15th Workshop on Breakdown Science and High Gradient Technology (HG2023)

Test of a metamaterial accelerating structure

Xueying Lu

Northern Illinois University & Argonne National Laboratory

October 18, 2023

Outline

- Breakdown test of an X-band metamaterial (MTM) accelerator structure for short-pulse structure wakefield acceleration (SWFA)
 - Metamaterial structures are good for SWFA applications
 - Short-pulse acceleration is good for breakdown mitigation
- Other ongoing and planned work
 - Sub-terahertz structures for high-gradient high-efficiency acceleration using shaped bunches
 - Beam collective effects in complex electron bunches
 - ...

Acknowledgements

- Contributors:
 - NIU graduate students
 - Brendan Leung
 - Dillon Merenich
 - Gaurab Rijal
 - Salih Colmekci
 - Marc Crowell
 - AWA people
 - Scott Doran
 - Gongxiaohui Chen
 - Chunguang Jing
 - Philippe Piot
 - John Power
 - Charles Whiteford
 - Eric Wisniewski
- Supported by DOE HEP

Towards compact accelerators-

- Develop physics understanding of RF breakdown
 - High-gradient and breakdown science community
- Explore novel accelerator concepts to mitigate RF breakdown
 - Advanced Accelerator Concepts (AACs) community
 - Plasma-based accelerators
 - Laser-based accelerators
 - · Accelerators on a chip
 - Terahertz (THz) accelerators
 - Structure wakefield acceleration: short pulse → high gradient

NIU Naperville campus

Short-pulse acceleration

- Acceleration using O(ns) RF pulses is a promising approach:
 - Suggested by empirical studies
 - and by early evidence:
 - in beam-driven experiments:

About 300 MV/m gradient excited by FACET beam

RF pulse length ~1 ns

M. Forno et al., PRAB 19, 011301 (2016)

Breakdown rate (BDR) $\propto E^{30}\tau^5$

and in high-power testing:

Mitigation of breakdown risks using short pulses

- Common initiators of breakdown may not have time to develop
 - Examples:
 - Pulsed heating
 - Multipactor current takes time to grow
 - \rightarrow Could be mitigated by using short RF pulses

Travel time of electrons = integer $T_{RF}/2$

H. Xu, et al., PRAB 22, 021002 (2019)

& recently reproduced by G. Rijal (NIU)

SWFA-based short-pulse RF source

Metallic disk-loaded, 400 MW, 6 ns FWHM

Metamaterial, 565 MW, 6 ns FWHM

- SWFA power extractors as short-pulse RF power sources
- Flexibility in the choice of output frequency
 - Harmonic of the bunch train frequency of 1.3 GHz
 - Power extractor frequencies at AWA :
 - 7.8 GHz, 11.7 GHz (our X-band frequency), 26 GHz, sub-THz

SWFA-based breakdown test stand

- High-power tests of accelerator structures (without witness beam)
- Powered by an X-band power extractor from the drive beam

MTM structures fulfill SWFA requirements

- Special requirements for efficient wakefield extraction and acceleration
 - High shunt impedance (r/Q)
 - High group velocity (v_g)
 - For power extractor, $P = q^2 k_L |v_g| \left(\frac{1}{1 v_g/c}\right)^2 \Phi^2$
 - For accelerator, short filling time required for short pulses
- Reversing the group velocity improves performance
 - General rule: beam aperture \downarrow , $r/Q \uparrow$, $v_g \downarrow$

Structure	Beam Aperture (mm)	Group Velocity	r/Q (k Ω /m)
Alumina-loaded tube	6.0	0.106 c	10
Metallic disk-loaded	6.0	0.016 c	16.5
Metallic disk-loaded	17.6	0.22 c	3.9
Photonic bandgap	6.3	0.015 c	14.5
MTM 'wagon wheel'	6.0	-0.158 c	21

Metamaterial power extractor

- A series of metamaterial power extractors at 11.7 GHz tested at AWA
 - Highest peak power as 565 MW from a train of eight bunches with a total charge of 355 nC

J. Picard et al., PRAB 25, 051301 (2022)

Metamaterial accelerator design

- Efficient structure design to explore gradient limitation
 - Optimized for high transient gradient with 6 ns (FWHM) input RF pulses
 - Negative group velocity in the fundamental TM mode

Full Structure

D. Merenich, NIU Master's Thesis: "Design and Cold Test of a Metamaterial Accelerating Structure For Two-beam Acceleration", June 2023

RF load extractor W PLAN I ST Drive beam

Power

Directional coupler for RF-out

Waveguide for

Light diagnostics

> Vacuum pump

Representative pulse

- Conditioned with over 3×10^5 pulses
- Peak gradient of 190 MV/m with 115 MW of input RF power
- Unconventional time structure due to the short-pulse length
 - Primary pulse + secondary pulse

Measured RF traces benchmarked with theory

Short pulse \rightarrow wide band

Calculated Gradient

Breakdown insensitive acceleration regime (BIAR)

Non-breakdown

Primary pulse present

Secondary pulse present

Faraday cup signal: Low

BIAR breakdown

Primary pulse not interrupted

Secondary pulse not present

Faraday cup signal: Mid

Destructive breakdown

Primary pulse interrupted

Secondary pulse not present

Faraday cup signal: High

No visible light detected in all three cases- possibly a new feature for short-pulse breakdown

Sub-THz structures for high-efficiency & high-gradient collinear acceleration

- Integration of wakefield structures + shaped beams
 - Emittance exchange (EEX) beamline at AWA
 - Transverse-to-longitudinal EEX
 - Shaped drive beam
 - Higher "transformer ratio"
 - Longer interaction length
 - Higher efficiency
- Optimization study using masks + EEX
 - Previous bunch shaping study with nonlinear optics (12 sextupole and 12 octupole magnets)
 - Our current plan doesn't require new major hardware or beamline changes at AWA

- 110 GHz metallic diskloaded structure
- Excited by a longitudinallyshaped 10 nC electron bunch, 2.5 mm long

Experiment preparation

- Structure fabrication
 - Copper plates manufactured by precision laser cutting
 - Complete clamped structure
- EEX Beamline reconfiguration
- First run planned for Nov.-Dec. 2023

Conclusions & Ongoing Work

Efforts towards SWFA-based compact accelerators

- Advanced RF structure development for SWFA
 - X-band metamaterial accelerator experiment, achieving high gradient and demonstrating potential benefits of short-pulse acceleration
 - Breakdown insensitive acceleration regime
 - Sub-THz structure to be tested utilizing shaped electron bunches for highgradient high-efficiency acceleration
- Other ongoing efforts in synergy
 - RF structures with new topologies (e.g. W-band MTM power extractor)
 - Modeling of dark current in structures with short RF pulses
 - Understanding of coherent synchrotron radiation in complex beams for AAC

DE-SC0021928, DE-SC0022010, DE-SC0024445, DE-SC0020379 (traineeship) 17