

The tracking code RF-TRACK and its applications

15th Workshop on Breakdown Science and High Gradient Technology INFN Frascati National Laboratories. 16-20 October 2023

Andrea Latina – andrea.latina@cern.ch Javier Olivares Herrador – javier.olivares.herrador@cern.ch

Outline

- **PART I:** Introduction and RF-Track Highlights ٠
- PART II: Tracking in space and time ٠
- **PART III:** Beamline elements ٠
- **PART IV:** Applications ٠

VNIVERSITAT

Beam Loading Scenarios —

PART I: Introduction and Highlights

VNIVERSITAT

DÖVALÈNCIA

RF-Track Highlights

- It handles **complex 3D fieldmaps** of oscillating RF electromagnetic fields
 - SW, backward and forward TW.
 - Static E, H fields
- It can simulate particles with any mass and charge
 - No approximations, like $\beta \simeq 1$ $\gamma \gg 1$
 - **Mixed-species beams**: protons, ions, electrons, positons, photon, muons.
 - Photocathodes
- High-order adaptative integration algorithms
- Collective effects
- Modular, flexible and fast

RF-Track – Physics oriented

- RF-Track is written in parallel C++, focusing **only** on **accelerator simulation**:
 - Flexible accelerator description and beam models
 - Accurate integration of the equations of motion
 - Robust interpolation of fieldmaps
 - Collective effects
 - Easy implementation of imperfections and correction algorithms
- For *all the rest*:
 - GSL (Gnu Scientific Library): Mathematical routines
 - FFTW (Fastest Fourier Transform in the West)
- 2 user interfaces: Octave and Python

PART II: Tracking in space and time

VNIVERSITAT

DÖVALÈNCIA

Tracking in space and time

RF Track implements two beam models:

- Beam moving in **space**: Bunch6d()
 - All particles have the same S position
- Beam moving in **time**: Bunch6dT()
 - All particles are considered at same time ${\rm t}$

Equations of motion integrated in $\mathrm{dS} \colon \mathrm{S} \to \mathrm{S} + \mathrm{dS}$

Equations of motion integrated in $dt{:}\;t\rightarrow t\,+\,dt$

• For each particle, it also considers:

Mass: m [MeV/c]Charge: Q [e]Nb of particles / macroparticle: NCreation time: t_0 [mm/c] *Lifetime: τ [mm/c] (new!)

• RF-Track can simulate **mixed-species beams** and the **creation** and **decay** of particles.

Tracking in space and time

RF Track implements two tracking environments:

- Integration in **space**: Lattice()
 - List of elements
 - Tracking along **longitudinal direction**, element by element
- Integration in time: Volume()
 - 3D space: Elements can be placed everywhere
 - Element misalignment via Euler angles
 - Allows: element overlap, creation of particles
 - Cathodes and field emission
 - Cathode mirror charges

Tracking in space and time

Lattice and Volume can be used together or separately

- Volume (time integration): Suitable for space-charge dominated regimes
- Lattice (space integration): Suitable for ultra-relativistic regions

PART III: Beamline elements

Vniver§itat

Beamline elements

- Matrix-based symplectic elements: Sbends, Quadrupoles, Drifts
- Fieldmaps:
 - **1D fieldmaps** (on axis): Maxwell Equations to reconstruct 3D field off axis (cylindrical symmetry)
 - 2D fieldmaps: Given a field on a plane, applies cylindrical symmetry
 - 3D fieldmaps:
 - 3D mesh of complex numbers
 - Accepts quarter field maps: Automatic mirroring with boundary conditions
- **Special elements**: Absorbers, 3D analytic fields, laser beam, e-cooler, toroidal harmonics.

Collective & single particle effects

- Collective effects:
 - Space-Charge: Full 3D, Particle-in-Cell (FFT) or P2P
 - Full computation of EM fields
 - Beam-beam effects automatically included
 - Mirror charges at cathode
 - Short & Long-range wakefields: K-Bane, damped oscillator or 1D user-defined spline
 - Self-consistent **Beam Loading** effect
- Single particle effects:

Vniver^sitat

đöValència

- Incoherent Synchrotron Radiation
- Magnetic multipole kicks
- Multiple Coulomb Scattering

PART IV: Applications. Beam Loading scenarios

Vniver§itat

DÖVALÈNCIA

Applications

- RF-Track is currently used for the design, optimization and simulation of:
 - The CLIC and FCC-ee positron sources
 - Linac4 @ CERN
 - Compact Inverse-Compton Scattering sources
 - The Cooling channel of a Future Muon Collider
 - The **DEFT** facility
 - VULCAN Electron-driven **neutron source**
 - etc

Beam Loading with RF-Track

• Based on power-diffusive model:

$$-\frac{\partial G_{\text{eff}}}{\partial t} = v_g \frac{\partial G_{\text{eff}}}{\partial z} + \left(-\frac{v_g Q}{r_{\text{eff}}} \frac{\partial (r_{\text{eff}}/Q)}{\partial z} + \frac{\omega}{Q} + \frac{\partial v_g}{\partial z}\right) \frac{G_{\text{eff}}}{2} + \underbrace{\frac{\omega r_{\text{eff}}\tilde{I}}{2Q}}_{V_{\text{eff}}}$$

Beam Loading term!

- Some assumptions
 - Obtained by averaging RF-period: Captures **long-range** effect
 - Causality

Vniver§itat

DOVALÈNCIA

- **Paraxial & quasi-static** approximation
- Captures both **transient** and **steady** states.

BL – CLIC Accelerating Structures

• Reliable gradient reduction calculation

> CLIC main Accelerating structure gradient reduction for a train of I = 1.02A and length of 152 ns

Magnitude	Units	Value
$r/Q_{\rm average}$	Ω/m	16178
Q_{average}	-	5636
$v_{g \text{average}}$	c/100	1.21
f_0	GHz	12.00
f_0/f_b	-	6
$N_{ m bunches}$	-	312
σ	mm/c	0.3
$\langle I angle$	A	1.20
$t_{ m train}$	ns	152.0

> CLIC main Accelerating structure gradient details

[1] A. Grudiev, A.Lunin, V. Yakovlev. *Analytical solutions for transient and stead state beam loading in arbitrary travelling wave accelerating structures.* Phys. Rev. Special topics **14**, 052001 (2011)

calculation

Vniver§itat

DÖVALÈNCIA

BL – CLIC PETS

- Transient tracking
 - **PETS**: Power Extraction and Transfer Structures. → **Deceleration** due to BL

[2] Erik Adli (2009). A Study of the Beam Physics in the CLIC Drive Beam Decelerator. PhD Thesis

Comparison with measurements at CLEAR

6000

8000

10000

in CLEAR photo-injector.

4000

2000

0

[3] CLEAR official site: https://clear.cern/content/beam-line-description

> Spectrometer image and associated energy distribution for a train of 13 bunches arriving to the screen after having traveled through all structures.

BL comparison with CLEAR photo-injector

• Train of **150 bunches** with variable charge (Q_{bunch}) per bunch; $f_b = f_{RF}/2$

[3] CLEAR official site: https://clear.cern/content/beam-line-description

BL comparison with CLEAR Start-to-end

• Train of **150 bunches** with variable charge (Q_{bunch}) per bunch; $f_b = f_{RF}/2$

[3] CLEAR official site: https://clear.cern/content/beam-line-description

Conclusions

- RF-Track:
 - Minimalistic, parallel, fast
 - High-order adaptative integration algorithms
 - Several collective effects
 - Optimization and design of DEFT, FCC-ee, positron sources, Muons Cooling, RFQ, ICS sources...
 - Reproduction of realistic scenarios: BL @ CLEAR
- Official documentation:
 - https://zenodo.org/record/4580369
- **Pre-compiled binaries** and more up-to-date **documentation** are availables here:
 - https://gitlab.cern.ch/rf-track

Thanks for your attention

Acknowledgements: many thanks for their contributions to Avni Aksoy, Vlad Musat, Bernd Stechauner, Elena Fol, Mohsen Kelisani, Yongke Zhao, Yanliang Han, Costanza Agazzi, Laura Gambino.