Femtosecond laser-RF synchronization based on all-fiber optical-microwave phase detector

H.Zeng^{1,2}, J.Y. Li^{1,2}, X.He¹, N.Gan¹, X.P. Ma¹, J.Q.Xu¹, H.Xu^{1,2}

¹Institute of high energy physics, Beijing, China ²University of Chinese Academy Science, Beijing, China

Background

- Mode-locked lasers emit ultrashort pulse sequences for studying ultrafast phenomena. The precision of laser-microwave synchronization has been greatly improved by optical frequency combs based on mode-locked lasers, which have theoretical optical frequency instability reaching 10⁻¹⁸.
- After years of development, the phase-locked loop technology has matured. The photoelectric phase-locked loop based on an optical-microwave phase detector meets the high-precision synchronization requirements of scientific facilities like UED and XFEL.

Introduction

In this study, we propose an all-fiber optical-microwave phase detector based on a Sagnac interferometer, which effectively suppresses

All-fiber non-reciprocal phase bias unit

Employing a custom-made fiber phase delay • polarization-maintaining Faraday rotator, instead of

Optical path length adjustment facility

To address fiber optic device errors, an adjustable space optical delay line is used to redirect the

院高能物理研究所

Institute of Iligh Energy Physics

Chinese Academy of Sciences

- various noise sources introduced during the phase detection process.
- This advancement enables the transfer of ultrahigh laser stability to microwave signal sources, benefiting RF synchronization in accelerator equipment.

Fig.1 Simplified schematic of a laser-microwave synchronization system based on a photoelectric phase-locked loop

Methods

- The optical-microwave phase detector based on electro-optic sampling technology and a Sagnac fiber loop interferometer has the advantages of high phase detection sensitivity, strong antiinterference capability, and low phase noise.
- The all-fiber structure, including phase bias unit, enhances the stability of system.
- A temperature monitoring and control module is used to record and automatically regulate the temperature in real-time.

a magneto-optic device composed of two Faraday rotators and one quarter-wave plate, as a nonreciprocal phase bias unit to provide an inherent phase difference of $\pi/2$.

Temperature monitoring and control module

To mitigate temperature the impact of fluctuations on phase detector sensitivity and prevent temperature-induced phase drift, temperature control modules with semiconductor coolers are used for internal and external phase detectors. This improves synchronization system performance by minimizing temperature interference.

light beam by 180° and change the optical path length, which eliminates phase differences between split optical signals, improving synchronization accuracy.

Temperature monitoring and control module

To achieve precise frequency stability transfer from optical to microwave signals, a high-speed servo controller efficiently processes error signals and accurately controls the microwave signal source, such as a Voltage-Controlled Oscillator (VCO), to generate RF signals with minimal phase noise.

Measurements

- A fast servo PI controller ensures high-speed processing and precise feedback.
- An optical path length and intensity difference adjustment device is incorporated.

(Testing analysis

Fig.3 Schematic of the synchronization system and testing facility based on all-fiber optical-microwave phase detector

Fig.4 Schematic of optical path length adjustment

Conclusions

- In summary, we achieve precise synchronization between a 1.3 GHz RF generator and a commercial picosecond laser, reducing the rms jitter to fs-level (3.8 fs) over a frequency range of 10 Hz to 1 MHz. This is accomplished by utilizing an advanced allfiber optical-microwave phase detector.
- During a 5-hour period, we observed a measured out-of-loop long-term timing drift of 126 fs rms, primarily caused by temperature fluctuations and optical asymmetry in the phase bias unit.
- Reducing the relative intensity noise (RIN) of the laser is considered as an optimization measure.

References

[1] Ahn C, Na Y, Hyun M, et al. Synchronization of an optical frequency comb and a microwave oscillator with 53 zs/Hz^(1/2) resolution and 10^(-20) -level stability[J]. 2022(002):010. [2] J. Kim, F. X. Kärtner and F. Ludwig. Balanced optical-microwave phase detectors for optoelectronic phase-locked loops. Optics Letters, 2006, 31: 3659-3661.

[3] S. Y. Si, L. W. Feng, Y. Y. Zhao, et al. (2018). fslevel laser-RF synchronization with a fiber-loop optical-microwave phase detector. Chinese Optics Letters, 16(1), 4.

Acknowledgements

This research is supported by the Insititute of High Energy Physics, Chinese Academy of Sciences and the Peking University.

