# Probing Ultralight Dark Matter with Binary Pulsars 

Pavel Kůs, Federico R. Urban, Diana L. Nacir

CEICO, Prague
September 12, 2023

## Outline

(1) Binary pulsars
(2) Pulsar timing
(3) Ultralight dark matter and its effect on binary systems
(4) Results

(5) Conclusion

## Outline

(1) Binary pulsars

## (2) Pulsar timing

## (3) Ultralight dark matter and its effect on binary systems

## Binary pulsar

- pulsar $=$ "pulse" + "star"
$=$ highly magnetised rotating neutron star which emits pulses of light, represents a very stable clock

(a) A pulsar

(b) A binary pulsar (it has 1 pulsar only)


## Lighthouse effect



Figure 2: Lighthouse effect - idea

## Keplerian formalism

- 6 orbital parameters, e.g.: $a, e, i, \Omega, \omega, t_{0}$


Figure 3: Orbital parameters

## Perturbation of Keplerian orbits



Figure 4: Perturbed Keplerian orbit
$\rightarrow$ Post-Keplerian formalism

$$
\dot{a}=\frac{2}{\omega_{b}}\left(\frac{F_{r} e}{\sqrt{1-e^{2}}} \sin \theta+\frac{F_{\theta}}{r} a \sqrt{1-e^{2}}\right)
$$

## Outline

(1) Binary pulsars
(2) Pulsar timing
(3) Ultralight dark matter and its effect on binary systems
(4) Results
(5) Conclusion

## Timing model

- basic quantities:
$N \ldots$ phase of the pulsar when emitted a pulse
$t$... pulse's time of arrival
$N_{0} \ldots$ reference phase
$t_{0} \ldots$ reference time
- "ideal" /trivial case:

$$
N=N_{0}+\nu\left(t-t_{0}\right)
$$

- to describe reality is more difficult, $N$ is a complicated function


## Timing model



Figure 5: What makes $N$ complicated in terms of $t$

Spoiler alert: We want to add one more effect to the picture, the interaction of ULDM with matter (components of the binary system)!

## Timing model

- once we have a model for $N$ and first parameter estimates, we can calculate the time residuals $\delta t$ :

$$
-\nu^{(1)} \delta t=\left.\frac{\partial N}{\partial N_{0}}\right|_{(1)} \delta N_{0}+\ldots,
$$

where $\delta N_{0}$ is the difference between the actual and estimated value, etc.

- contributions to $\delta t$ :

1. inaccuracy in parameter determination
2. oversimplified model
3. noise

## Timing model



Figure 6: Example of time residuals calculated with PINT

## Outline

(1) Binary pulsars
(2) Pulsar timing
(3) Ultralight dark matter and its effect on binary systems
(5) Conclusion

## (Ultralight) dark matter

- bosonic particles with $m \sim 10^{-22} \div 1 \mathrm{eV}$
- huge phase space occupanion number
$\rightarrow$ wave nature, creates interference patterns, locally described by a classical field (scalar, vector, tensor) $\Phi=\Phi_{0} r \cos \left(m_{\Phi} t+B\right)$


Figure 7: Dark matter models - range of masses

## ULDM-binary system interaction

- if $m \sim 10^{-22} \div 10^{-18} \mathrm{eV}$, negligable backreaction
- for simplificity, scalar field and universal interaction with

$$
M_{A}(\Phi)=\bar{M}_{A}(1+\lambda \Phi)
$$

- perturbation of binary dynamics by ULDM:

$$
\begin{aligned}
\ddot{\vec{r}} & =-(1+\lambda \Phi) \frac{G \bar{M}_{T} \vec{r}}{r^{3}}-\lambda \dot{\Phi} \dot{\vec{r}}=-\frac{G \bar{M}_{T} \vec{r}}{r^{3}}+\vec{F}, \\
\rightarrow \frac{\dot{a}}{a} & =-\frac{2 \lambda \Phi e \omega_{b}}{\sqrt{1-e^{2}}} \frac{a^{2}}{r^{2}} \sin \theta-\frac{2 \lambda \dot{\Phi}\left(1+e^{2}+2 e \cos \theta\right)}{\left(1-e^{2}\right)}
\end{aligned}
$$

## Outline

(1) Binary pulsars
(2) Pulsar timing
(3) Ultralight dark matter and its effect on binary systems

4 Results

## (5) Conclusion

## Constraining ULDM with NANOGrav data

1. constructing a probability distribution function for using Bayes' theorem
2. special assumption: $\delta t$ comes from UDLM and noise (Gaussian, white) only:

$$
\delta t=\delta t^{\mathrm{DM}}+\delta t^{\mathrm{PN}}
$$

3. the present results cannot rule out/confirm the ULDM model, but place a stronger constraint on the value of the coupling constant $\alpha$

$$
\sigma_{\alpha}^{a}=2.55 \times 10^{11} \frac{\sigma_{a}}{x\left(t_{0, a}\right)} \frac{m_{\Phi} / \mathrm{eV}}{\sqrt{\rho_{a} /\left(\mathrm{GeV} / \mathrm{cm}^{3}\right)}} \frac{1}{\sqrt{\overrightarrow{\tilde{F}}_{a}^{2}+\overrightarrow{\tilde{E}}_{a}^{2}}},
$$

where $\overrightarrow{\tilde{F}}_{a}^{2}$ and $\overrightarrow{\tilde{E}}_{a}^{2}$ some complicated functions, $\sigma$ is the noise level and $x \equiv a_{\text {pulsar }} \sin i$.

## Low-eccentric binary systems

ULDM and Gaussian noise only, combination of 23 ELL1 pulsars


Figure 8: Blue line - constraint

## High-eccentric binary systems



Figure 9: Blue line - constraint

## Outline

(1) Binary pulsars
(2) Pulsar timing
(3) Ultralight dark matter and its effect on binary systems
(4) Results
(5) Conclusion

## Conclusion and Outlook

- We probe the particular model of ULDM, which includes interaction with ordinary matter via effective coupling constant $\lambda$, with binary pulsars.
- We achieve competing or even stronger constraints than those found in the literature.
- It has not been shown here, but we have developed a procedure that can account for multiple contributions to $\delta t$, not just ULDM and noise.
- We will extend the work to vector and tensor ULDM.


# Thank you for your attention! 

Pavel Kůs

Supervisors<br>Federico R. Urban<br>Diana L. Nacir

