

19 Oct 2023, 11:50 - 12:10

1

Developments of Dielectric-Assist Accelerating structure at C-band and beyond

<u>Daisuke Satoh</u>, Chief Researcher. National Institute of Advanced Industrial Science and Technology (AIST)

> Tetsuo Abe, associate professor. High energy accelerator research organization (KEK)

The 15th Workshop on Breakdown Science and High-Gradient Technology (HG2023)

[Outline]

- Motivation
- Operation principle of DAA structure
- Proof of principle study
 ✓ Design and fabrication
 ✓ Low power test
 ✓ High power test

<u>D</u>ielectric <u>a</u>ssist <u>a</u>ccelerating structure, DAA

- Toward improving DAA performance
- Research plan

[Motivation]

[Comparing the Q_0 of the metal cavity and the dielectric resonator]

Dielectric loaded cavity has potential to become a high Q value and high Z_{sh}

Started the development of a high power efficiency accelerating structure focusing on the low RF loss characteristics of the dielectric.

<u>D</u>ielectric <u>A</u>ssist <u>A</u>ccelerating (DAA) Structure

[Operation principle of DAA structure]

[Conceptual diagram of DAA structure]

Dielectric cylinder

- DAA consists of dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure.
- Higher order TM_{02n} mode is used for beam acceleration.

→ Wall loss on conducting surface is drastically reduced in DAA structure

[1] D. Satoh, et al., PRAB 19, 011302 (2016)
[2] D. Satoh, et. al., PRAB 20, 091302 (2017) Patent : PCT/JP2016/087683

 $|H_{\theta}(c_1)|$ in DAA structure is almost 1/4 that of pillbox cavity \rightarrow The wall loss on conducting cylinder is drastically reduced !

[Design and Fabrication of prototype]

[5 cell DAA structure^[2]]

Parameter	Five-cell DAA structure
Dielectric material	Magnesia
\mathcal{E}_r	9.64
$\tan \delta$	6.0×10^{-6}
Accelerator type	Standing wave type
Accelerating mode	TM_{02} - π mode
Operation frequency	5.712 GHz
Number of accelerating cells	5
Total cavity length	157.5 mm
Q_0	126,400
$Z_{\rm sh}$	630 MΩ/m
$E_{\rm max}/E_0$	2.92
$H_{\rm max}/E_0$	2.74 mA/V

[Dielectric cells^[2]]

[DAA structure assembly^[2]]

[2] D. Satoh, et. al., PRAB 20, 091302 (2017)

[Low-power test of the prototype]

[2] D. Satoh, et. al., PRAB 20, 091302 (2017)

【 High power test of the prototype】 【Test stand @KEK】 【Results】

Mode prvertei

High power tests were performed with pulse width of $T_p = 2 - 7.5 \ \mu s$.

- $E_{acc,max} = 2 \text{ MV/m} (@ T_p = 2 \mu \text{ s}) \text{ achieved.}$
- But, it did not rise to any higher $E_{acc,max}$ after operating for more than 6×10^6 shots.
- The longer the pulse width, the slower the progress of cavity conditioning and the lower $E_{z, max}$ was.

[Diamond like carbon coating on DAA]

DLC coating is known to reduce secondary electron yield while not increasing dielectric losses. H. Xu et al., PRAB 22, 021002 (2019).

[Secondary electron yield of MgO and DLC surface]

5 4 3 2 1 0 0 0.5 1 1.5 2 0 0 0.5 1 1.5 2 Ein (keV)

Succeeded in significantly reducing SEY of MgO !

- $E_{acc,max} = 11 \text{ MV/m} (@ T_{p} = 5.4 \ \mu \text{ s}) \text{ achieved.}^{[3]}$
- However, a large breakdown caused irreversible deterioration in accelerator performance.

[3] S. Mori, M. Yoshida, <u>D. Satoh</u>, PRAB 24, 022001 (2021)

[DLC coated dielectric cell & DAA structure]

Maintaining a high Q_0 value !

[High power test of DLC-DAA structures^[3]]

Toward improving DAA performance

[Dielectric cells after high power tests]

A deep understanding of **discharge phenomena in these points of DAA structures** is important for higher gradient. ¹⁰

[X-band DAA @Nextef2]

[Summary]

- We proposed the DAA structure and have been performed a proof-of-principle study.
- The DLC coating lowerers the SEY of MgO cells while maintaining a low tan δ . $\rightarrow E_{acc,max} = 11 \text{ MV/m} (@ T_p = 5.4 \ \mu \text{ s})$
- It is important to understand in detail where and what causes the discharge in the DAA structures in order to further increase the Eacc.
- A new research program is currently underway to develop an X-band DAA structures (2023); short pulse excitation of the DAA structures with step-pulse input and monitoring of the discharge inside the cavity is planned for April 2024.

[Special Thanks]

N. Hayashizaki (Tokyo Thech.), S. Mori, Y. Yamamoto, M. Yoshida, T. Natsui, N. Toge (KEK), S. Miura, N. Shigeoka (MHI), H. Ogawa, Y. Hakuta, H. Mano(AIST)

[Acknowledgment]

This work has been supported by [MEXT Development of key element technologies to improve the performance of future accelerators Program] Japan Grant Number JPMXP1423812204 and Grant in Aid for JSPS Fellows Grant No. 13J08681, 16H02134, 19K20609 and 22684010, .

Thank you for your attention.

[4] D. Satoh et al., Nucl. Instrum. Methods Phys. Res. B, 459, 148 (2019).