chamber
for the structure
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Conclusions & Ongoing Work
Efforts towards SWFA-based compact accelerators

» Advanced RF structure development for SWFA
— X-band metamaterial accelerator experiment, achieving high gradient and
demonstrating potential benefits of short-pulse acceleration
» Breakdown insensitive acceleration regime
— Sub-THz structure to be tested utilizing shaped electron bunches for high-
gradient high-efficiency acceleration

= Other ongoing efforts in synergy
— RF structures with new topologies (e.g. W-band MTM power extractor)
— Modeling of dark current in structures with short RF pulses
— Understanding of coherent synchrotron radiation in complex beams for AAC
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