

Dielectric Assist Accelerating (DAA) structures for compact linear accelerators of low energy particles in hadrontherapy treatments

P. Martinez-Reviriego¹, A. Grudiev³, D. Esperante^{1,2}, B. Gimeno^{1,} C. Blanch¹, N. Fuster-Martínez¹, D. Gonzalez-Iglesias¹, P. Martín-Luna¹, E. Martinez¹, A. Menendez¹ and J. Fuster¹

1 Instituto de Física Corpuscular (IFIC), CSIC-University of Valencia, Parque Científico, C/ Catedrático José Beltrán, 2 46980 Paterna (Valencia)

2 Electronics Engineering Department, University of València, 46100 Burjassot, Spain

3 CERN, 01631 Meyrin, Switzerland

Outline

□ Linear accelerators for hadrontherapy treatments

Dielectric Assist Accelerating (DAA) structure design procedure

Comparison for different materials and particle velocity

□ Multipactor analysis

□ Electromagnetic performance

Hadrontherapy

Accelerator	Beam always present during treatment?	Energy variation by electronic means?	Time needed for varying the energy
Cyclotron	Yes	No	80-100 ms (*)
Synchrotron	rotron No Yes		1-2 s
Linac	Yes	Yes	1-2 ms

□ Relative Biological Effectiveness (RBE)

□ Linear Energy Transfer (LET)

Physics challenges for linacs

Compact and efficient accelerators

Marx, V. (2014, April 4). Sharp shooters. 508. Nature, p. 137

Linear Accelerators for Hadrontherapy

Normal Cavities

ADAM, spin-off of CERN and TERA foundation is developing a **proton linear accelerator** to be installed in a hospital in England

18-20 MV/m

High-Gradient Cavities Backward Travelling Wave (BTW) High Gradient cavity testing at IFIC LINAC Conference 2014, S. Benedetti et al. **RF DESIGN OF A NOVEL BACKWARD** 50 MV/m TRAVELLING WAVE LINAC FOR PROTON THERAPY new 3 GHz bwTW structure 60 MeV **3 GHz SCDTI** ENEA 750 MHz RFQ CERN **Compact Proton** Linac (50 MV/m)

Dielectric Assist Accelerating (DAA) cavity

D. Satoh, M. Yoshida, and N. Hayashizak, "Dielectric assist accelerating structure." Physical Review Accelerators and Beams, vol. 19, 1, pp. 1011302, 2016 Investigations Into X-Band Dielectric Assist Accelerating Structures for Future Linear Accelerators. Yelong Wei, Alexej Grudiev.

Parameter	Calculation
L_1	$\beta\lambda_0/2$
d_1	$\lambda_0/(4\sqrt{\epsilon_r})\xi$
r_c	$d_1/2$
r_0	2 mm

Working under $TM_{02} - \pi$ mode:

- \circ High Q_0 .
- Dielectric helps to decrease cavity size. Ο
- Low electric field in metal.
- Axial symmetry 0

Resonant frequency for the mode depends on the combination of a_1, b_1, c_1 5

DAA cavity single cell solution

 Electric field focus on accelerating area.
 o Low field on metallic surface: High breakdown limit

□ Magnetic field concentrated on vacuum.

• Low losses on metal: High Q_0

DAA cavity single cell solution

DAA cavity single cell design

Resonant frequency for the mode depends on the combination of a_1 , b_1 , c_1 :

- \Box Scan for a_1, c_1 and we look for the value of b_1 that makes $f = (3000 \pm 2)$ MHz.
- \Box Look for the values of a_1, b_1, c_1 that maximizes Z_{eff}, Q_0

Example for ideal material: $\epsilon_r = 16.66$, $\tan \delta = 0$ and $\beta = 0.6$

Periodicity = L_1

 $|a_1|b_1|c_1$

0.5**d**

 $0.5d_1$

DAA cavity single cell iris optimization

LIST OF DIELECTRICS STUDIED IN THE OPTIMIZATION

Material	Acronym	ε_r	tan δ
CVD Diamond	Diamond	5.7	10^{-4}
MgO	D9	9.64	6×10^{-6}
MgTiO ₃	D16	16.66	3.43×10^{-5}
$BaTiO_x$	D50	50.14	8×10^{-5}

 $\beta = \{0.4, 0.5, \dots, 1\}$

High Power Test Results of X-Band Dielectric Disk Accelerating Structures. Ben Freemire

Energy range for hadrontherapy

◦ Protons: 70 − 230 MeV → β : 0.37 − 0.6

$$○$$
 ¹²*C*⁶⁺: 100 − 430 MeV/u → β : 0.43 − 0.73

Bencini, V. (2020). Design of a novel linear accelerator for carbon ion therapy (Doctoral dissertation, Rome U.).

Scan in losses

Conductor:
$$P_c = \frac{R_s}{2} \int \left| \hat{n} \times \vec{H} \right|^2 dS$$
 $R_s = \sqrt{\frac{\omega \mu_0}{2\sigma_c}}$
Dielectric: $P_d = \frac{1}{2} \omega \tan \delta \epsilon_0 \epsilon_r \int \left| \vec{E} \right|^2 dV$

SEY Measurements

Dielectric

Multipactor in the DAA structure

Some of the main results of the multipactor simulations in the DAA cell are summarized on this slide

Multipactor growth factor σ as a function of the RF electric field amplitude at the cell axis in the down zone (left) and up zone (right)

a) Number of electrons in the structure as a function of time normalised to the period of the RF signal.

b) Colour map with the number of electrons impacting at each wall position being able to generate two or more secondary electrons.

for $E_0 = 1 \text{ MV/m}$

Multipactor simulation in the down zone

13

Coating losses

a-C coating can reduce multipactor but it has an impact on electromagnetic performance

 $P_{s} = \frac{1}{2R} \int \left| \hat{n} \times \vec{E} \right|^{2} dS$ 10⁵ Coating losses: 10^{4} Surface Loss .. [W/m^2] 2.2137E-0 2.0661E-08 1.9185E-08 တိ တိ 1.7710E-08 1.6234E-08 1.4758E-08 1.3283E-08 1.1807E-08 1.0332E-08 8.8560E-09 7.3804E-09 10² 5.9047E-09 No coating 4.4291E-09 2.9535E-09 total 1.4778E-09 2.2137E-12 internal external internal 10^{1} --- a-C coating 10³ 10⁵ 10² 10^{4} 10⁶ 10^{7} Rs (Ω per \Box) external Amorphous and diamond-like carbon coatings for sey reduction of dielectric material for accelerating structure application. A. Grudiev et al. Tech. Rep. 2022.

Coupling and dispersion curve

High electrical coupling between cells.
 No need for coupling cells

 \Box Low ϵ_r leads to dispersion curves crossing.

□ Thicker irises lead to mode overlapping.

Thermal simulation

Thermal load:

- Heat flux: Surface losses in copper.
- Heat generation: Volumetric losses in dielectric.

Electromagnetic normalization:

- $\circ G * T = 50 MV/m$
- DUT = $0,075 \times 10^{-3}$

Material	ε_r	tan δ	$\kappa \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$
CVD Diamond	5.7	10^{-4}	2000
Al ₂ O ₃ 99.99%	9.8	10^{-5}	30
MgTiO ₃	16.66	3.43×10^{-5}	3.8

<u>https://www.americanelements.com/magnesium-titanate-12032-30-3</u> <u>https://www.makeitfrom.com/material-properties/Magnesium-Titanate-IEC-60672-Type-C-320</u> <u>https://accuratus.com/alumox.html</u>

Critical points

DAA cavity F = 3001.5979 MHz

Triple junction points can lead to **instabilities and singularities** in electric field in the neighborhood of the point

In the surroundings of the junction, $\lambda \gg L$ so we can use a 2D constant field approach.

Analytical approach

Techaumnat, B., Hamada, S., & Takuma, T. (2002). Effect of conductivity in triple-junction problems. Journal of electrostatics, 56(1), 67-76

 $\phi_g \approx ar^z \sin z\theta$ $\phi_d \approx br^z \sin z(\pi - \theta)$ z = n + jm

 $\cot n\alpha + \varepsilon_d \cot n(\pi - \alpha) = 0$

The contact-point electric field will be **infinitely large if** n < 1 and will be **zero if** n > 1. A non-zero and nonsingular value will exist only if n = 1.

Conclusions

- **D**AA have extremely high Q_0 and Z_{eff} :
 - $\circ~$ Results are better for high ϵ_r and eta
 - \circ Lower input power needed.
- \Box Z_{eff}/Q_0 worse than copper structures \circ Higher total energy needed.

□ Iris length is an important parameter to add in the optimization process.

□ Multipactor must be suppressed by coatings with high sheet resistivity.

□ Very high coupling between cells

• Modes overlapping can be a problem for low ϵ_r and β .

□ Very low thermal conductivity can be a source of mechanical problems.

□ Triple junction point and sharp corners must be carefully studied to avoid singularities and instabilities.

Standing Wave Acceleration Cavities

Cylindrical single (or multiple cavities) working on the TM_{010} -like mode are used

 β : particle velocity d: distance between cells f_{RF} : RF frequency

c: speed of light in vacuum

Figures of merit:

Shunt impedance: efficiency of the acceleration mode.

NC cavity R~1M Ω $\,$ SC cavity R~1T Ω

Quality factor: efficiency to store RF energy .

NC cavity Q~10⁴ SC cavity Q~10¹⁰
 □ R/Q: pure geometric qualification factor.

HG-CCL Copper structure single cell

- High losses in metallic walls: low RF efficiency.
- High peak electric field in metal: field emission and RF breakdown.

DAA cavity single cell solution

- Low losses in metallic walls
- $\circ~$ Low peak electric field in metal.

DAA cavity single cell CST

Resonant frequency for the mode depends on the combination of a_1, b_1, c_1 :

- \Box Scan for a_1, c_1 and we look for the value of b_1 that makes $f = (3000 \pm 2)$ MHz.
- \Box Look for the values of a_1, b_1, c_1 that maximize ZTT, Q_0

In CST the minimum volume to simulate is 1/8 of the total volume using symmetry planes in XY, XZ, YZ. Then the mode we are interested in is mixed with many modes with no revolution symmetry

DAA cavity single cell Superfish

DAA cavity single cell Superfish

26

HFSS Results

0

30 (mr

D16, $\beta = 0.4$, $\varepsilon_r = 16.66$, $\tan \delta = 3.43 \times 10^{-5}$						
Geometry	SUPERFISH				HFSS	
	<i>f</i> (MHz)	Q_0	$Z/Q~(\Omega/m)$	<i>f</i> (MHz)	Q_0	$Z/Q~(\Omega/m)$
edge	2998.7	46949	944	2998.2	47444	949
r = 2 mm	2999.3	47316	959	2999.1	47755	960

$$Q_0 = \omega \frac{W}{P}$$

$$W = 2W_e = 2W_m = \frac{1}{2}\mu_0 \int \left|\vec{H}\right|^2 dV$$
Conductor: $P_c = \frac{R_s}{2} \int \left|\hat{n} \times \vec{H}\right|^2 dS$
 $R_s = \sqrt{\frac{\omega\mu_0}{2\sigma}}$

Dielectric:
$$P_d = \frac{1}{2}\omega \tan \delta \epsilon_0 \epsilon_r \int \left| \vec{E} \right|^2 dV$$

Coating:
$$P_s = \frac{1}{2R} \int \left| \hat{n} \times \vec{E} \right|^2 dS$$

Rounded points

28

SEY Measurements

- DISK 2: Sample 5: MgTiO with one side DLC coated (US vendor). Ο
- D16-2: Sample 9: D16 with one side DLC coated (Japan vendor). Ο
- MgTiO: Sample 4: MgTi Oxide based Conductive Ceramic Ο uncoated.
- DISK 7: Sample 6: MgTiO with one side DLC coated (Japan Ο vendor).
- D16-1: Sample 8: D16 with one side DLC coated (US vendor). Ο

Multipactor in the DAA structure

Multipactor breakdown is an electron avalanche-like discharge occurring in components operating under vacuum conditions and high-power RF electromagnetic fields

The onset of multipactor discharge leads to various detrimental effects that degrade the device performance. Thus, this phenomenon poses a significant limitation on the maximum RF power handling capability of devices

The risk of suffering a multipactor discharge in the DAA structures was analyzed by means of numerical simulations with an in-house developed code based on the Monte-Carlo method

The simulations explore RF electric field amplitudes in the range $E_0 = [0.01, 200]$ MV/m

> The cell is divided into two zones: up and down, with separate simulations launched for each zone

≻In the DAA cell multipactor appears in the range 1-200 MV/m

Courtesy of Daniel Gonzlez-Iglesias ³⁰

ANSYS Workbench

D16 - Workbench File View Toolbox Project Project Project Project Project Project Project B2 , C2, D2, E2: Engineering Data X Project Project	Material	MgTiO₃	Al ₂ O ₃ 99.5%	TiO2- doped Al2O3	CVD Diamond	Copper
Image: Coupled Field Harmonic Coupled Field Modal Image: Coupled Field Harmonic Image: Coupled Field Static Image: Coupled Field Static Image: Coupled Field Transient Image: Coupled Field Field Field Transient Image: Coupled Field Field Transient Image: Coupled Field Field Transient Image: Coupled Field Field Transient Image: Couple Field Field Transient Image: Coup	Density (g/cm^3)	3,6	3.89		3.52	8,933
 Eigenvalue Buckling Eigenvalue Buckling<	Thermal conductivit y (W/m⋅K)	3,8	35		2000	400
۲۰۰۶ 2023 R1 Ceramic	Thermal expansion (µm/m·K)	8,0	8.4		1.0	17,7
copper	$\tan \delta$	3.43 ×10 ⁻⁵	2×10 ⁻⁴	1×10^{-5} - 6×10^{-6}	3×10 ⁻⁶	
	ϵ_r	16.66	9.8	9.64	5.7	
	https://www.americanelements.com/magnesium-titanate-12032-30-3 https://www.makeitfrom.com/material-properties/Magnesium-Titanate-IEC-60672-Type-C-320 https://accuratus.com/alumox.html					<i>572-Туре-С-320</i> 31

Parameter	$rac{df}{dl}$ (kHz/ μ m)					
material	D9		D16		D50	
β	0.4	1	0.4	1	0.4	1
<i>a</i> ₁	1.7	2.3	4.0	2.1	2.7	1.1
b_1	-11.0	-42.8	-28.0	-51.8	-53.1	-63.9
<i>C</i> ₁	-2.0	-5.5	-2.2	-3.6	-1.3	-1.4
d_1	-29.5	-12.1	-39.1	-12.8	-34.5	-12.6
r_0	1.1	1.4	1.6	1.1	2.0	0.8
L_1	-71.3	-4.8	-38.8	-3.1	-10.3	-1.2

Dielectric Disk Loaded Accelerating (DDA) Cavity

D16, $\beta = 0.4$, $\epsilon_r = 16.66$, tan $\delta = 3.43 \times 10^{-5}$ gain = 1.5, gap = 0.3 cm, $\alpha = 75^o$, r = 0.2 cm

Parameter	With nose	Without nose
Q_0	21180	20299
$Z/Q~(\Omega/m)$	2154	1234
$Z~(\mathrm{M}\Omega/m)$	45.6	25.0
Т	0.9076	0.8055
E_p/E_a	6.27	2.38

Same W

