

Material Physics Testing for High Gradient Cavities at CYBORG Beamline

Gerard Lawler¹, James Rosenzweig¹ et al. UCLA¹, Los Angeles, CA, USA

- 1. Background and motivation
- 2. CYBORG beamline overview
- 3. Material physics
 - a) LLRF
 - b) High power RF
- 4. Future testing/discussion
- 5. Conclusions

1) Background

- Broad interest in high gradient cavity development with focus on brightness
- SLAC cryogenic breakdown reduction ⇒ higher accelerating gradients possible
- TopGun previous development in S-band
- More cryo manageable C-band + interest in broader applications e.g. compact high brightness light sources and linear colliders

Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources JB Rosenzweig, et al. - Physical Review Accelerators and Beams, 2019

1) CYBORG Function 1

- For university scale we want simplest NC RF beamline integration using CrYogenic Brightness Optimized Radiofrequency Gun (CYBORG)
- 1. Ultra-high gradient photoinjector prototype (UCXFEL right)
 - 1. Integrated infrastructure template
 - 2. Cathode load-lock development
 - 3. RF prototype, black plane etc.
- 2. Cryogenic emission physics testing:
 - 1. Dedicated high gradient RF test stand for cathodes incl. novel semiconductors
 - 2. Cryogenic dark current and breakdown

J. Rosenzweig et al., New Journal of Physics, vol. 22, no. 9, p. 093067, 2020. doi:10.1088/1367-2630/abb16c

2) CYBORG-MOTHRA Overview

- CYBORG beamline not trivial task
- Robust program at Multi-Option Testing for High-field Radiofrequency Accelerators (MOTHRA) laboratory (right and below) to establish knowledge basis
- Suitable for cryogenics testing; C-band infrastructure development; low energy (single MeV) beamline for cathode studies C-band Modulator w/

Faraday Cup

Gun Cryostat

Gun

UV (250-350nm)

Solenoi

2) CYBORG Phase1

2) RF Power

0.8

0.4

-0.25 0.00

Parameters

Launch field

Beta

Q ext

Q 0

Operating temp

Cavity frequency @

0.25 0.50

5.5e+8 5e+8

4.50+8 -40+8 -3.50+8 -30+8 -2.50+8 -20+8 -1.50+8 -10+8 -50+7 -

On Axis E₇

0.75 1.00 1.25 Longitudinal position (cm

Value

>120 MV/m

2 @ 77K

23600 @ 77K

6056

295K down to < 45K

5.721 GHz @ 77K

- Resurrected Thales C-band klystron to single MW power sufficient for 1st cryogenic beamline (right)
- In-house built modulator for C-band completed and functioning nominally
- Measured bandwidth greater than spec allowing full temperature range **CYBORG** operation
- Possible C-band SLED development in collaboration with SLAC
- Tube specs in 1-2 MW range, slowly working up with 0.5 MW into gun thus far 5710 MHz

2-3a) Cryostat

- Many considerations to consider
- Size of chamber, multiple layer insulation needed for radiation shielding, nested UHV vacuum chamber far from easy pumping locations, cryocooler power limitations, etc.

3a) LLRF Motivation

- Rs relevant to RF pulse heating
- high purity Cu (6N-7N) samples from Xband SLAC tests higher Rs than standard 4N Cu @ cryo
- Minimum in around 33 K
- Slight grain size dependence
- Another effect in addition to Reuter-Sondheimer-Chambers ASE theory implied
- Indeed RSC misses intermediary temperature effects via formulation for calculation (below)

Laurent et al. (2011) DOI: 10.1103/PhysRevSTAB.14.041001

 $R_s (T \to 0) = R_\infty \left(1 + a \alpha^{-b} \right) \quad \text{for } \alpha \ge 3$

3a) LLRF Theory

exp(-**y0**/

1.0

0.779

0.607

0.472 🔀

- 0.287 🖉

0.368

0.247

- Theory already exists which predicts minimum in Rs at intermediary T via Gurzhi based (effect of additional electron-electron interaction)
- Known in world of thin film physics

R. Gurzhi, "Contribution to the theory of the skin effect in metals at low temperatures," Sov. Phys. JETP, vol. 20, pp. 1228–1230, 1964.

 $\ell_{eff} \sim \frac{\delta^2}{\ell}$

- Proof of concept easier toy model built which has some of same features and easier to compute for now (below + right)
- Effective thin film modification to bulk via Fuchs-Sondheimer

$$\frac{\rho_{film}}{\rho_{bulk}} \approx \left[1.0 - \frac{C_0}{\rho^{3/2}} \left(1 - p\right)\right]^{-1}$$

G. Lawler, A. Fukasawa, N. Majernik, and J. Rosenzweig, in Proc. IPAC'22, Bangkok, Thailand, 2022, paper THPOST045, pp. 2540–2543, doi:10.18429/JACoW-IPAC2022-THPOST045

3a) LLRF Measurements

3a) Additional LLRF Improvements

 $\rho(T) = A\left(\frac{T}{\Theta_R}\right)^n \int_0^{\Theta_R/T} \frac{t^n}{(e^t - 1)(1 - e^{-t})} dt + C$

- Consider again assumptions
- n=5 for ideal metals
- Literature has n=3 for transition metals
- n=4 sometimes when more complicated phenomena present

3a) Alloy Characterisation

- Hard Cu alloys considered with same pillbox design
- CuAg alloys received from LANL characterized in collaboration with Radiabeam technologies
- Existing 2% Ag alloy brick nonideal for high power cavity manufacture still interesting for LLRF
 - 88ppm oxygen content compared to 5 ppm for OFE Cu
 - Only definitive statement on 2%: metallurgy an art more than science
- 0.08% Ag alloy of continued interest for both
- Brazing step needs deeper consideration

For 0.08% Ag grain size diameter of 121 <u>+</u> 20um

For 2% Ag grain size diameter of 106 ± 20um

3b) Thermal Balancing

- Additional option to measure Rs via RF pulse heating in CYBORG
- Initial CYBORG study of thermal balancing implies that study could be possible if we go higher rep rates

Description	Materials	Equival ent Area	Equival ent Power
6" plug flange	Stainless steel (CF flange), edge welded bellows	436 mm^2	< 1 W
2.75" downstream flange	Stainless steel (CF flange), edge welded bellows	85 mm^2	< 1 W
Waveguide	Satinless steel	588 mm^2	Approx 10 W
Supports	Stainless steel, aluminum, G10	TBD	TBD
Diagnostic probes	Copper wiring of various gauges	50 mm^2	5 W
Alignment rails	TBD	TBD	TBD
Radiation	N/A	25000 mm^2	< 1 W
Pumping on dummy side			
	Description6" plug flange2.75" downstream flangeWaveguideWaveguideSupportsDiagnostic probesAlignment railsRadiationPumping on dummy side	DescriptionMaterials6" plug flangeStainless steel (CF flange), edge welded bellows2.75" downstream flangeStainless steel (CF flange), edge welded bellowsWaveguideSatinless steelSupportsStainless steel, aluminum, G10Diagnostic probesCopper wiring of various gaugesAlignment railsTBDRadiationN/APumping on dummy sideSupports	DescriptionMaterialsEquival ent Area6" plug flangeStainless steel (CF flange), edge welded bellows436 mm^22.75" downstream flangeStainless steel (CF flange), edge welded bellows85 mm^2WaveguideSatinless steel588 mm^2SupportsStainless steel, aluminum, G10TBDDiagnostic probesCopper wiring of various gauges50

¹ Experimentally measured values

3b) CYBORG Function 2

3b) CYBORG Function 2

4) Phase2 Beamline

4) MITHRA Lab

4) MITHRA Lab

- 1. Brief update on CYBORG beamline development with more very soon
- 2. LLRF cavity measurements possible for fully understanding material properties via Q0/Rs
- 3. CYBORG useful for high power material physics testing in terms of photocathodes and RF

Collaborators

• Paul Carriere, Nanda Matavalam

• Evgenya Simakov, Anna Alexander, Petr Anisimov, Haoran Xu

• Martina Carillo, Andrea Mostacci

- Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Fraccati
- Zenghai Li, Sami Tantawi, Nathan Majernik
- Bruno Spataro

Bonus 2: Breakdown limit test cavities

800 -

- Create test bed for hosting multiple ٠ different experiments into various structures and material alloys
 - Brazeless joint testing, copper-silver and more exotic alloys perhaps w/ Mo etc.
- Logic of cryogenics, assembly, and general diagnostics for actual • experiments
- Example here using 2 cell distributed-coupling in Cband (to right)
- Full cell cavity geometry chosen for future UCXFEL photoinjector

R. Robles et al., Phys. Rev. Accel. Beams, vol. 24, no. 6, p. 063401, 2021. doi:10.1103/PhysRevAccel Beams.24.063401

Bonus 3: Breakdown limit test cavities

- Initial design for cryostat in LANL high power testing facility
- SLAC reentrant cavity design considered for linacs and photoinjector require novel shapes making bonding difficult
 - Esp. central iris surface (blue highlight)
 - Process/technique development ongoing
- Additional student-led novel diffusion bonding technique under development in parallel for future cavity tests

