High Gradient Testing of C-band Structures and Components

Emilio Nanni HG 2023 10/18/2023

Acknowledgements

SLAC

Xueying Lu Greg Le Sage Mitchell Schneider Emma Snively Sami Tantawi Valery Dolgashev Zenghai Li **Dennis Palmer** Garrett Mathesen **Charlotte Wehner** Julian Merrick **Bradley Shirley** Mamdouh Nasr Ankur Dhar SLAC

HG 2023

LANL

Evgenya Simakov Muhammed Zuboraj **Ryan Fleming** Dmitry Gorelov Mark Middendorf

Radiabeam

Ronald Agustsson

Robert Berry

Amirari Diego

Alex Murokh

Outline

- Motivation
- Related Experiments
- Safety Challenges at SLAC
- High Gradient Testing of C-band Structures and Components
 - Meter Scale C-band
 - Additive Load
 - Room Temp Single Cell Structures
 - Cryogenic Single Cell Structures

What's the Optimal Frequency for High Charge Beams?

Linear collider: high beam power

 \rightarrow 1 nC per bunch, 0.3 A during rf pulse

 \rightarrow Most challenging design parameters

Pursue broad array of applications

 \rightarrow Medical, x-ray sources, gamma-ray sources,....

Frequency	α/λ	Phase Advance	R _s (MΩ/m)
C-band (5.712 GHz)	0.05	π	121
C-band (5.712 GHz)	0.05	2π/3	133
C-band (5.712 GHz)	0.1	π	92
X-band (11.424 GHz)	0.05	π	176
X-band (11.424 GHz)	0.1	π	133

arXiv:1807.10195 (2018)

Cryo-Copper: Enabling Efficient High-Gradient Operation

Cryogenic temperature elevates gradient

- Increased material strength is key factor
- Increase electrical conductivity reduces pulsed heating in the material

Operation at 77 K with liquid nitrogen

- Large heat capacity, simple handling
- Small impact on electrical efficiency

Gradient (MV/m)

Optimized RF Feed for Distributed Coupling Structure

- Energy modulator (and deflector) for rastering proton beams
- RF power coupled to each cell can lead to a local hot spot in H-field
- Tailoring coupler profile limits enhancement to 15-20% (vs. 230%)
- Built and tested on an S-band structure

Single cell energy modulator prototype -nominal input 400 kW, 30 MV/m

Achieved 1 MW, 50 MV/m before observing breakdowns, now testing up to 6 MW

Measured forward and reflected power. Estimate of reflected power.

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

High Gradient Testing of C-band Structures and Components

40 Cell Pi-Mode Distributed Coupling Structure

Incorporate the two key technical advances: Distributed Coupling and Cryo-Copper RF

Main linac utilizes meter-scale accelerating structures, technology demonstration underway Implement optimized rf cavity designs to control peak surface fields

High Power Test of Meter-Scale Distributed Coupling Structure

• Tested at Radiabeam

HG 2023

• Up to 15 MW, 1 microsecond delivered to structure, no measurable breakdowns after reaching max power

Structure Destroyed in Tuning Attempt for Cryogenic Operation Structure for Cryogenic Operation in Production

Additively Manufactured Spiral Load

- Tested at Radiabeam
- 3D printed in stainless steel (inspired by CERN)
- First version is only air cooled

Tested to 8 MW, 20Hz, 700ns Water Cooled Design for V2 (now in use)

Scaled Design of Low-Beta or Reduced Phase Adv. Struc.

 Original design was for low-beta protons – efficient with relativistic electrons and appropriate cell to cell phase advance

Schneider, Mitchell, et al. "High gradient off-axis coupled C-band Cu and CuAg accelerating structures." *Applied Physics Letters* 121.25 (2022).

High Gradient Performance of Cu and CuAg Cavities

- Utilized C-band test stand at LANL
- Each structure processed for O(100M) pulses

How does this behavior extend to cryogenic temperatures?

Characterization at 77K

- Improvement of 2.5 X for Cu and 2.9X for CuAg(!)
- 2.9 is consistent of Cu sample measurements at UCLA (may be material batch specific)

HG 2023

SLAC

Radiabeam

SLAC 8 L ion pump+ 3. DC (RB) valve 11. Spiral load 9. Window 3. DC (SLAC) 8. WG pump out port 9. Window 10. Planar hybrid Burst Disk + 20L ion pump+ valve 3. DC 4. SS Long WG (SLAC) 5. SS short WG 2. Cavity CuAg 1. Cavity Cu Faraday Cups

Typical (Highest Gradient) Performance

• Measured and modeled response for CuAg Cavity

Structure Processing

- ~10M Pulses to Date
- Operating with human supervision

C-Freeze Run 10/17/2023

Max Power End of Day Cavities: Max 3.37 MW into Cu Cavity Pulse Width: 700 ns Rep Rate: 80 Hz Freq: 5714.3 MHz

Preliminary

Breakdown Statistics

- Challenging due to short structure length – most data points O(1 hr)
- BDR of Cu and CuAg remarkably similar (very different than room temp)
- Showing day to day improvement
- We will focus on statistics at end of the run

Special Thanks: A. Diego, M. Schneider, M. Boyce and A. Dhar

Conclusions

- Achievable gradient, breakdown rate and pulse length at C-band are promising
- How do we incorporate damping?
- How improve manufacturing of structures?
- How do meter scale structures perform?
- What is the optimal aperture and phase advance?

21

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Questions?

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Additional Material

Ongoing Technological Development

High Accelerating Gradients Cryogenic Operation

Modern Manufacturing Prototype One Meter Structure

Integrated Damping with NiChrome Coating

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development

Kick Factor * Q