#### La Sicurezza nelle Attività Sperimentali dell'INFN



INFN - Sezione di Roma1 28 Gennaio 2008

# Prima di iniziare... i ringraziamenti

SSI6 H

- al Direttore della Sezione di Firenze prof.ssa S. Falciano
- . alla Segreteria organizzativa di Roma1
  - G, Bucci, E. Di Silvestro, G. Vacri
- . agli amici relatori
  - E. Bonanno, F, Celletti, A. Giampaoli,
  - R. Tremaroli, P. Villani
  - a Tutti Voi Partecipanti



[..] sperando che il Seminario sia interessante!?!?

#### Sommario

Aspetti legati alla Sicurezza

Panoramica sulle attività sperimentali nell'Ente Rischi correlati alle varie Tipologie di attività Sostanze adoperate

6/65

Aspetti tecnologici

Materiali adoperati

Procedure di lavorazione adottate



Aspetti gestionali
Gestione grossi gruppi
Schedule, project managemet

#### Attività dell'INFN

Di certo non è facile elencare tutte le possibili attività che vedono impegnati i ricercatori ed i tecnici dell'INFN in giro per il mondo.

In linea di massima si può pensare di definire le più comuni tipologie:

- montaggio apparati sperimentali di grosse dimensioni;
- lavorazioni in officina
- lavorazioni in laboratori di chimica
- lavorazioni in camere pulite



CHILIPS

#### E di conseguenza...

- il rischio dovuto all'uso di ponteggi, di incendio, etc,
- il rischio di infortunio sulle macchine utensili
- il rischio dovuto a esposizione a sostanze nocive / tossiche
- il rischio dovuto ad un insieme di fattori, comprensivo 28-01-2008 R. Tartaglia @ LNGS

# Montaggio Apparati

DELA

#### Pluralità fattori di rischio

(meccanici, termici, elettrici, radiazioni, chimici, rumore)

#### Sicurezza equivalente

(richieste di deroga, etc.)

Particolarità rischi attività sperimentali

Pluralità di soggetti esposti

(personale di più strutture ed enti, ditte)

#### Esposizione variabile

(es.: fasi di montaggio e dismissione)

E. Bonanno – Aspetti normativi e regolamentari nell'installazione di attività sperimentali Giornate di Studio "La sicurezza degli apparati sperimentali e tecnologici dell'INFN" LNF, 25–27 ottobre 2004

# Differenze tra Sezioni e Laboratori (1)

Nelle Sezioni, in genere, la maggior parte dei rischi può essere individuata in alcune aree e/o attività particolari, come ad esempio l'officina, i vari laboratori (chimica, elettronica, etc.). Un fattore comune, in questo caso, è il numero relativamente limitato di persone operanti e le dimensioni relativamente "ridotte" degli apparati e/o dei set-up sperimentali. D'altra parte, un elemento comune alle attività nelle Sezioni è la stretta interconnessione con le attività dei Dipartimenti universitari: spesso si usufruisce di locali e/o di attrezzature di proprietà dell'Università.

# Differenze tra Sezioni e Laboratori (2)

Nei Laboratori, invece, i maggiori fattori di rischio vanno ricercati non solo nelle varie officine, laboratori, etc., ma anche e soprattutto nelle sale sperimentali e/o di assemblaggio dei grossi apparati dedicati alla ricerca.

In questo caso, in genere, i problemi relativi alle convenzioni con l'Università non sono presenti.

Esiste, però, la necessità di interagire con i membri delle varie collaborazioni, di stabilire e definire un corretto rapporto tra Servizi e Divisioni dei Laboratori ed i membri e le Collaborazioni dei Gruppi Sperimentali.

# Differenze tra Sezioni e Laboratori (3)

I Laboratori, inoltre, dovranno essere organizzati in modo da gestire la Sicurezza dei dipendenti, ma anche in maniera tale da poter gestire il gran numero di tecnici e ricercatori italiani e stranieri che fanno parte delle varie Collaborazioni.

Nel caso dei LNGS, per esempio, è sufficiente pensare che i dipendenti dei laboratori sono circa 60, mentre il numero di "utenti" ammonta a circa 700 unità.

Ogni Collaborazione, per ogni apparato di grosse dimensioni, infatti, è composta da più di un centinaio di membri.

# Linee-Guida per le Collaborazioni

Tenendo presente queste esigenze, sulla base dell'esperienza maturata al CERN, la Commissione Nazionale Sicurezze dell'INFN ha proposto delle "lineeguida" per le attività sperimentali.

Nell'ambito di una qualunque collaborazione sperimentale, soprattutto quelle di grosse dimensioni, è infatti opportuno individuare determinate procedure e determinate figure e responsabilità, che abbiano le opportune competenze e la necessaria autorità.

Vediamo quali sono i "punti principali" di tali linee-guida.

# Art. 1 - Campo di Applicazione

- Il regolamento si applica alle attività sperimentali rilevanti nelle strutture dell'I.N.F.N.
- La rilevanza dell'esperimento è determinata dalla complessità degli apparati coinvolti, dalla tipologia delle tecnologie impiegate, dall'uso di materiali e sostanze "pericolose" (spesso in quantità notevoli), dalla necessità di competenze specialistiche e di "deroga" ad una o più norme di prevenzione incendi.

# Art. 2 - Soggetti di Riferimento (1)

- Datore di lavoro della struttura ospitante:
  Direttore della struttura I.N.F.N.
- Servizio Prevenzione e Protezione, afferente alla direzione, composto da un Responsabile di servizio e addetti al servizio, eventualmente supportati da consulenti esterni.
- © Collaborazione scientifica: unità organizzativa di project management composta da ricercatori, tecnologi e tecnici I.N.F.N. e/o altre istituzioni

# Art. 2 - Soggetti di Riferimento (2)

- © Responsabile dell'Esperimento: figura di vertice della Collaborazione scientifica che stabilisce gli indirizzi generali del progetto di ricerca.
- © Coordinatore tecnico della Collaborazione scientifica: figura di vertice interna all'I.N.F.N. e/o di altre istituzioni con funzione di coordinamento di progettazione e realizzazione dell'esperimento.

# Art. 2 - Soggetti di Riferimento (3)

Unità di sicurezza interna: una o più persone, all'interno della Collaborazione, coordinate dal Glimos (Group Leader In Matter Of Safety) con compiti relativi alla sicurezza dell'esperimento nelle fasi di progettazione, esecuzione, presa dati e dismissione.



# Art. 3 - Compiti del Direttore della Struttura INFN ospitante

[..] quelli previsti dal D. Lgs. 626/94

Richiede la nomina del GLIMOS, ove necessario

# Art. 4 - Compiti del Responsabile dell'Esperimento

Nella progettazione e realizzazione dell'esperimento deve attenersi ai principi enunciati nell' art.3 del D.Lgs. 626/94.

Comunica al Direttore la nomina del Glimos.

# Art. 5 - Compiti del Coordinatore Tecnico

Trasmette alla direzione l'organigramma funzionale del gruppo di ricerca;

- ✓ istituisce, in collaborazione con il Responsabile dell'Esperimento, e sin dalla fase di progettazione, una unità di sicurezza all'interno del gruppo di ricerca,, eventualmente supportata, in fase di realizzazione, da collaboratori interni e/o esterni;
  - ✓ Provvede, in collaborazione con il GLIMOS, alla tenuta della certificazione complessiva e degli attestati di conformità alle norme di buona tecnica e agli standard applicabili relativi alle forniture e ai prototipi;
  - ✓ assume le funzioni di Glimos qualora quest'ultimo non sia stato nominato.

# Art. 6 - Requisiti Professionali del GLIMOS

- · Il Glimos, interno all'I.N.F.N. o di altre istituzioni o Enti di ricerca, deve possedere un adeguato curriculum ed esperienza professionale nella progettazione e realizzazione di esperimenti presso laboratori di ricerca internazionali, europei e nazionali.

  Commento [..]
- La Collaborazione dovrebbe indicare il candidato a GLIMOS in tempo utile per cominciare a trattare gli aspetti della sicurezza già durante la preparazione della proposta. In particolare, potrebbe essere utile considerare tecniche alternative al fine di migliorare la sicurezza.
- Il GLIMOS può adempiere i suoi compiti solo se la sua <u>autorità</u> è unanimamente riconosciuta all'interno della Collaborazione. Il GLIMOS deve avere sufficiente tempo per il suo compito ed essere preferibilmente un membro dello staff del laboratorio ospitante; in caso contrario, deve trascorrere presso il laboratorio la maggior parte del tempo, per l'intera durata dell'Esperimento.

## Art. 7 - Compiti del GLIMOS

- ✓ Il Glimos, in possesso dei requisiti professionali di cui all'art.6, è designato dal coordinatore tecnico della Collaborazione scientifica di cui fa parte;
- ✓ collabora in merito all'analisi e alla valutazione dei rischi connessi all'esperimeno, ivi compresi i rischi di interfaccia con l'ambiente;
- ✓ cura la redazione del Piano di Sicurezza dell'esperimento e lo trasmette al Servizio Prevenzione e Protezione per gli adempimenti di legge;
- ✓ Collabora, in particolare, col Responsabile SPP per l'attuazione delle misure e degli interventi di prevenzione e protezione dai rischi

### Art. 10 - Coordinamento dei GLIMOS e

- del Responsabile SPP

  ✓ Il Glimos si attiva col Responsabile SPP per proporre, prima dell'inizio dell'attività sperimentale, apposite procedure interne, in particolare sulla gestione delle emergenze, visite di sopralluogo controlli periodici sugli impianti di sicurezza, nonché attività specifiche di informazione e formazione.
- ✓ In una configurazione "ideale", il GLIMOS comunica in anticipo al RSPP locale ogni variazione dei processi o delle fasi di processo in corso in ambito sperimentale.
- ✓ Redige o fa redigere le opportune procedure operative da parte dei vari gruppi della Collaborazione e le trasmette al RSPP locale.
- ✓ Collabora attivamente ai programmi di formazione ed informazione, soprattutto per quel che concerne le procedure da attuare in caso di emergenza.

# Montaggio Apparati ("reprise")

Nel caso di montaggio apparati di grosse dimensioni, i rischi più comuni sono dovuti a:

- lavorazioni in quota
- lavorazioni in spazi confinati
- lavorazioni in laboratori di chimica
- lavorazioni in camere pulite



#### E di conseguenza...

- il rischio dovuto all'uso di ponteggi, di incendio, etc.
- il rischio di infortunio sulle macchine utensili
- il rischio dovuto a esposizione a sostanze nocive / tossiche
- il rischio dovuto ad un insieme di fattori, comprensivo dei rischi sopra elencati

1 cmms



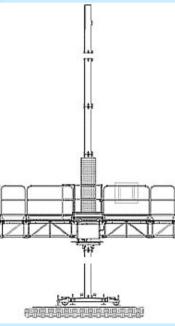
# Lavorazioni in quota



La qualità di tutte le im bracature Protecta: gli anelli a "D" non sono Saldati ma realizzati in materiale estruso onde assicurare la massima affidabilità

6/65

Anello a "D" in acciaio forgiato zincato, montato su una cighia per facilitare la connessione con i dispositivi di anticaduta retrattili


Supporto dorsale per garantire il massimo comfort. Realizzato in schiuma termocompressa, fodera interna in cotone

> Anelli laterali in acciaio estruso per il collegamento ai cordini di posizionamento sul lavoro

Anelli porta attrezzi

Bretelle e cosciali regolabili ad all'acciamento rapido







Nel caso di lavori su macchine utensili, la normativa di riferimento è il D.P.R. 459/96. Definizione di "macchina"

- 1) un insieme di pezzi o di organi, di cui almeno uno mobile, collegati tra loro, anche mediante attuatori, con circuiti di comando e di potenza o altri sistemi di collegamento, connessi solidalmente per un'applicazione ben determinata, segnatamente per la trasformazione, il trattamento, lo spostamento o il condizionamento di materiali;
- 2) un insieme di macchine e di apparecchi che, per raggiungere un risultato determinato, sono disposti e comandati in modo da avere un funzionamento solidale;
- 3) un'attrezzatura intercambiabile che modifica la funzione di una macchina, commercializzata per essere montata su una macchina o su una serie di macchine diverse o su un trattore dell'operatore stesso, nei limiti in cui tale attrezzatura non sia un pezzo di ricambio o un utensile...

DAMA

(Definizione di componente di sicurezza. art.1 comma 2 lett. b) D.P.R. 459/96)

...un componente, purchè non sia un'attrezzatura intercambiabile, che il costruttore o il suo mandatario stabilito nella U.E. immette sul mercato allo scopo di assicurare, con la sua utilizzazione, una funzione di sicurezza e il cui guasto o cattivo funzionamento pregiudica la sicurezza o la salute delle persone esposte.

(Rimozione od omissione dolosa di cautele contro infortuni sul lavoro. art. 437 c.p.)

Chiunque omette di collocare impianti, apparecchi o segnali destinati a prevenire disastri o infortuni sul lavoro, ovvero li rimuove o li danneggia, è punito con la reclusione da sei mesi a cinque anni. Se dal fatto deriva un disastro o un infortunio, la pena è della reclusione da tre a dieci anni.

(Omissione colposa di cautele o difese contro i disastri o infortuni sul lavoro. art. 451 c.p.)

Chiunque, per colpa, omette di collocare, ovvero rimuove o rende inservibili apparecchi o altri mezzi destinati alla estinzione di un incendio, o al salvataggio o al soccorso contro disastri o infortuni sul lavoro è punito con la reclusione fino a un anno o con la multa da £. 200.000 a £. 1.000.000.

(Omicidio colposo. art. 589 c.p.)

Chiunque cagiona per colpa la morte di una persona è punito con la reclusione da sei mesi a cinque anni. Se il fatto è commesso con la violazione delle norme sulla disciplina ..... per la prevenzione degli infortuni sul lavoro la pena è della reclusione da uno a cinque anni. Nel caso di morte di più persone, ovvero di morte di una o più persone e di lesioni di una o più persone, si applica la pena che dovrebbe infliggersi per la più grave delle violazioni commesse aumentata fino al triplo, ma la pena non può superare gli anni 12.

(Lesioni personali colpose. art. 590 c.p.)

Chiunque cagiona ad altri, per colpa, una lesione personale è punito con la reclusione fino a tre mesi o con la multa fino a £. 600.000. Se la lesione è grave la pena è della reclusione da uno a sei mesi o della multa da £. 240.000 a £. 1.200.0000.; se è gravissima, della reclusione da tre mesi a due anni o della multa da £. 600.000 a £. 2.400.000. Se i fatti di cui al precedente capoverso sono commessi con la violazione delle norme sulla disciplina ..... per la prevenzione degli infortuni sul lavoro, la pena per le lesioni gravi è della reclusione da due a sei mesi o della multa da £. 480.000 a £. £. 1.200.000. ; e la pena per lesioni gravissime è della reclusione da sei mesi a due anni o della multa da £. 1.200.000 a £. 2.400.000. Nel caso di lesioni di più persone si applica la pena che dovrebbe infliggersi per la più grave delle violazioni commesse, aumentata fino al triplo; ma la pena della reclusione non può superare gli anni cinque. Il delitto è punibile a querela della persona offesa salvo nei casi previsti nel primo e secondo capoverso, limitatamente ai fatti commessi con violazione delle norme per la ... ... R. Tartaglia @ LNGS 28-01-2008

(Responsabilità per l'esercizio di attività pericolose. art. 2050 c.c.)

Chiunque cagiona danno ad altri nello svolgimento di un'attività pericolosa, per sua natura o per la natura dei mezzi adoperati, è tenuto al risarcimento, se non prova di aver adottato tutte le misure idonee ad evitare il danno.

(Tutela delle condizioni di lavoro. art. 2087 c.c.)

L'imprenditore è tenuto ad adottare nell'esercizio dell'impresa le misure che, secondo la particolarità del lavoro, l'esperienza e la tecnica, sono necessarie a tutelare l'integrità fisica e la personalità morale dei prestatori di lavoro.

#### Rischio chimico

Non è facile elencare tutte le possibili sostanze "comunemente" adoperate negli apparati sperimentali, ma i parametri più importanti da valutare sono:

- il "range" di infiammabilità
- la tossicità
- le quantità in gioco

#### E di conseguenza...

- il rischio di incendio
- il rischio di esposizione alla sostanza e/o ai vapori della sostanza
- le necessità di smaltimento nella normale operatività
- le necessità operative in condizioni di emergenza (incendio, sversamento, etc.)



#### Sommario

DAMA

6/65

\$535 H

- Normativa brevi cenni
- Diagrammi di flusso operativi
- Ricognizione "inventariale"
- © Configurazione dei LNGS
- Applicazione della normativa ai LNGS: difficoltà da superare
- Monitoraggi effettuati
- Compiti dei "vari attori"
- Statistiche



# La Normativa Vigente

#### Decreto Legislativo 25 del 2 Febbraio 02

apparso sul Supplemento Ordinario N° 40/L alla Gazzetta Ufficiale N° 57 del 8 marzo 2002.

Provvede all'attuazione della...

#### Direttiva 98/24/CE

sulla protezione della salute e della sicurezza dei lavoratori contro i rischi derivanti da agenti chimici durante il lavoro.

Modifica il titolo VII del D.Lgs. 626/94 e successive modifiche ed integrazioni, ed aggiunge un Titolo VII bis - "protezione da agenti chimici" allo stesso.

Il presente decreto ha lo scopo di determinare i requisiti minimi di sicurezza per la protezione dei lavoratori contro i rischi per la salute e la sicurezza che derivano, o possono derivare, dagli effetti di agenti chimici.

#### Si applica:

- ✓ ad ogni attività lavorativa che comporti la presenza di agenti chimici;
- a tutti gli agenti chimici pericolosi che sono presenti sul luogo di lavoro, fatte salve le disposizioni relative agli agenti chimici per i quali valgono provvedimenti di protezione radiologica regolamentati dal D.Lgs. 230 del 1995, e s.m.i.;
- ✓ agli agenti cancerogeni, fatte salve le disposizioni specifiche contenute nel titolo VII del decreto legislativo n. 626/94, come modificato dal D. Lgs. 66 del 2000;

al trasporto di agenti chimici pericolosi, fatte salve le disposizioni specifiche contenute nei decreti ministeriali 4 settembre 1996, 15 maggio 1997, 28 settembre 1999 e decreto legislativo 13 gennaio 1999 n. 41, di attuazione della direttiva 94/55/CE, nelle disposizioni del codice IMDG del codice IBC e nel codice IGC, quali definite dall'articolo 2 della direttiva 93/75/CEE, nelle disposizioni dell'accordo europeo relativo al trasporto internazionale di merci pericolose per vie navigabili interne (ADN) e del regolamento per il trasporto delle sostanze pericolose sul Reno (ADNR), quali incorporate nella normativa comunitaria e nelle istruzioni tecniche per il trasporto sicuro di merci pericolose emanate alla data del 25 maggio 1998.

Le disposizioni del presente titolo non si applicano alle attività comportanti esposizione ad amianto che restano disciplinate dalla normativa specifica.

8. Tartaglia © LNGS

# Definizioni (art. 60-ter)

#### a) Agenti chimici:

tutti gli elementi o composti chimici, sia da soli sia nei loro miscugli, allo stato naturale o ottenuti, utilizzati o smaltiti, compreso lo smaltimento come rifiuti, mediante qualsiasi attività lavorativa, siano essi prodotti intenzionalmente o no e siano immessi o no sul mercato.

#### b) Agenti chimici pericolosi:

- 1) agenti chimici o semplicemente agenti classificati come sostanze pericolose ai sensi del decreto legislativo 3 febbraio 1997, n. 52, e successive modifiche. Sono escluse le sostanze pericolose solo per l'ambiente;
- 2) agenti chimici o semplicemente agenti classificati come preparati pericolosi ai sensi del decreto legislativo 16 luglio 1998, n. 285, e successive modifiche. Sono esclusi i preparati pericolosi solo per l'ambiente;
- 3) agenti chimici che, pur non essendo classificabili come pericolosi, in base ai punti 1 e 2, possono comportare un rischio per la sicurezza e la salute dei lavoratori a causa di loro proprietà chimico-fisiche, chimiche o tossicologiche e del modo in cui sono utilizzati o presenti sul luogo di lavoro, compresi gli agenti chimici cui è stato assegnato un valore limite di esposizione professionale.

In definitiva occorre riferirsi ad <u>agenti chimici pericolosi per la sicurezza</u> classificati come:

- esplosivi;
- infiammabili;
- facilmente infiammabili;
- estremamente infiammabili;
- comburenti;
- corrosivi;

e ad agenti chimici pericolosi per la salute classificati come:

- molto tossici;
- tossici;
- nocivi;
- irritanti;
- sensibilizzanti;
- tossici per il ciclo produttivo;

mentre sono escluse dal campo di applicazione del D.Lgs. 25/02 sostanze e 28/1929 che siano solo: pericolosi per l'ambiente.

R. Tartaglia @ LNGS

crans

Attività che comporta la presenza di agenti chimici pericolosi:

ogni attività lavorativa in cui sono utilizzati agenti chimici, o se ne prevede l'utilizzo, in ogni tipo di procedimento, compresi la produzione, la manipolazione, l'immagazzinamento, il trasporto o l'eliminazione e il trattamento di rifiuti, o che risultino da tale attività lavorativa.

#### Valore limite di esposizione professionale:

se non diversamente specificato, il limite della concentrazione media ponderata nel tempo di un agente chimico nell'aria all'interno della zona di respirazione di un lavoratore in relazione ad un determinato periodo di riferimento.

#### Valore limite biologico:

il limite della concentrazione del relativo agente, di un suo metabolita, o di un indiatore di effetto, nell'appropriato mezzo biologico.

Per questi limiti occorre riferirsi agli allegati VIII-ter e VIII-quarter. Dato che tali allegati sono attualmente solo esemplificativi, occorre identificare gli agenti per cui esistano riferimenti di legge, mentre per gli altri agenti occorre riferirsi alle norme tecniche riconosciute (vedi indici TLV).

#### Sorveglianza sanitaria:

la valutazione dello stato di salute del singolo lavoratore in funzione dell'esposizione ad agenti chimici sul luogo di lavoro.

#### Pericolo:

la proprietà intrinseca di un agente chimico di poter produrre effetti nocivi

#### Rischio:

la probabilità che si raggiunga il potenziale nocivo nelle condizioni di utilizzazione o esposizione.

1 CHAINS

# Schema Logico - 1 [Assocarta]

Individuazione agenti chimici presenti sul luogo di lavoro

Acquisizione di tutte le schede di sicurezza aggiornate al XXVIII adeguamento

Valutazione delle proprietà potenziali (agenti pericolosi e non) tenendo conto delle informazioni messe a disposizione dal fornitore, ai sensi dei decreti legislativi 52/97 e 285/98, e per quanto possibile, di quelle ricavabili dalla consultazione del medico competente o da eventuali azioni di sorveglianza sanitaria, ovvero da fonti di letteratura

Assenza di agenti chimici pericolosi

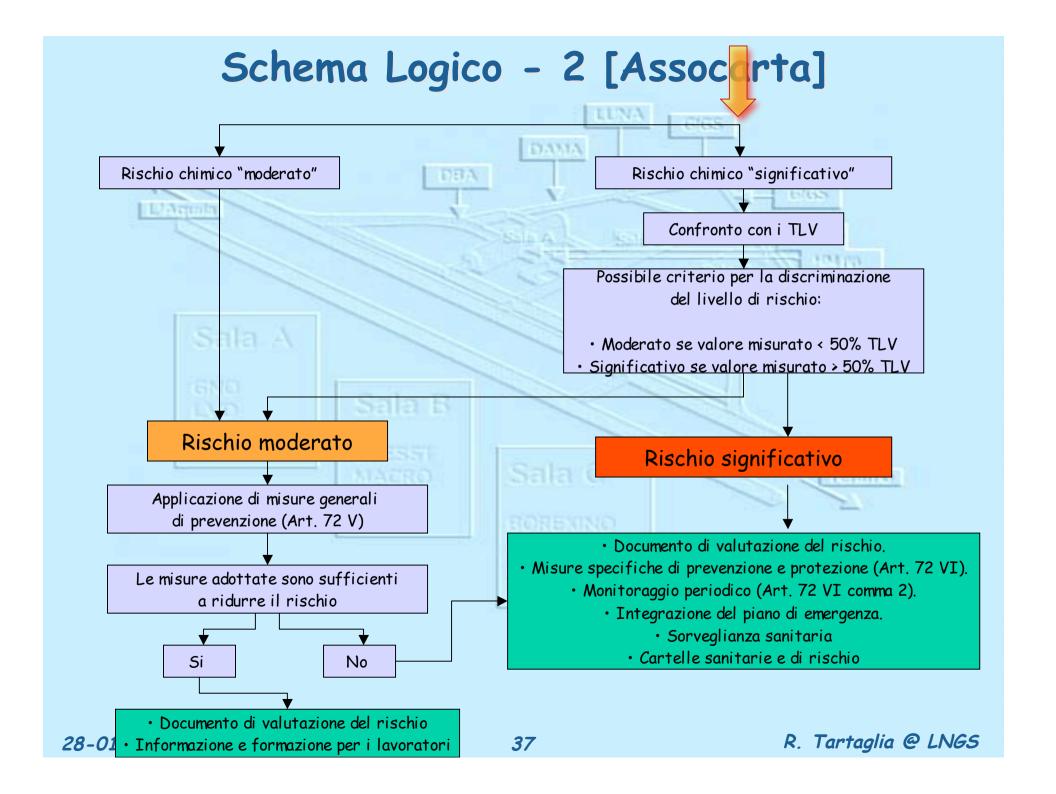
Presenza di agenti chimici pericolosi

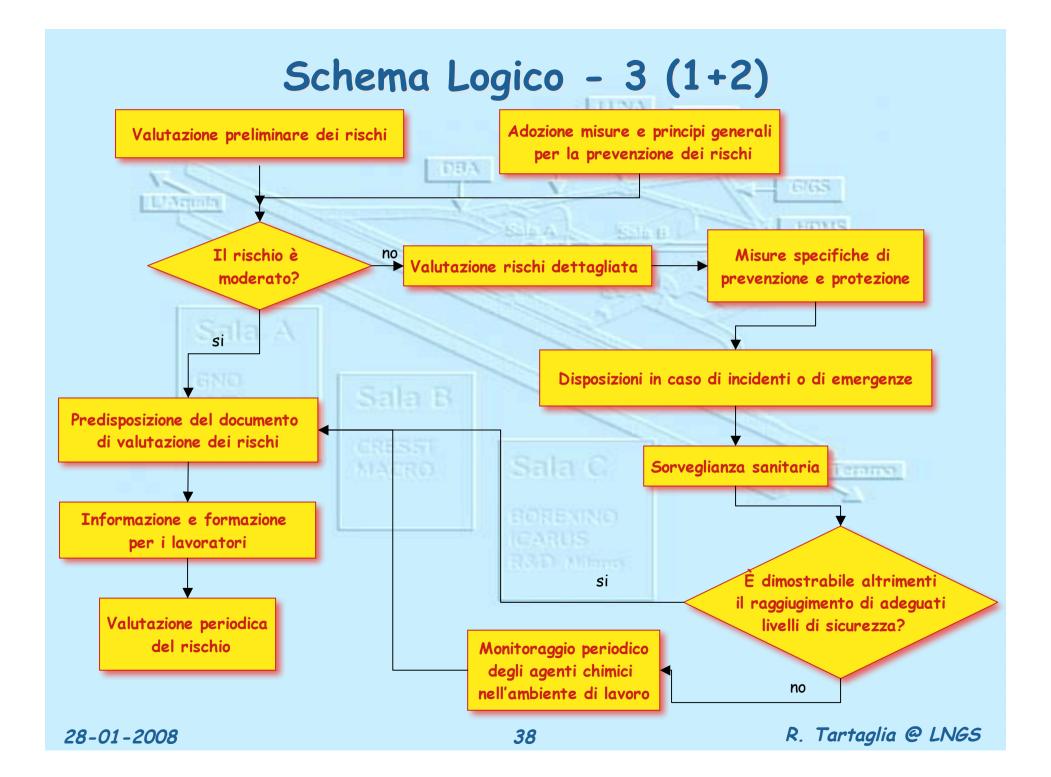
Non occorre fare la "Valutazione del rischio chimico"

Valutazione preliminare: caratterizzazione dell'agente chimico (pericolosità, tossicità, caratteristiche chimico-fisiche); modalità di utilizzo; quantità utilizzate; effetti dei sistemi di prevenzione e protezione già in essere; dati su azioni di sorveglianza eventualmente già intraprese. Valutazione del rischio sulla base di probabilità e magnitudo degli agenti chimici pericolosi alla quale sono sottoposti i lavoratori

È possibile escludere qualsiasi tipo di contatto con le persone o l'insorgenza di effetti per i lavoratori

NON è possibile escludere qualsiasi tipo di contatto con le persone


Rischio chimico "irrilevante"


Rischio chimico NON"irrilevante"

· Documento di valutazione del rischio

• Informazione e formazione per i lavoratori

Tartaglia @ LNGS





# Scheda riassuntiva di "ricognizione"

| 1 2                                  | 2         |         | 3       | 4a                  | 4b          | 4c         |                | 4d                  | 4e                | 4f                              | 5                                   | 6a               | 6b                     | 6c       | 6d                 |
|--------------------------------------|-----------|---------|---------|---------------------|-------------|------------|----------------|---------------------|-------------------|---------------------------------|-------------------------------------|------------------|------------------------|----------|--------------------|
| Pos Nor                              | - 1       | Disloc  | cazione |                     |             | Motivo de  | lla preser     | nza                 |                   |                                 | Componenti<br>chimici<br>principali |                  | Stato fi               | sico     |                    |
| prod                                 | Ollo      |         |         | Materia<br>prima    | a           |            |                | otto di l<br>azione |                   |                                 | %                                   | Liquido          | Solido                 | Gas      | Altro              |
| 1                                    |           |         |         |                     |             |            |                |                     |                   |                                 |                                     |                  |                        |          |                    |
| 2                                    |           |         |         |                     |             |            |                |                     |                   |                                 |                                     |                  |                        |          |                    |
| 3                                    |           |         |         |                     |             |            |                |                     |                   |                                 |                                     |                  |                        |          |                    |
|                                      |           |         |         |                     | Ca          | ıratterist | iche d         | lell'age            | ente c            | himico                          |                                     |                  |                        |          |                    |
| 7 8 9a 9b 9c 9e 9f 9g 10 11a 11b 11c |           |         |         |                     |             |            |                | 11c                 |                   |                                 |                                     |                  |                        |          |                    |
| Punto di infiammabilit               |           | рН      |         |                     | Incom       | patibilità |                |                     |                   | Reazione<br>prevista            | Class                               | sificazione<br>2 | ai sensi de<br>25/2002 | el D.Lgs |                    |
| °C                                   | ţ         | рН      | Acidi   | Basi                | Ossidanti   | Riducenti  | Metalli        | Altro<br>(specific. |                   | Prodotti di<br>omposizione      | Classifica                          | 71000            | Frasi di<br>rischio R  |          | ia di<br>oimento   |
|                                      |           |         |         |                     |             |            |                |                     |                   |                                 |                                     |                  |                        |          |                    |
|                                      |           |         |         |                     | Ca          | ıratterist | iche c         | lell'age            | ente c            | himico                          |                                     |                  |                        |          |                    |
| 12a                                  |           | 12b     |         | 12c                 | 13a         | 13b        | 130            | ; ′                 | 13d               | 14                              | 15a                                 | 15b              | 15c                    |          | 15d                |
| Mo                                   | odalità ( | di tras | sporto  |                     |             | Tipo di st | occaggio       |                     |                   | Quantità<br>massima<br>stoccata | Т                                   | rasferimen       | to all'utiliza         | ZO       |                    |
| Automezzi<br>cassonati               | Auto      | ociste  | rne (s  | Altro<br>specific.) | Cisternette | Serbatoio  | Saco<br>Big Ba |                     | Altro<br>ecific.) | kg o litri                      | Automezzi<br>cassonati              | Tubazioni        | Carrell<br>elevato     |          | Altro<br>pecific.) |

## Lavorazioni in Clean Room LUNA 6/65 DAMA DBA 6165 Half-Vermin HEMS 551548 10100 Lemma

### Lavorazioni in Clean Room

- Che cos'è una camera pulita
- Applicazioni industriali
- Caratteristiche di una clean room
- Le camere pulite nell'INFN
- Le peculiari applicazioni @ LNGS

Aspetti di sicurezza legati alla operatività delle Clean Rooms

I CHAINS

#### Cos'è una Clean Room?

Una Clean Room si può definire un ambiente a contaminazione controllata: si intende, con tale definizione, l'insieme di locali, ambienti, ed impianti atti a garantire il raggiungimento ed il mantemimento di condizioni ottimali per quel che riguarda il valore di concentrazione di polvere in aria.

L'impiantistica minima necessaria di una clean room è costituita da: pareti a basso rilascio di polvere, pavimenti flottanti, controsoffittature "particolari", filtri piani, filtri a tasche e filtri assoluti (filtri HEPA), impianto di circolazione aria, impianto di condizionamento aria, umidificatori/deumidificatori, eventuali batterie di raffreddamento/riscaldamento, impianto di illuminazione, di telefonia, di supervisione e gestione delle condizioni operative della Clean Room.

Possibili impianti accessori:

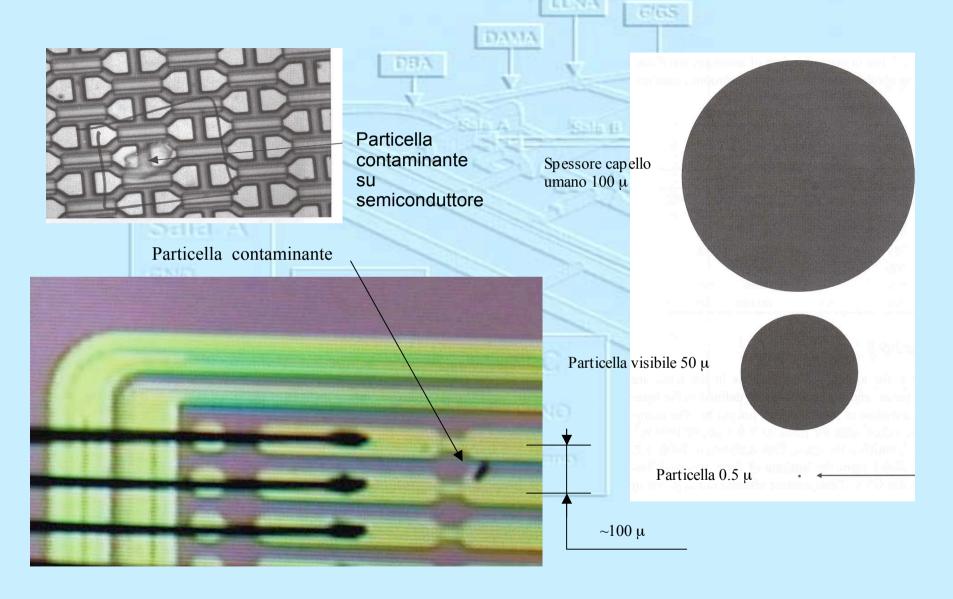
distribuzione aria compressa, distribuzione gas tecnici, distribuzione acqua deionizzata/demineralizzata, cappe chimiche, etc.

## Cos'è una camera pulita?

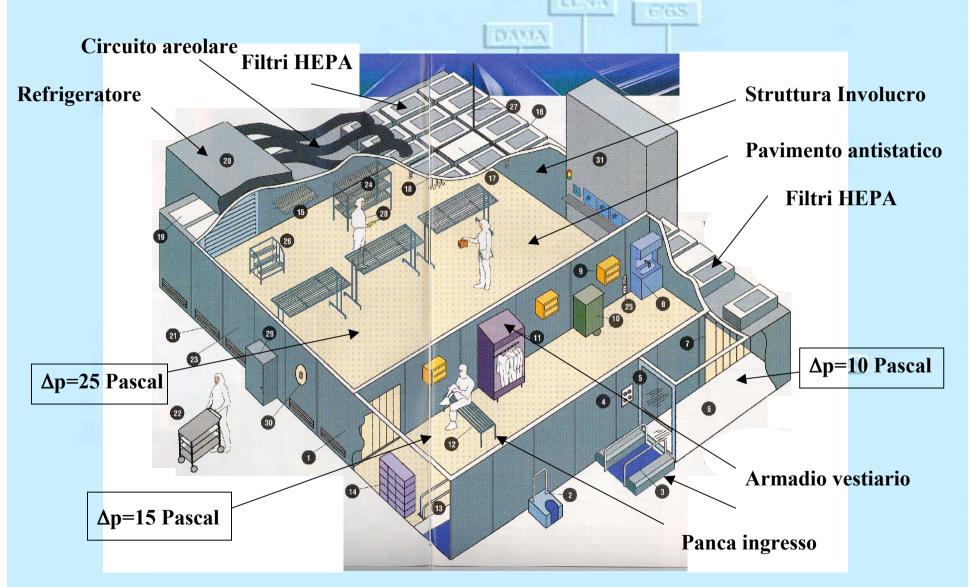
Come abbiamo visto, la Clean Room risulta essere un insieme di locali, impianti ed impianti accessori che, comunque, una volta realizzati, potrebbero incidere in maniera "importante" sulla operatività di una Sezione, Laboratorio e/o quant'altro. Dal punto di vista "tecnico", risulta fondamentale prevedere, fin dal momento della realizzazione, una corretta gestione della fase di manutenzione e, possibilmente, investire fin dall'inzio sulla flessibilità della Clean Room stessa.

#### Terminologia possibile:

camera pulita, camera bianca, camera sterile, ambiente a contaminazione controllata, "work unit" con aria pulita


crans

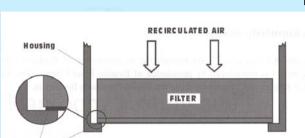
## Applicazioni "industriali"


Tutte quelle applicazioni dove la polvere potrebbe compromettere la funzionalità del prodotto, ovvero causare una contaminazione "pericolosa" in determinati ambienti.

- Elettronica di produzione (chip and micro-chip)
- Assemblaggio componenti veicoli spaziali
- Industria farmaceutica (eventuale uso di radio-isotopi)
- Industria chimica
- Biologia (laboratori, etc.)
- Ospedali (batteri, anche!!)

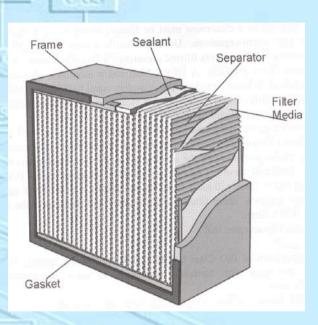
# Applicazioni "industriali" - esempi

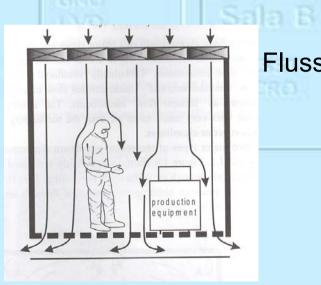



### Le caratteristiche di una Clean Room- struttura

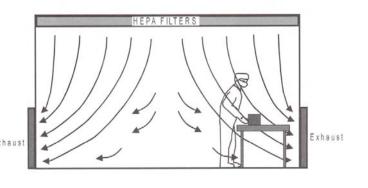


F. Bosi - INFN-PI


R. Tartaglia @ LNGS

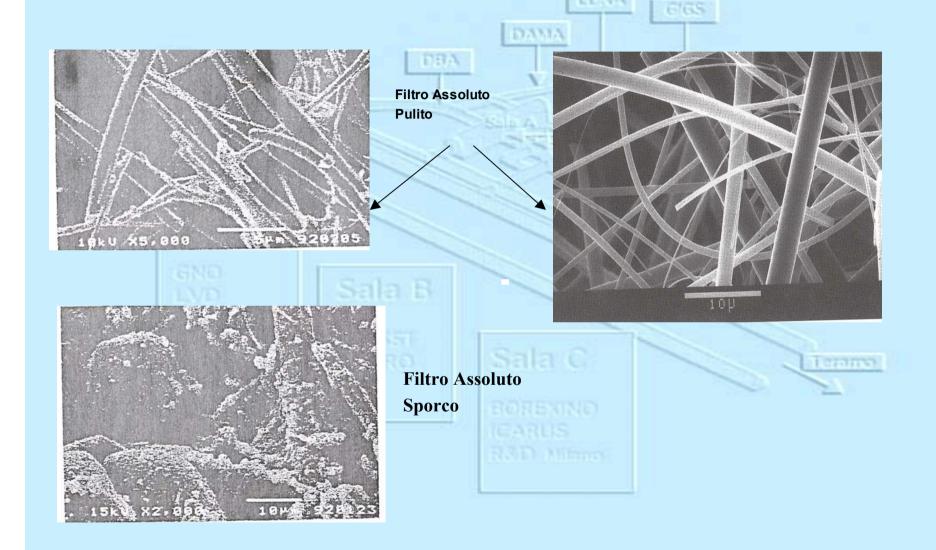

### Sistemi di Filtrazione assoluta




Filtro Assoluto

flusso laminare (HEPA)






Flusso laminare



F. Bosi - INFN-PI

### Sistemi di Filtrazione assoluta



F. Bosi - INFN-PI

## Classificazione Clean Rooms (Int. Std.)

| ISO Classi-<br>fication<br>number |           |         |         | (particles/m³ o<br>d sizes shown |           | ticles eq |
|-----------------------------------|-----------|---------|---------|----------------------------------|-----------|-----------|
|                                   | ≥0.1µm    | ≥0.2µm  | ≥0.3µm  | ≥0.5µm                           | ≥1µm      | ≥5.0µm    |
| ISO Class 1                       | 10        | 2       |         |                                  |           |           |
| ISO Class 2                       | 100       | 24      | 10      | 4                                |           |           |
| ISO Class 3                       | 1 000     | 237     | 102     | 35                               | 8         |           |
| ISO Class 4                       | 10 000    | 2 370   | 1 020   | 352                              | 83        |           |
| ISO Class 5                       | 100 000   | 23 700  | 10 200  | 3 520                            | 832       | 29        |
| ISO Class 6                       | 1 000 000 | 237 000 | 102 000 | 35 200                           | 8 320     | 293       |
| ISO Class 7                       | a (8)     | 3 3 1   | r dend  | 352 000                          | 83 200    | 2 930     |
| ISO Class 8                       |           | Ext     | 24/2    | 3 520 000                        | 832 000   | 29 300    |
| ISO Class 9                       |           |         |         | 35 200 000                       | 8 320 000 | 293 00    |

|         |         |                   |          |                   |          |                   |       | 1                 |                    |                   |                  |
|---------|---------|-------------------|----------|-------------------|----------|-------------------|-------|-------------------|--------------------|-------------------|------------------|
|         |         | 1                 |          |                   |          | Class I           | imits |                   |                    |                   |                  |
| Class N | ame     | ≥ 0.1µm           |          | ≥ 0.2µm           |          | ≥ 0.3µm           |       | ≥ 0.5µm           |                    | ≥ 5µm             | Ŧ                |
|         |         | Volume l          | Units    | Volume            | Units    | Volume            | Units | Volume Unit       | ts                 | Volume            | Units            |
| SI      | English | (m <sup>3</sup> ) | $(ft^3)$ | (m <sup>3</sup> ) | $(ft^3)$ | (m <sup>3</sup> ) | (ft³) | (m <sup>3</sup> ) | (ft <sup>3</sup> ) | (m <sup>3</sup> ) | (ft <sup>3</sup> |
| M 1     |         | 350               | 9.91     | 75.7              | 2.14     | 30.9              | 0.875 | 10.0              | 0.283              |                   |                  |
| M 1.5   | 1       | 1 240             | 35.0     | 265               | 7.50     | 106               | 3.00  | 35.3              | 1.00               |                   |                  |
| M 2     |         | 3 500             | 99.1     | 757               | 21.4     | 309               | 8.75  | 100               | 2.83               |                   |                  |
| M 2.5   | 10      | 12 400            | 350      | 2 650             | 75.0     | 1 060             | 30.0  | 353               | 10.0               |                   |                  |
| M 3     |         | 35 000            | 991      | 7 570             | 214      | 3 090             | 87.5  | 1 000             | 28.3               |                   |                  |
| M 3.5   | 100     | -                 |          | 26 500            | 750      | 10 600            | 300   | 3 530             | 100                |                   |                  |
| M 4     |         |                   |          | 75 700            | 2 140    | 30 900            | 875   | 10 000            | 283                |                   |                  |
| M 4.5   | 1 000   |                   |          |                   |          |                   |       | 35 300            | 1 000              | 247               | 7.0              |
| M 5     |         |                   |          |                   | -        |                   |       | 100 000           | 2 830              | 618               | 17.              |
| M 5.5   | 10 000  |                   | -        |                   |          |                   |       | 353 000           | 10 000             | 2 470             | 70.              |
| M 6     |         |                   |          |                   |          |                   |       | 1 000 000         | 28 300             | 6 180             | 175              |
| M 6.5   | 100 000 |                   |          |                   |          |                   |       | 3 350 000         | 100 000            | 24 700            | 700              |

Cn = Concentrazione massima permessa part./m³

N = Numero di classificazione ISO

D = dimensione della particella in  $\mu m$ 

0,1 = Costante con dimensioni in  $\mu m$ 

$$Cn = 10^{N} \times \left[\frac{0.1}{D}\right]^{2.08}$$

|                        |         |         | 14644-1 |        |         |         |
|------------------------|---------|---------|---------|--------|---------|---------|
| ISO 14644-1<br>Classes | Class 3 | Class 4 | Class 5 | Class6 | Class 7 | Class 8 |
| FS 209                 | Class   | Class   | Class   | Class  | Class   | Class 6 |
| Classes                | 1       | 10      | 100     | 1000   | 10 000  | 100 000 |

F. Bosi - INFN-PI

### Classificazione Clean Rooms (Int. Std.)

#### FLUSSO UNIDIREZIONALE TIPO VERTICALE

Velocità e ricambi d'aria in clean rooms (IES-RP-CC012.1)

| Classe<br>di purezza | Cleanliness<br>Class | Velocità media<br>flusso d'aria* | Ricambi<br>d'aria | Efficienza min.<br>filtri finali | Ubicazione dei<br>filtri finali | Area occupate dai filtri** |
|----------------------|----------------------|----------------------------------|-------------------|----------------------------------|---------------------------------|----------------------------|
| dell'aria            | ė.                   |                                  |                   | 87                               |                                 | 22.3                       |
| Fed, Std. 209E       | Unità Inglesi        | m/s                              | vol/h             | %                                |                                 | %                          |
| M 1 e oltre          | < 1                  | 0,30 - 0,50                      | 360 - 600         | 99,999995                        | Terminale                       | 90 - 100                   |
| M 1.5 e M 2          | 1 e 3                | 0,30 - 0,45                      | 360 - 540         | 99,99995                         | Terminale                       | 90 - 100                   |
| M 2.5 e M 3          | 10 e 30              | 0,25 - 0,45                      | 300 - 540         | 99,9995                          | Terminale                       | 90 - 100                   |
| M 3.5 e M 4          | 100 e 300            | 0,20 - 0,40                      | 240 - 480         | 99,999                           | Terminale                       | 90                         |

<sup>\*</sup> Per clean rooms standard con controsoffitto installato a 3 m di altezza.

#### FLUSSO NON UNIDIREZIONALE E MISTO TIPO VERTICALE

Numero di ricambi d'aria raccomandati in clean rooms.

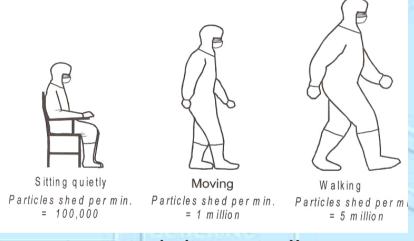
| Classe<br>di purezza<br>dell'aria<br>Fed. Std. 209E | Cleanliness Class Unità Inglesi | Velocità media<br>su filtri finali | Ricambi<br>d'aria | Efficienza min.<br>filtri finali<br>% | Ubicazione<br>dei filtri finali | Area occupata<br>dai filtri** |
|-----------------------------------------------------|---------------------------------|------------------------------------|-------------------|---------------------------------------|---------------------------------|-------------------------------|
| M 3.5 e M 4                                         | 100 e 300                       | 0,40 - 0,80                        | 240 - 480         | 99,9995                               | Terminale                       | 20 - 50                       |
| M 4.5 e M 5                                         | 1 000 e 3 000                   | 0,45 - 0,85                        | 40 - 120          | 99,999                                | Terminale                       | 10 - 20                       |
| M5.5eM6                                             | 10 000 e 30 000                 | 0,75 - 2,50                        | 20 - 40           | 99,99                                 | Term./Canal.                    | 10 - 20                       |
| M 6.5 e M 7                                         | 1000000e3000000                 | 0,75 - 3,00                        | 10 - 20           | 95                                    | Canalizzata                     | 5 - 10                        |

<sup>\*\*</sup>Area occupata dai filtri terminali distribuiti sul controsoffitto rispetto alla superficie totale della clean room; nel caso di filtri finali canalizzati l'area occupata è riferita a diffusori convenzionali senza filtro.

<sup>\*\*</sup>Area occupata dai filtri terminali distribuiti sul controsoffitto rispetto alla superficie totale della clean room.

#### Contaminazione

Il Personale della Clean Room e' un importante sorgente di contaminazione.


| Table 1. Common cleanroo                       | m contaminants. |
|------------------------------------------------|-----------------|
| Contaminant                                    | Size (µm)       |
| Human hair                                     | 70-100          |
| Human skin flakes                              | 0.4-10          |
| Pollen                                         | 5-100           |
| Mold                                           | 2-20            |
| Smoke                                          | 0.01-1          |
| Household dust                                 | 0.05-100        |
| Bacteria                                       | 0.25-10         |
|                                                |                 |
| Table 2. Particle generatio<br>(≥0.3 µm/min.). | on rate         |
| Motionless/sitting/standing                    | 100,000         |
| Head, arm, neck, leg motion                    | 500,000         |
| All of the above with foot motio               | n 1,000,000     |
| Standing to sitting position                   |                 |
| and vice-versa                                 | 2.500.000       |

5,000,000

7,500,000

10,000,000

#### Dimensioni dei contaminanti



Quantita' di particelle prodotte / min >0,5 mm

Il Controllo della Contaminazione del personale e' fondamentale per mantenere i livelli di pulizia richiesti!!



F. Bosi - INFN-PI

Walking at 2.0 mph

Walking at 3.5 mph

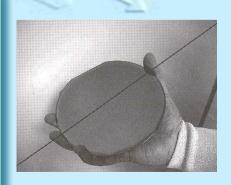
Walking at 5.0 mph

#### Contaminazione

Durante uno starnuto, un colpo di tosse o piu' semplicemente parlando, si espelle un notevole quantitativo di particelle di saliva



Particelle emesse Durante uno starnuto


Danneggiamento certo dei sensori in assenza di protezione



6/65

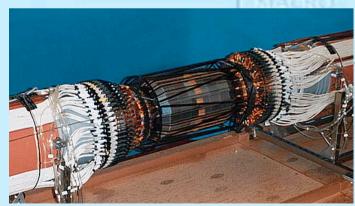
Particelle emesse pronunciando la lettera "f"

|                         | Particelle inerti<br>(1-100mm) | Microbi |
|-------------------------|--------------------------------|---------|
| Starnuto                | 1 000 000                      | 39000   |
| Colpo di tosse          | 5 000                          | 700     |
| Parlare ad<br>alta voce | 250                            | 40      |

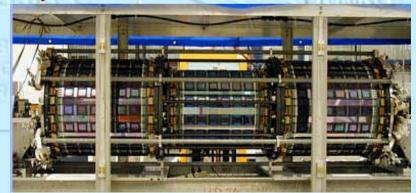


F. Bosi - INFN-PI

R. Tartaglia @ LNGS


#### Le Clean Room nell'INFN

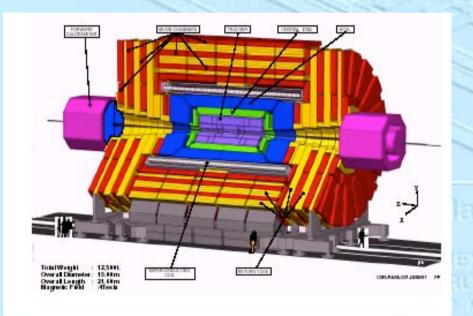
Negli ultimi anni stiamo assistendo ad un numero crescente di realizzazioni di Clean room all'interno dell'INFN (Pisa, Firenze, Padova, Perugia, Bari, Torino, Frascati, Trieste, Catania, Udine, Ferrara, LNGS, etc.)

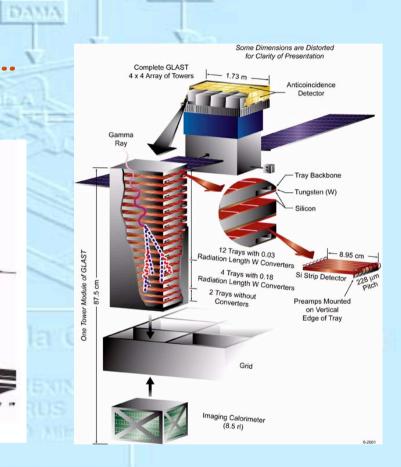

Ciò è dovuto alla utilizzazione estesa di rivelatori sofisticati (camere a fili e rivelatori a semiconduttore) negli esperimenti di fisica delle alte energie...

Oppure alla necessità di evitare la polvere in quanto contiene possibili radio-contaminanti in tracce (famiglie U, Th e K)

#### Alcuni esempi.....






ISL (CDF)

#### Le Clean Room nell'INFN







**CMS** 

**GLAST** 

Sommario (reprise)

DAMA

SSIMB

- Che cos'è una camera pulita
- Caratteristiche di una clean room
- Applicazioni industriali

Diagnia

- Le camere pulite nell'INFN
- Le peculiari applicazioni @ LNGS
- Aspetti di sicurezza legati alla operatività delle Clean Rooms

i crams

### Sostanze "comunemente" adoperate ...

Di certo non è facile elencare tutte le possibili sostanze "comunemente" adoperate negli apparati sperimentali, ma di certo i parametri più importanti da valutare sono:

- ✓ il "range" di infiammabilità
- ✓ la tossicità
- √ le quantità in gioco

#### E di conseguenza...

- ✓ il rischio di incendio
- ✓ il rischio di esposizione alla sostanza e/o ai vapori della
- √ sostanza
- ✓ le necessità di smaltimento nella normale operatività
- le necessità operative in condizioni di emergenza (incendio,
- sversamento, etc.)



## L'operatività nelle Clean Rooms.

- Procedure di accesso ben dettagliate
- Compatibilità delle operazioni in corso
- Sistemi di interlock ben congegnati
- Moduli di "check-in" vs. "check-out"
- © Corretta manutenzione dei filtri (€€€€€ !!)
- © Corretta gestione del vestiario
- Formazione del personale (Ditte fornitrici propongono corsi in merito)

I CHAINS

DAMA

- Rischio di isolamento
- Rischio meccanico
- Rischio Chimico/Tossicologico
- Rischio incendio (legato al rischio chimico, in parte)
- Rischio di sovraffollamento (vie di esodo)
- Rischio biologico/tossicologico
- Rischio di caduta dall'alto (LNGS)
- © Compatibilità dei DPI con le operazioni in Clean Room

(crans)

#### Rischio di isolamento

Il problema di fondo rimane sempre la particolare configurazione delle clean rooms:

- ambienti separati e "praticamente a tenuta"
  - $\Delta P$  "dinamico" predeterminato
  - esistenza di "shoe-barrier" nello spogliatoio
  - confomazione a volte particolarmente angusta
  - possibilità di lavorare "da soli"
  - creazione di "pareti fragili", ben indicate, evitando così maniglioni antipanico e porte di sicurezza
  - vie di esodo all'esterno da mantenere sgombre
  - procedure per assicurare il lavoro "in coppia"

DAMA

Rischio meccanico

E' strettamente legato alla movimentazione automatizzata e/o meno di determinati meccanismi in Clean Room, dove l'ambiente è sicuramente "ristretto"

SSIE II

- assicurarsi del funzionamento dei pulsanti di shut-down
- "shut-down" automatico in caso di urti

1 CHAINS

Rischio chimico/tossicologico Il problema di fondo rimane sempre la particolare tendenza dei ricercatori a lasciare il materiale adoperato sull'ultimo bancone adoperato:

- resine bi-componente
- gas compressi (azoto, etc.)
- prodotti per pulizie a base di alcool iso-propilico
- alcool e/o altri detergenti e/o acidi (in presenza di cappe chimiche)
- ricognizione di tutte le sostanze adoperate!!
- sensori carenza O<sub>2</sub>
- utilizzo di opportuni DPI (maschere con filtro, tipo 3M)
- disponibilità autorespiratori
- limitare l'uso di tali prodotti
- utilizzare armadi all'esterno e pass-box per i vari materiali,
   indipendenti dall'ingresso degli operatori
- moduli di check-in / check-out con descritti i

28-01-2008 materiali che "vengono trasferiti" nella C.R. R. Tartaglia @ LNGS

#### Rischio incendio

Il problema è legato anche alla fase di progettazione inziale:

- impianto di ventilazione generalmente sprovvisto di serrande tagliafuoco
- quantità sostanze "pericolose" adoperate
- calcolo del "carico di incendio"
- eventuale surriscaldamento ventilatori
- utilizzo di macchine per saldature e/o laser
- comprendere "a priori" le esigenze dei vari gruppi sperimentali
- pianificare le varie attività all'interno
- assicurare la perfetta gestione delle vie di esodo

Lemma

Rischio sovraffollamento

La connessione con il rischio incendio è del tutto evidente e quindi si risale alla fase di progettazione iniziale e stesura delle specifiche tecniche:

- Clean Room dimensionata correttamente
- corretta gestione degli accessi, sia per mantenere le classi di pulizia, sia per evitare eventuali problemi di esodo
- gestione gruppi sperimentali che operano in C. R.
- eventuali prove di evacuazione "locali"
- formazione del personale
- moduli di ingresso/uscita e/o prenotazione della C.R.

#### Rischio biologico/tossicologico

Estremamente importante per gli amibienti tipo cliniche ospedaliere, laboratori di biologia (problemi legati ai batteri), etc.

- Utilizzo di DPI errati (non più la mascherina da polvere, in determinati casi)
  - "ignoranza" in materia di igiene
  - formazione del personale
  - procedure estreramente rigorose
  - moduli di ingresso/uscita e/o prenotazione della C.R.
  - decontaminazione del vestiario, ove necessario,
  - docce di "lavaggio"
  - ambienti decontaminazioni personale (doccia d'aria, etc.)

i cramsa.

Rischio caduta dall'alto/ compatibilità DPI

Questa tipologia di rischio è particolarmente legata all'attività presso i LNGS. Si tratta comunque di un rischio meccanico.

- Utilizzo di DPI in concomitanza con le esigenza da camera pulita: assicurare la compatibilità dei vari DPI
  - formazione del personale
  - estrema attenzione alle operazioni eseguite
  - precedenza/priorità alla sicurezza più che alla classe della C. R.
  - acquisto e gestione di DPI "normali", pulizia degli stessi e quindi gestione degli stessi solo all'interno della C. R. (esempio: scarpe anti-infortunistiche, evitando l'uso delle sovrascarpe)

Esempi di Moduli di check-in // check-out

Inventario sostanze chimiche

(esempio di una ditta che opera nel settore chimico)

|     | Caratteristiche dell'agente chimico |              |               |                                                                  |         |    |         |        |     |       |  |  |  |
|-----|-------------------------------------|--------------|---------------|------------------------------------------------------------------|---------|----|---------|--------|-----|-------|--|--|--|
| 1   | 2                                   | 3            | 5             | 6a                                                               | 6b      | 6c | 6d      |        |     |       |  |  |  |
| Pos | Nome<br>prodotto                    | Dislocazione |               | Motivo della presenza Componenti chimici Stato fisico principali |         |    |         |        |     |       |  |  |  |
|     | prodotto                            |              | Materia prima | Prodotto intermedio                                              | Rifiuto | %  | Liquido | Solido | Gas | Altro |  |  |  |
| 1   |                                     |              |               |                                                                  |         |    |         |        |     |       |  |  |  |
| 2   |                                     |              |               |                                                                  |         |    |         |        |     |       |  |  |  |
| 3   |                                     |              |               |                                                                  |         |    |         |        |     |       |  |  |  |

|                         |                          |                 |      | Ca        | aratterist | tiche d | lell'agen            | te chimico                 |                 |                           |                     |
|-------------------------|--------------------------|-----------------|------|-----------|------------|---------|----------------------|----------------------------|-----------------|---------------------------|---------------------|
| 7                       | 7 8 9a 9b 9c 9e 9f 9g 10 |                 |      |           |            |         |                      |                            | 11a             | 11b                       | 11c                 |
| Punto di infiammabilità | pН                       | Incompatibilità |      |           |            |         |                      | Reazione<br>prevista       | Classificazio   | ne ai sensi de<br>25/2002 | el D.Lgs            |
| °C                      | рН                       | Acidi           | Basi | Ossidanti | Riducenti  | Metalli | Altro<br>(specific.) | Prodotti di decomposizione | Classificazione | Frasi di<br>rischio R     | Via di assorbimento |
|                         |                          |                 |      |           |            |         |                      |                            |                 |                           |                     |

|                        |                     |                   | Car         | atteristic  | che dell'           | agente               | chimico                         |                                                     |     |     |                      |
|------------------------|---------------------|-------------------|-------------|-------------|---------------------|----------------------|---------------------------------|-----------------------------------------------------|-----|-----|----------------------|
| 12a                    | 12b                 | 12c               | 13a         | 13b         | 13c                 | 13d                  | 14                              | 15a                                                 | 15b | 15c | 15d                  |
| Mod                    | dalità di trasporto | )                 |             | Tipo di sto | ccaggio             | -                    | Quantità<br>massima<br>stoccata | Trasferimento all'utilizzo                          |     |     |                      |
| Automezzi<br>cassonati | Autocisterne        | Altro (specific.) | Cisternette | Serbatoio   | Sacchi/<br>Big Bags | Altro<br>(specific.) | kg o litri                      | Automezzi cassonati Tubazioni Carrelle elevatori (s |     |     | Altro<br>(specific.) |
|                        |                     |                   |             |             |                     |                      |                                 |                                                     |     |     |                      |

- Esempi di Moduli di check-in // check-out
  - orario di ingresso;
  - orario di uscita;
  - sostanze chimiche introdotte
     (tipologia e quantità, ubicazione);
  - ultima pulizia ri-organizzazione avvenuta;
  - firma dell'ultimo ad uscire.

| IN | OUT | Pulizia<br>(ora) | Tipo<br>Sostanza | Frasi<br>(R+S) | Q<br>(litri) | Ubicazione | Device ON | Firma |
|----|-----|------------------|------------------|----------------|--------------|------------|-----------|-------|
|    |     |                  |                  |                |              |            |           |       |
|    |     |                  |                  |                |              |            |           |       |
|    |     |                  |                  |                |              |            |           |       |
|    |     |                  |                  |                |              |            |           |       |
|    |     |                  |                  |                |              |            |           |       |

#### Conclusioni - 1

L'INFN è una realtà davvero particolare, per la configurazione, per la varietà di strutture, per le molteplici attività, per l'elevata tecnologia, per la peculiarità delle sostanze adoperate negli Esperimenti, per la necessità di lavorare anche all'estero.

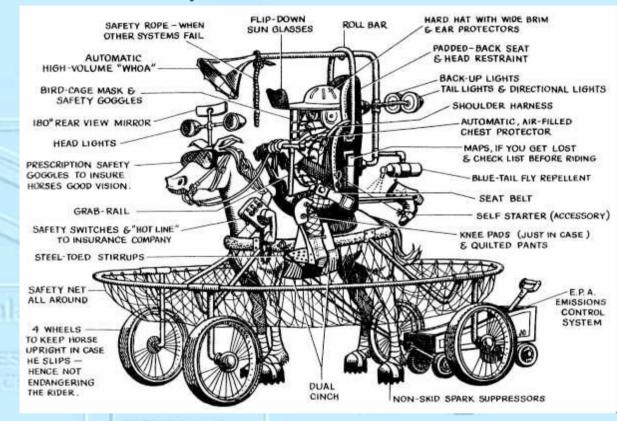
Le linee guida possono aiutare, ma non risolvono tutti i problemi.

Quella che dovrebbe cambiare, col tempo, è l'attitudine nei confronti dell'argomento "sicurezza", da parte dei ricercatori, ma da parte di tutti.





Physicists Attitudes...


R. Tartaglia @ LNGS

#### Comics (Safety Staff) [Dispositivi di Protezione]

Non bisogna esagerare con le procedure e/o con la burocratizzazione.

Focus on "sensibilizzazione" con corsi continui ed obbligatori.

Potrebbe essere utile organizzare degli "audit" tra le varie strutture, da concretizzare nel prossimo



All'interno dell'INFN e tra l'INFN ed il mondo esterno.

Grazie ancora dell'attenzione e della collaborazione

Email: Roberto. Tartaglia@Ings.infn.it URL: www.lngs.infn.it

#### Conclusioni



GIVE INSTRUCTIONS CLEARLY
TO AVOID MISINTERPRETATION

6/65 DAMA DBA SSIMB 1 crams

Thanks a lot for Your attention and co-operation!!!!!

Email: Roberto. Tartaglia@lngs.infn.it