BBN and sterile neutrinos: A mini-review

F. L. Villante - Univ. AQ and INFN-LNGS

OUTLINE

-The physics of BBN

-Active-Sterile oscillations in early universe

-Is there evidence for non standard physics from BBN?

The physics of BBN

The abundances of ⁴He, D, ³He, ⁷Li produced by BBN depends on the following quantities:

The Physics of BBN

Essentially all neutrons which survive till the onset of BBN are used to build ⁴He:

$$Y_{\rm p} = \frac{2(n/p)}{1 + (n/p)} \simeq 0.25$$

The abundance of D, ³He, ⁷Li is determined by a complex nuclear reaction network.

No stable nuclei with A=5 or A=8 \rightarrow No heavy nuclei are produced.

Accuracy and Uncertainties ...

Accuracy of 4 He calculation at the level of 0.1%.

High precision codes (Lopez & Turner 1999, Esposito et al. 1999) take directly into account effects due to : - zero and finite temperature radiative processes; non equilibrium neutrino heating during e± annihilation; finite nucleon masses; ...

These effects are included "a posteriori" in the "standard" code (Wagoner 1973, Kawano 1992).

Reaction rate uncertainties translate into uncertainties in theoretical predictions \rightarrow **sub-dominant** with respect to systematic observational errors (see later).

 $\Delta Y_{\rm p} \sim 0.012 \ \Delta N_{\nu}$

One extra neutrino corresponds to 5% variation of $Y_{\rm p}$

Remember that ΔN_v is an "effective" number. Helium-4 is sensitive to:

 $\left. \frac{\Gamma_{\rm W}}{H} \right|_{T \sim 1 MeV}$

- The expansion rate H at T=1 MeV
- \rightarrow New light particles, G_N , ξ_i

- The weak reaction rate Γ_{W} at T=1 MeV \rightarrow G_F(τ_{n}), ξ_{e} ,

 $\Delta Y_{\rm p} \sim 0.012 \ \Delta N_{\nu}$

One extra neutrino corresponds to 5% variation of $Y_{\rm p}$

Remember that ΔN_v is an "effective" number. Helium-4 is sensitive to:

 $\left. \frac{\Gamma_{\rm W}}{H} \right|_{T \sim 1 MeV}$

- The expansion rate H at T=1 MeV
- \rightarrow New light particles, G_N , ξ_i

- The weak reaction rate Γ_{W} at T=1 MeV \rightarrow G_F(τ_{n}), ξ_{e} ,

 $\Delta Y_{p}/Y_{p}\approx0.7~(\Delta\tau_{n}/t_{n})$

Active-Sterile neutrino oscillations in the early universe

A. Dolgov, Phys.Rept. 2002Review and referencesA. Dolgov and F.L. Villante, Nucl.Phys.B 2005.3+1 oscillationsM. Cirelli, et al., Nucl.Phys.B 2005.3+1 oscillationsY. Chu and M. Cirelli, Phys.Rev.D74 2006(3+1) and lepton
asymmetriesA.Melchiorri et al., JCAP 2007.3+2 oscillationsL. Krauss et al., arXiv:1009.4666Recent dicussions.J. Hamann et al., Phys.Rev.Lett. 2010Recent dicussions.F. Giusarma et al. arXiv:1102:4774Fecent dicussions.

A closer look at relevant epochs for neutrinos:

Sterile neutrinos ...

Sterile neutrinos can be brought into equilibrium by oscillations \rightarrow Boost the Universe exp. rate

 $\nu_{\rm e}$ - $\nu_{\rm s}\,$ oscillations after chemical decoupling reduce $\nu_{\rm e}\,$ number density

 \rightarrow affect n/p interconversion rate.

 $v_e - v_s$ oscillations after kinetic decoupling may produce v_e spectral distorsion \rightarrow affect n/p interconversion rate.

A large lepton asymmetry in the sector of active neutrinos can be generated by MSW-resonance. (not considered in the following)

Neutrino oscillations in the early universe

Described by kinetic equations:

Dolgov, Barbieri 1990

Neutrino oscillations: 1 active + 1 sterile

 $Hx \partial_x \rho_{aa} = i\mathcal{H}_{as}(\rho_{as} - \rho_{sa}) - I_{\text{coll}(a)}$

 $\begin{array}{rrrr} x & \equiv & m/T \\ y & \equiv & E/T \end{array}$

Analytic estimates are possible:

$$\mathcal{H}$$
 = neutrino hamiltonian

$$\gamma =$$
 neutrino interact. rates

 $Hx \partial_x \rho_{ss} = -i\mathcal{H}_{as}(\rho_{as} - \rho_{sa})$ $Hx \partial_x \rho_{as} = -i\left[(\mathcal{H}_{aa} - \mathcal{H}_{ss}) - i\gamma_{as}\right]\rho_{as} + i\mathcal{H}_{as}(\rho_{aa} - \rho_{ss})$

For $\delta m^2 > 10^{-6} \text{ eV}^2$, sterile neutrino production occurs at "high" temperatures:

$$T_{\rm prod}^{\nu_s} \sim 10 \,{\rm MeV} \,(3/y)^{1/3} \,\left(\delta m^2/{\rm eV}^2\right)^{1/6}$$

Neutrino interaction rates (γ_{as}) are large compared to hubble expansion rate (*H*) \rightarrow Quasi stationary approximation for off-diagonal components:

$$\rho_{as} = \frac{\mathcal{H}_{as}}{(\mathcal{H}_{aa} - \mathcal{H}_{ss}) - i\gamma_{as}} \left(\rho_{aa} - \rho_{ss}\right)$$

In presence of "late" resonance $(H_{aa} - H_{ss} = 0)$ the behaviour of ρ_{as} through resonace can be obtained by saddle-point integration.

Dolgov and Villante 2004

Non-resonance case

m_s > m_a in the small mixing angle limit

The rate of v_s production is:

 $\Gamma_{\rm s}$ = ($\Gamma_{\rm act}$ / 4) sin²(2 $\theta_{\rm matter}$)

This gives (re-adapted from Dolgov 2001):

$$\Delta N_{\nu} \simeq 1 - \exp(-M/A_{\alpha}) \sim M/A_{\alpha}$$

where:

$$M = \left(\frac{\delta m^2}{\mathrm{eV}^2}\right)^{1/2} \frac{\sin^2(2\theta)}{4}$$
$$\begin{cases} A_e &= 1.4 \times 10^{-3} & \mathbf{v_e} \cdot \mathbf{v_s} \text{ mixing} \\ A_{\mu\tau} &= 1.0 \times 10^{-3} & \mathbf{v_\mu} \cdot \mathbf{v_s} \text{ mixing} \end{cases}$$

Resonance Case

m_s < m_a in the small mixing angle limit

Our anlytic results coincide (in the proper limit) with the Landau-Zener description of resonance crossing:

 $v_{\mu} - v_{s}$ mixing ($\delta m^{2} / eV^{2}$) sin⁴(2 θ) < 1.9 * 10⁻⁹ (ΔNv)²

 $v_{\rm e}$ - $v_{\rm s}$ mixing (δ m² / eV²) sin⁴(2 θ) < 5.9 * 10⁻¹⁰ (Δ Nv)²

Dolgov and FLV 2004

Our results show larger effects respect to previous estimates (e.g. by Enqvist et a. 1992, Shi et al. 1993)

Neutrino oscillations: 3 active + 1 sterile

Active neutrinos are now known to be mixed. Their mixing should be taken into account together with $v_{act} - v_s$ mixing:

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \\ v_s \end{pmatrix} = \begin{pmatrix} & \eta_1 \\ U_{ACT} & \eta_2 \\ & \eta_3 \\ \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

$$\vec{\eta} = -\vec{U}_{ACT} \cdot \vec{\varepsilon}$$

$$4 - (\delta m^2)_{14} = \text{variable}$$

$$3 - (\delta m^2)_{23} = (\delta m^2)_{\text{atmos}}$$

$$2 - (\delta m^2)_{12} = (\delta m^2)_{\text{solar}}$$

 $ν_s$ mixing with one flavour eigenstate (e.g. $η_1 ≠ 0$, $η_2, η_3 = 0$) → three different $δm^2$ ($ε_1, ε_2, ε_3 ≠ 0$), new resonances

 $ν_s$ mixing with one mass eigenstate (e.g. $ε_1 ≠ 0$, $ε_2, ε_3 = 0$) → one δm², oscillation into mixed flavours ($η_1, η_2, η_3 ≠ 0$)

N.B. Mixing among active neutrinos cannot be rotated away, because BBN is flavour sensitive.

Neutrino oscillations: 3 active + 1 sterile

Problem partially simplificated considering that early universe does not distinguish v_{μ} and v_{τ}

3 active + 1 sterile: the case for large δm^2

If m_4 is large, we can assume $\delta m_{12}^2 \approx \delta m_{13}^2 \approx 0$:

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \\ v_{s} \end{pmatrix} = \begin{pmatrix} 1 & \eta_{1} \\ 1 & \eta_{2} \\ & 1 & \eta_{3} \\ \varepsilon_{1}' & \varepsilon_{2}' & \varepsilon_{3}' & 1 \end{pmatrix} \begin{pmatrix} v_{1}' \\ v_{2}' \\ v_{3}' \\ v_{4} \end{pmatrix} \qquad \vec{\eta} = -\vec{\varepsilon}'$$

The relevant parameter is:

$$M = (\delta m_{41}^2 / \text{eV}^2)^{1/2} (|\eta_e|^2 + |\eta_\mu|^2 + |\eta_\tau|^2)$$

$$\Delta N_\nu \simeq 1 - \exp(-M/A) \sim \frac{(\delta m_{41}^2 / \text{eV}^2)^{1/2}}{10^{-3}} (|\eta_e|^2 + |\eta_\mu|^2 + |\eta_\tau|^2)$$

$$\Omega_\nu h^2 \simeq (m_4/93.5 \text{eV}) \Delta N_\nu \sim \frac{(\delta m_{41}^2 / \text{eV}^2)}{10^{-1}} (|\eta_e|^2 + |\eta_\mu|^2 + |\eta_\tau|^2)$$

$$\begin{cases} \Omega_{\nu}h^2 & \sim & 0.01 \\ \Delta N_{\nu} & \sim & 1 \end{cases}$$
 cross for: $\delta m_{41}^2 \sim 1 \text{ eV}^2$

The LSND anomaly interpreted as 3+1

N.B. A relatively large lepton asymmetry can prevent extra neutrino thermalization.

Y. Chu et al. 2006 – $L_{\rm v}\approx 10^{-4}$ is required to relax conflict with LSND.

The relevant parameter is:

$$M = (\delta m_{41}^2 / \text{eV}^2)^{1/2} (|\eta_e|^2 + |\eta_\mu|^2 + |\eta_\tau|^2)$$

$$\Delta N_{\nu} \simeq 1 - \exp(-M/A) \sim \frac{(\delta m_{41}^2/\mathrm{eV}^2)^{1/2}}{10^{-3}} (|\eta_e|^2 + |\eta_{\mu}|^2 + |\eta_{\tau}|^2) \sim \frac{2 (\delta m_{41}^2/\mathrm{eV}^2)^{1/2} \theta_{\mathrm{LSND}}}{10^{-3}}$$

$$\Omega_{\nu} h^2 \simeq (m_4/93.5\mathrm{eV}) \Delta N_{\nu} \sim \frac{(\delta m_{41}^2/\mathrm{eV}^2)}{10^{-1}} (|\eta_e|^2 + |\eta_{\mu}|^2 + |\eta_{\tau}|^2) \sim \frac{2 (\delta m_{41}^2/\mathrm{eV}^2) \theta_{\mathrm{LSND}}}{10^{-1}}$$

$$\theta_{LSND}^{1/2} = \eta_e = \eta_\mu$$

To minimize cosmological effects

3+2 schemes in cosmology

Melchiorri et al. 2009 considered compatibility of SBL data and cosmology in 3+2 scenarios:

$$U_{\alpha i} = \begin{pmatrix} 0.81 & 0.55 & 0 & \pm |U_{e4}| & \pm |U_{e5}| \\ -0.51 & 0.51 & 0.70 & \pm |U_{\mu4}| & \pm |U_{\mu5}| \\ 0.28 & -0.67 & 0.70 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Delta N_{\nu,h} \simeq 6.6 \times 10^{-3} \sqrt{\frac{\Delta m_{j1}^2}{\text{eV}^2}} \sum_a \frac{g_a}{\sqrt{C_a}} \left(\frac{U_{aj}}{10^{-2}}\right)^2$$
$$\Omega_h h^2 \simeq 7 \times 10^{-5} \left(\frac{\Delta m_{j1}^2}{\text{eV}^2}\right) \sum_a \frac{g_a}{\sqrt{C_a}} \left(\frac{U_{aj}}{10^{-2}}\right)^2$$

<u>Message</u>

In relevant regions of parameter space, extra neutrinos may not fully thermalize. Is there evidence for non standard physics from BBN?

Theory .vs. observations

Ē ⁴He 0.26 0.25 $Y_{p_{0.24}}$ 0.23 10-3 D/H|p 10 - 4³He/H|p 10^{-5} Lithium-7 – Factor 2-3 10^{-9} 5 ⁷Li/H|p 2 10^{-10} 8 9 10 3 7 2 4 5 6

0.27

Baryon-to-photon ratio $\eta \times 10^{10}$

<u>Deuterium</u> – observed in the high resolution spectra of QSO absorption systems at high redshift.

discrepancy with theoretical predictions. Cannot be cured by extra radiation.

Theory .vs. observations

Is there evidence for extra radiation from Helium-4 data?

<u>Deuterium</u> – observed in the high resolution spectra of QSO absorption systems at high redshift:

Lithium-7 – Factor 2-3 discrepancy with theoretical predictions. Cannot be cured by extra radiation.

Observations: Helium-4

 Y_p is determined by extrapolating to Z=0 the (Y,Z) relation or by averaging Y in extremely metal poor objects (N and O used as metallicity tracers). In particular:

✓ ⁴He is observed in clouds of ionized hydrogen (HII regions).

✓ The most metal poor HII regions are in Dwarf Blue Compact Galaxies (BCGs).

Present situation:

 \checkmark Statistical uncertainties at the level of 1% (or less ...)

 \checkmark Systematic uncertainties at the level of 2% (or more ...)

 Several physical mechanism acting in HII regions still not completely understood (ionization correction factor, underlying stellar absorption, temperature structure ...).

Compilation of \boldsymbol{Y}_p determinations

Y_{p}		
0.244 ± 0.002	Izotov et al. 1998	Regression using 45 BCGs – O/H
0.245 ± 0.001		N/H
0.235 ± 0.003	Olive et al. 1997	Regression using 62 BCGs
0.238 ± 0.002	Fields and Olive 1998	Re-analysis (update) of Olive et al. 1997
0.2345 ± 0.0026	Peimbert et al 2000	HII regions of the Small Magellanic Cloud
0.2384 ± 0.0025	Peimbert et al 2001	Average of the 5 most metal poor BCGs
0.239 ±0.002	Luridiana et al 2003	5 metal poor HII regions
0.249 ± 0.009	Olive et al. 2004	Re-analysis of a subsample of Izotov et al. 1998
0.2472± 0.0012	Izotov et al. 2007	Regression using 86 extra-galactic HII regions
0.2516 ± 0.0011		
0.2474 ± 0.0028	Peimbert et al 2007	5 metal poor extra-galactic HII regions
0.2565 ± 0.001 ± 0.005	Izotov et al. 2010	86 Low metallicity HII regions
0.256 ± 0.0108	Aver et al. 2010 (a)	better treat. of syst. Err. (reanalysis of Olive et al. 2004)
0.256 + 0.0032 -0.0108		only positive slopes in the regression
0.2609 ± 0.0117	Aver et al. 2010 (b)	MCMC analisys of stat. and syst. uncertainties
0.2573 + 0.0033 - 0.0088		only positive slopes in the regression
< 0.2631 (95 %)	Mangano et al. 2011	Upper limit – no regression.

Is there evidence for non standard BBN $(N_v > 3)$?

Is there evidence for non standard BBN $(N_v > 3)$?

Are two extra neutrinos allowed?

By requiring that primordial helium is less than what observed in astrophysical systems (no regression), Mangano & Serpico 2011, obtain:

Y_p < 0.2631 (95 %)

Mangano et al. 2011

Consistent with Aver et al 2010(a) and Aver et al 2010 (b) when only positive slope is allowed in the regression:

> $Y_p = 0.2573 + 0.0033 - 0.0088$ Aver et al 2010(a) Y = 0.256 + 0.0032 - 0.0108

> $Y_p = 0.256 + 0.0032 - 0.0108$ Aver et al 2010(b)

Are two extra neutrinos allowed?

By requiring that primordial helium is less than what observed in astrophysical systems (no regression), Mangano & Serpico 2011, obtain:

Y_p < 0.2631 (95 %)

Mangano et al. 2011

Consistent with Aver et al 2010(a) and Aver et al 2010 (b) when only positive slope is allowed in the regression:

> $Y_p = 0.2573 + 0.0033 - 0.0088$ Aver et al 2010(a)

> Y_p = 0.256 + 0.0032 -0.0108 Aver et al 2010(b)

 $N_v < 4.2$ at 95% (C.L.)

BBN can provides **important clues** in favor of sterile neutrinos and/or bounds for sterile neutrino masses and mixing parameters ...

BBN can provides **important clues** in favor of sterile neutrinos and/or bounds for sterile neutrino masses and mixing parameters ...

... if a **robust** determination of primordial helium abundance is obtained!

BBN can provides **important clues** in favor of sterile neutrinos and/or bounds for sterile neutrino masses and mixing parameters ...

... if a **robust** determination of primordial helium abundance is obtained!

At this moment:

Is there a **robust** evidence for non standard BBN $(N_v > 3)$?

Not yet, in my opinion! N_v >3 is favored but N_v =3 is still allowed at about 1σ .

BBN can provides **important clues** in favor of sterile neutrinos and/or bounds for sterile neutrino masses and mixing parameters ...

... if a **robust** determination of primordial helium abundance is obtained!

At this moment:

Is there a **robust** evidence for non standard BBN $(N_v > 3)$?

Not yet, in my opinion! $N_v>3$ is favored but $N_v=3$ is still allowed at about 1σ .

Is there a **robust** upper limit on N_v ?

 $N_v < 4.2 (95 \text{ C.L.})$ Mangano et al. 2011 No constrains for 3+1 scenarios May be significant for 3+2 scenarios

Additional slides

Theoretical uncertainties

Reaction rate uncertainties translate into uncertainties in theoretical predictions:

Monte-Carlo evaluation of uncertainties Krauss & Romanelli 90, Smith et al 93, Kernan & Krauss 94

Semi-analytical evaluation of the error matrix Fiorentini et al 98 Lisi et al. 00

Sub-leading reactions

(see Serpico et al. 04)

Re-analysis of nuclear data Nollet & Burles 00, Cyburt et al 01, Descouvement et al. 04, Cyburt et al. 04, Serpico et al. 04

Recent new data and compilations NACRE Coll. Database LUNA: $D(p,\gamma)^{3}He$, $^{3}He(a,\gamma)^{7}Be$