

Axion field tomography: cosmic birefringence from the epochs of recombination and reionization

Patricia Diego-Palazuelos, Roger de Belsunce, Steven Gratton, Blake Sherwin

1st Training School COST Action COSMIC WISPers
Universita' del Salento, Lecce
September 11 – 14 2023

Searching for ULA through their coupling to EM

ALP can couple to EM through a Chern-Simons

interaction

$$\frac{1}{4}g_{\phi\gamma}\phi F_{\mu\nu}\tilde{F}_{\mu\nu}$$

rotation of the plane of linear polarization clockwise on the sky

 $\beta = -\frac{1}{2}g_{\phi\gamma} \int \frac{\partial \phi}{\partial t} dt$

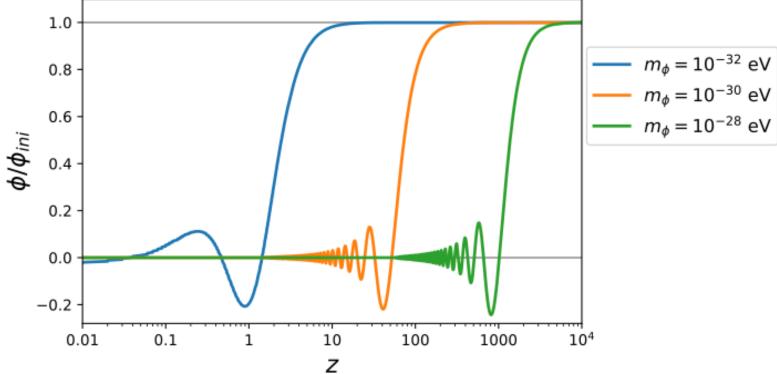
Komatsu [arXiv:2202.13919]

Searching for ULA through their coupling to EM

ALP can couple to EM through a Chern-Simons

interaction

$$\frac{1}{4}g_{\phi\gamma}\phi F_{\mu\nu}\tilde{F}_{\mu\nu}$$


rotation of the plane of linear polarization

clockwise on the sky

$$\beta = -\frac{1}{2}g_{\phi\gamma} \int \frac{\partial \phi}{\partial t} dt$$

Komatsu [arXiv:2202.13919]

ALP as dark energy $10^{-32} \text{ eV} \lesssim m_{\phi} \lesssim 10^{-28} \text{ eV}$

Searching for ULA through their coupling to EM

ALP can couple to EM through a Chern-Simons

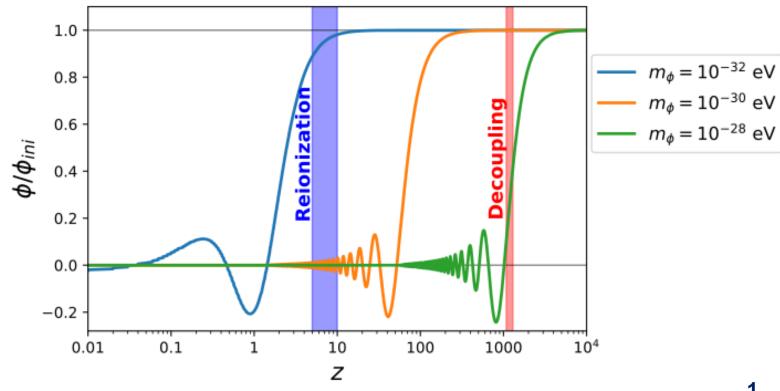
interaction

$$\frac{1}{4}g_{\phi\gamma}\phi F_{\mu\nu}\tilde{F}_{\mu\nu}$$

rotation of the plane of linear polarization clockwise on the sky

 $\beta = -\frac{1}{2}g_{\phi\gamma} \int \frac{\partial \phi}{\partial t} dt$

Komatsu [arXiv:2202.13919]

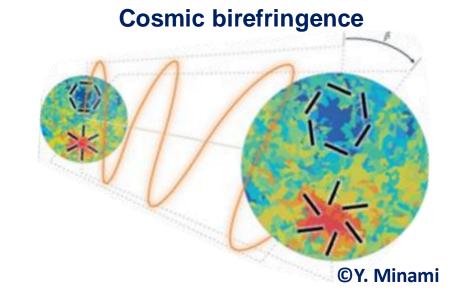

ALP as dark energy $10^{-32} \text{ eV} \lesssim m_{\phi} \lesssim 10^{-28} \text{ eV}$

CMB offers two observational windows

- Small angular scales (high-ℓ) are sensitive to β_{dec}
- Large angular scales (low-ℓ) are sensitive to β_{reio}

Tomographic view of the ULA field at z≈10 and z≈1000

> Sherwin&Namikawa[arXiv:2108.09287] Nakatsuka+[arXiv:2203.08560]



Cosmic birefringence rotates the observed CMB

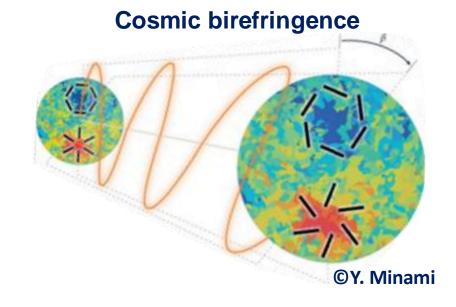
$$\begin{pmatrix} E_{\ell m}^{\rm o} \\ B_{\ell m}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm cmb} \\ B_{\ell m}^{\rm cmb} \end{pmatrix}$$

so the observed angular power spectrum becomes

$$\begin{split} C_\ell^{EB,\mathrm{o}} &= \frac{1}{2} \sin(4\beta) \Big(C_\ell^{EE,\mathrm{cmb}} - C_\ell^{BB,\mathrm{cmb}} \Big) \\ &\quad + \cos(4\beta) C_\ell^{EB,\mathrm{cmb}} \end{split}$$



Cosmic birefringence rotates the observed CMB

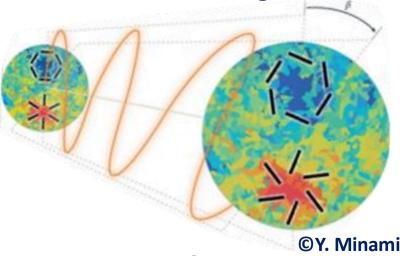

$$\begin{pmatrix} E_{\ell m}^{\rm o} \\ B_{\ell m}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm cmb} \\ B_{\ell m}^{\rm cmb} \end{pmatrix}$$

so the observed angular power spectrum becomes

$$\begin{split} C_\ell^{EB,\mathrm{o}} &= \frac{1}{2} \sin(4\beta) \Big(C_\ell^{EE,\mathrm{cmb}} - C_\ell^{BB,\mathrm{cmb}} \Big) \\ &\quad + \cos(4\beta) C_\ell^{EB,\mathrm{cmb}} \end{split}$$

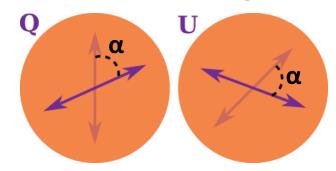
Base of most methodologies applied in the past

Cosmic birefringence rotates the observed CMB


$$\begin{pmatrix} E_{\ell m}^{\rm o} \\ B_{\ell m}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm cmb} \\ B_{\ell m}^{\rm cmb} \end{pmatrix}$$

so the observed angular power spectrum becomes

$$\begin{split} C_\ell^{EB,\mathrm{o}} &= \frac{1}{2} \sin(4\beta) \Big(C_\ell^{EE,\mathrm{cmb}} - C_\ell^{BB,\mathrm{cmb}} \Big) \\ &\quad + \cos(4\beta) C_\ell^{EB,\mathrm{omb}} \\ C_\ell^{EB,\mathrm{o}} &= \frac{1}{2} \tan(4\beta) \Big(C_\ell^{EE,\mathrm{o}} - C_\ell^{BB,\mathrm{o}} \Big) \end{split}$$


Base of most methodologies applied in the past

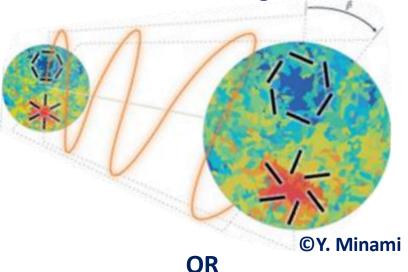
Cosmic birefringence

OR

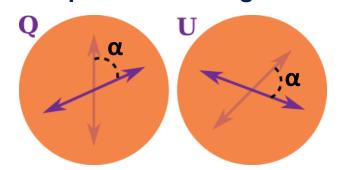
Miscalibration of the detector's polarisation angle

Unknown α miscalibration Completely degenerate with birefringence

Krachmalnicoff+[arXiv:2111.09140]


The observed signal is actually

$$\begin{pmatrix} E_{\ell m}^{\rm o} \\ B_{\ell m}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos(2\alpha + 2\beta) & -\sin(2\alpha + 2\beta) \\ \sin(2\alpha + 2\beta) & \cos(2\alpha + 2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm cmb} \\ B_{\ell m}^{\rm cmb} \end{pmatrix}$$


so that EB yields $\alpha+\beta$

$$C_{\ell}^{EB,o} = \frac{1}{2} \tan(4\alpha + 4\beta) \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right)$$

Cosmic birefringence

Miscalibration of the detector's polarisation angle

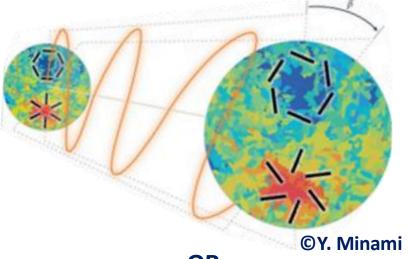
Unknown α miscalibration Completely degenerate with birefringence

Krachmalnicoff+[arXiv:2111.09140]

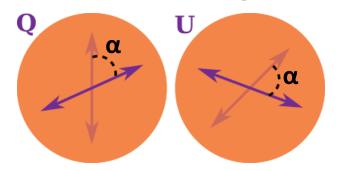
The observed signal is actually

$$\begin{pmatrix} E_{\ell m}^{\rm o} \\ B_{\ell m}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos(2\alpha + 2\beta) & -\sin(2\alpha + 2\beta) \\ \sin(2\alpha + 2\beta) & \cos(2\alpha + 2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm cmb} \\ B_{\ell m}^{\rm cmb} \end{pmatrix}$$

so that EB yields $\alpha+\beta$


$$C_{\ell}^{EB,o} = \frac{1}{2} \tan(4\alpha + 4\beta) \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right)$$

Requires absolute calibration of instrumental polarisation angles


Previous measurements limited to ≈ 0.5°-1°

OR

Miscalibration of the detector's polarisation angle

Unknown α miscalibration Completely degenerate with birefringence

Krachmalnicoff+[arXiv:2111.09140]

$$\beta = -\frac{1}{2}g_{\phi\gamma}\int\frac{\partial\phi}{\partial t}dt \qquad \begin{array}{ll} \text{Galactic foreground emission not significantly affected by birefringence} \\ \text{Use foregrounds as our calibrator} \qquad \qquad \begin{array}{ll} \text{Minami+[arX)} \\ \text{One of the property of the property$$

Minami+[arXiv:1904.12440]

Minami&Komatsu[arXiv:2006.15982]

$$\beta = -\frac{1}{2}g_{\phi\gamma}\int\frac{\partial\phi}{\partial t}dt \qquad \text{Galactic foreground emission not} \\ \text{Use foregrounds as our calibrator}$$

Galactic foreground emission not significantly affected by birefringence

Minami+[arXiv:1904.12440]

Minami&Komatsu[arXiv:2006.15982]

Observed signal is a rotation of the CMB and Galactic foreground emissions

$$\begin{pmatrix} E_{\ell m}^{\text{o}} \\ B_{\ell m}^{\text{o}} \end{pmatrix} = \begin{pmatrix} \cos(2\alpha) - \sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\text{fg}} \\ B_{\ell m}^{\text{fg}} \end{pmatrix} + \begin{pmatrix} \cos(2\alpha + 2\beta) - \sin(2\alpha + 2\beta) \\ \sin(2\alpha + 2\beta) & \cos(2\alpha + 2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\text{cmb}} \\ B_{\ell m}^{\text{cmb}} \end{pmatrix}$$

so the observed EB angular power spectrum is

$$C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{1}{\cos(4\alpha)} C_{\ell}^{EB,fg} + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,cmb} - C_{\ell}^{BB,cmb} \right)$$

$$\beta = -\frac{1}{2}g_{\phi\gamma}\int\frac{\partial\phi}{\partial t}dt \qquad \text{Galactic foreground emission not} \\ \text{Use foregrounds as our calibrator}$$

Galactic foreground emission not significantly affected by birefringence

Minami+[arXiv:1904.12440] Minami&Komatsu[arXiv:2006.15982]

Observed signal is a rotation of the CMB and Galactic foreground emissions

$$\begin{pmatrix} E_{\ell m}^{\rm o} \\ B_{\ell m}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos(2\alpha) - \sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm fg} \\ B_{\ell m}^{\rm fg} \end{pmatrix} + \begin{pmatrix} \cos(2\alpha + 2\beta) - \sin(2\alpha + 2\beta) \\ \sin(2\alpha + 2\beta) & \cos(2\alpha + 2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm cmb} \\ B_{\ell m}^{\rm cmb} \end{pmatrix}$$

so the observed EB angular power spectrum is

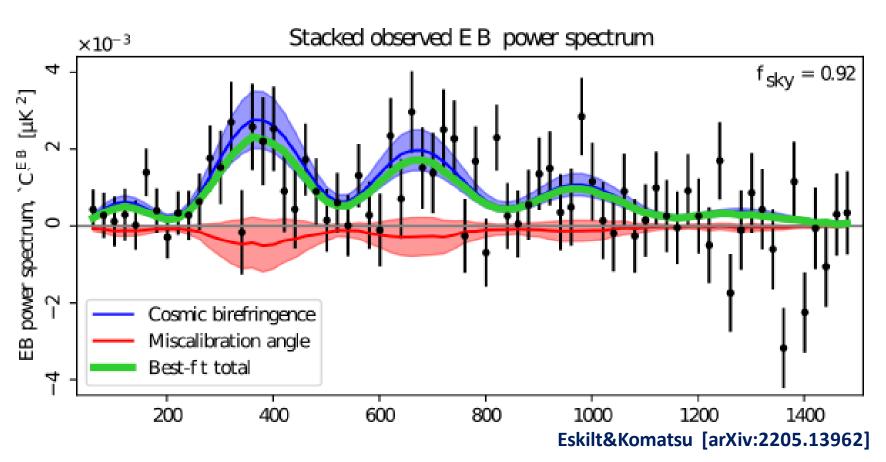
$$C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{1}{\cos(4\alpha)} C_{\ell}^{EB,fg} + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,cmb} - C_{\ell}^{BB,cmb} \right)$$

Synchrotron

Synch EB statistically compatible with null

Martire+[arXiv:2110.12803] QUIJOTE [arXiv:2301.05113]

Dust

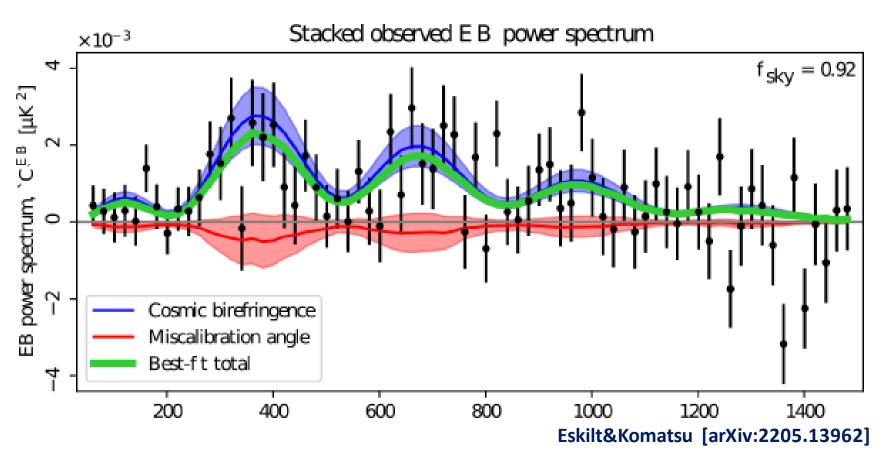

Misalignment between dust filaments and Galactic magnetic fields creates TB and EB correlations Clark+[arXiv:2105.00120] Cukierman+[arXiv:2208.07382]

Planck reported:

- Dust TB > 0
- A hint of dust EB > 0

Planck Collab [arXiv:1801.04945]

Promising hint of a non-null β_{dec} at high- ℓ


Tighthest constraint to date (3.6σ)

$$\beta = 0.342^{\circ} {}^{+0.094^{\circ}}_{-0.091^{\circ}}$$

from the analysis of *Planck* and WMAP data

Eskilt&Komatsu [arXiv:2205.13962]

Promising hint of a non-null β_{dec} at high- ℓ

Tighthest constraint to date (3.6σ)

$$\beta = 0.342^{\circ} + 0.094^{\circ} \\ -0.091^{\circ}$$

from the analysis of *Planck* and WMAP data

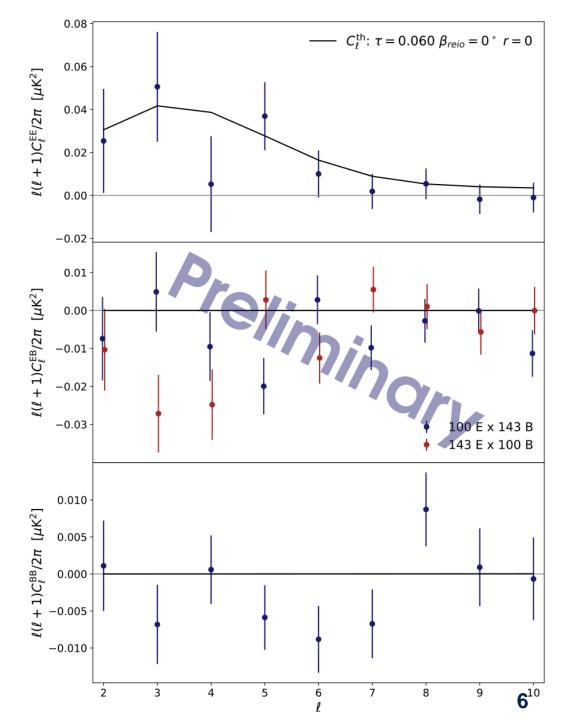
Eskilt&Komatsu [arXiv:2205.13962]

Robust against instrumental systematics

PDP+[arXiv:2210.07655] Eskilt+[arXiv:2305.02268]

Sensitive to dust EB

- Templates modeling dust as a modified blackbody
- Estimate the misalignment between filaments and magnetic fields


PDP+[arXiv:2201.07682]

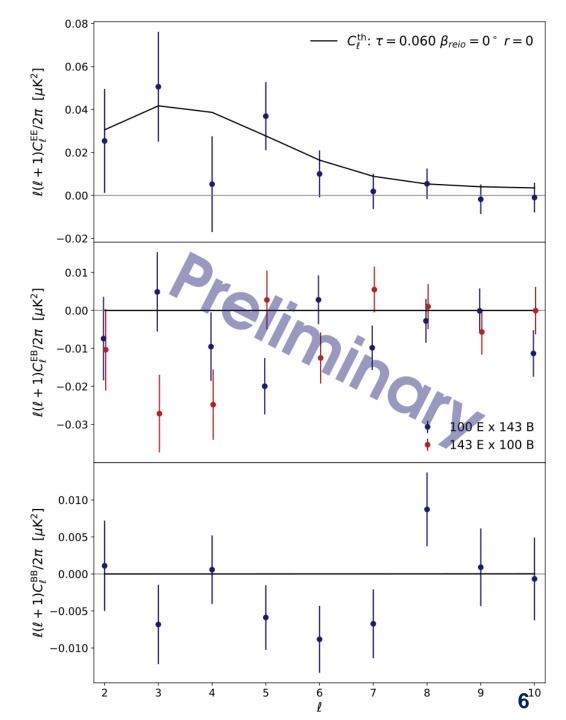
Measuring β_{reio} from ℓ≤10

Work with CMB instead of frequency maps
Remove foregrounds by fitting and subtracting templates of synchrotron and dust emission

CMB spectra from 100 GHz x 143 GHz of *Planck* SRoll2.0

Delouis+[arXiv:1901.11386]

Measuring β_{reio} from ℓ≤10


Work with CMB instead of frequency maps
Remove foregrounds by fitting and subtracting templates of synchrotron and dust emission

CMB spectra from 100 GHz x 143 GHz of *Planck* SRoll2.0

Delouis+[arXiv:1901.11386]

$$P(\Theta|d,\mathcal{M}) \propto \mathcal{L}(d|\Theta,\mathcal{M}) \Pi(\Theta|\mathcal{M})$$

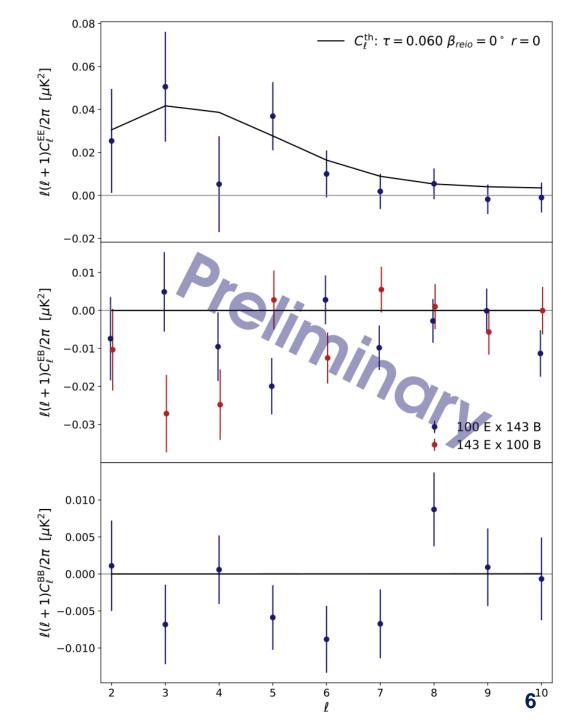
Sample over $\Theta = \{\tau, \ \beta_{reio}, \ \beta_{dec}, \ \alpha_{100}, \ \alpha_{143}, \ r=0\}$ Gaussian prior on $\beta_{dec}, \ \alpha_{100}, \ \alpha_{143}$ from high- ℓ analysis

Measuring β_{reio} from ℓ≤10

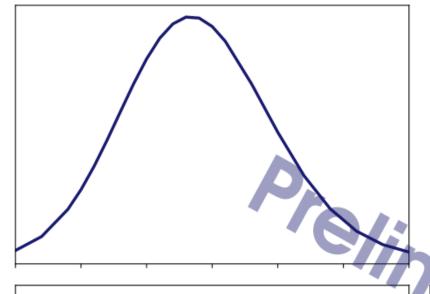
Work with CMB instead of frequency maps
Remove foregrounds by fitting and subtracting templates of synchrotron and dust emission

CMB spectra from 100 GHz x 143 GHz of *Planck* SRoll2.0

Delouis+[arXiv:1901.11386]


$$P(\Theta|d,\mathcal{M}) \propto \mathcal{L}(d|\Theta,\mathcal{M})\Pi(\Theta|\mathcal{M})$$

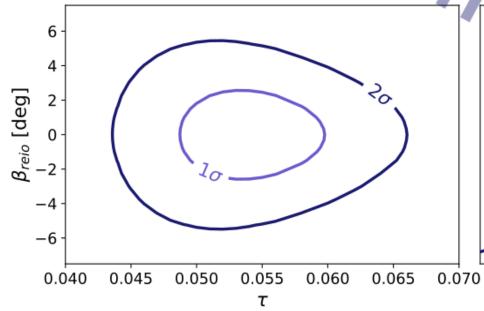
Sample over $\Theta = \{\tau, \ \beta_{reio}, \ \beta_{dec}, \ \alpha_{100}, \ \alpha_{143}, \ r=0\}$ Gaussian prior on $\beta_{dec}, \ \alpha_{100}, \ \alpha_{143}$ from high- ℓ analysis

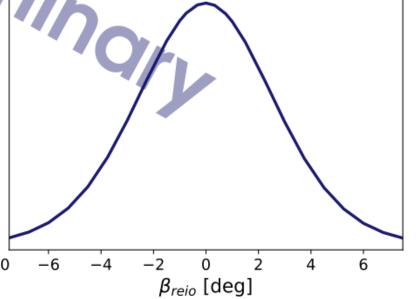

momento

Semi-analytical likelihood-approximation based on the principle of maximum entropy

Gratton [arXiv:1708.08479] de Belsunce+[arXiv:2103.14378] de Belsunce+[arXiv:2207.04903]

EE – BB information




Recover the expected τ - β_{reio} degeneracy

$$C_{\ell}^{EE, o} \approx \cos^2(2\alpha + 2\beta_{reio})C_{\ell}^{EE, reio}$$

$$C_{\ell}^{BB,o} \approx \sin^2(2\alpha + 2\beta_{reio})C_{\ell}^{EE,reio}$$

$$C_{\ell}^{EB,o} \approx \frac{1}{2} \sin(4\alpha + 4\beta_{reio}) C_{\ell}^{EE,reio}$$

Best fit				
τ	0.054 ± 0.005			
β_{reio} [deg]	-0.02 ± 2.68			
β_{dec} [deg]	0.38 ± 0.15			
α_{100} [deg]	-0.38 ± 0.16			
α_{143} [deg]	0.06 ± 0.15			

Outlook

CMB polarization offers a tomographic view into of ALP at z≈10 and z≈1000 through the birefringence angles measured at the largest and smallest angular scales

Promising hint of a $\approx 0.3^{\circ}$ birefringence angle from the epoch of recombination

Preliminary results on the first-ever attempt at simultaneously measuring miscalibration angles and the birefringence angle from the epoch of reionization

- 2.7° sensitivity with EE BB information
- Working towards extending the analysis to EB

Currently limited by data → take this work as a demonstrator of the methodology's potential

If confirmed, the observed signal ...

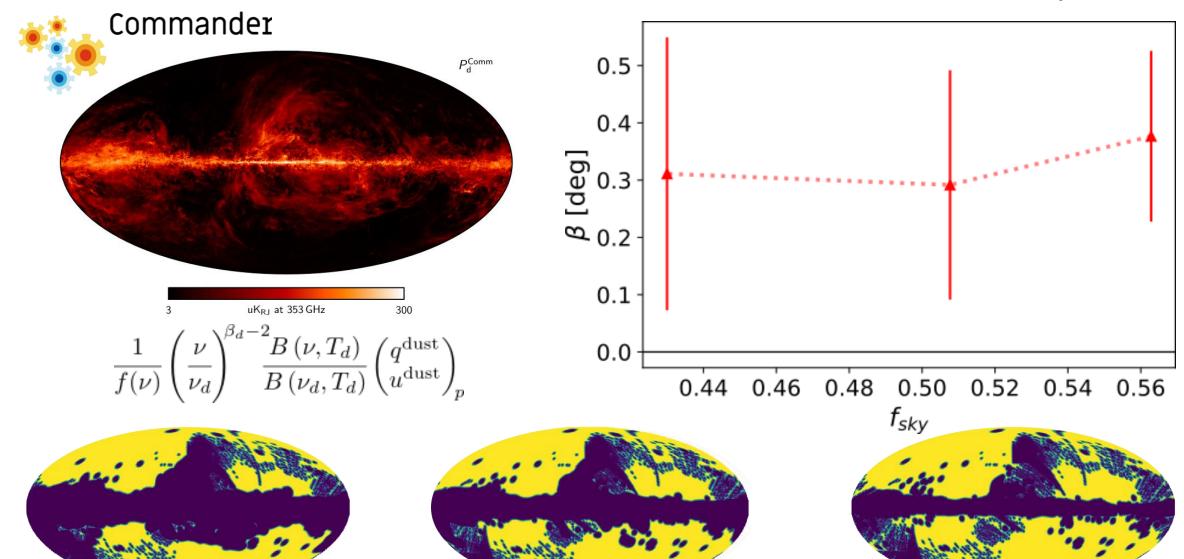
- Could be attributed to an ultra-light axion field with masses around $10^{-31} \, \text{eV} \lesssim m_{\phi} \lesssim 10^{-28} \, \text{eV}$
- Would rule out some simple Grand Unified Theory models Agrawal+[arXiv:2206.07053]
- Would be evidence of parity-violating physics outside the weak interaction

Backup slides

Effect of birefringence on low-l CMB spectra

$$C_{\ell}^{EE,\text{o}} \approx \cos^2(2\alpha + 2\beta_{reio})C_{\ell}^{EE,\text{reio}} + \cos^2(2\alpha + 2\beta_{dec})C_{\ell}^{EE,\text{dec}}$$

$$C_{\ell}^{EB,o} \approx \frac{1}{2}\sin(4\alpha + 4\beta_{reio})C_{\ell}^{EE,reio} + \frac{1}{2}\sin(4\alpha + 4\beta_{dec})C_{\ell}^{EE,dec}$$


$$C_{\ell}^{BB,o} \approx \sin^2(2\alpha + 2\beta_{reio})C_{\ell}^{EE,reio} + \sin^2(2\alpha + 2\beta_{dec})C_{\ell}^{EE,dec} + C_{\ell}^{BB,cmb}$$

 $f_{sky}=0.56$

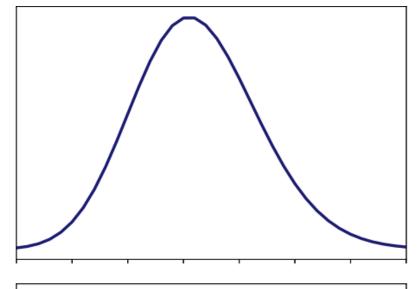
Commander as our sky model

 $f_{sky}=0.43$


Planck SRoll 2.0 data 100, 143, 217, 353 GHz half-mission splits

 $f_{sky}=0.51$

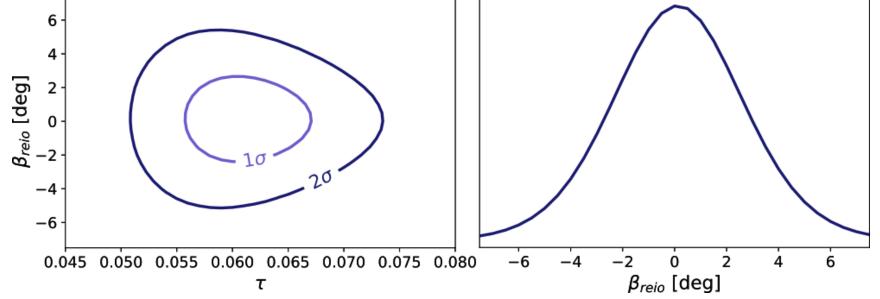
High-ℓ best fit [deg]			
$oldsymbol{eta_{dec}}$	0.38 ± 0.15		
α_{100}	-0.38 ± 0.16		
α ₁₄₃	0.06 ± 0.15		
α ₂₁₇	0.01 ± 0.14		
α ₃₅₃	-0.15 ± 0.13		


Planck SRoll 2.0 data 100, 143, 217, 353 GHz half-mission splits Commander as our sky model

Gaussian prior for low-l analysys

$$\begin{pmatrix} \sigma_{\beta}^{2} & \rho_{\beta-100}\sigma_{\beta}\sigma_{100} & \rho_{\beta-143}\sigma_{\beta}\sigma_{143} \\ \rho_{\beta-100}\sigma_{\beta}\sigma_{100} & \sigma_{100}^{2} & \rho_{100-143}\sigma_{100}\sigma_{143} \\ \rho_{\beta-143}\sigma_{\beta}\sigma_{143} & \rho_{100-143}\sigma_{100}\sigma_{143} & \sigma_{143}^{2} \end{pmatrix} = \begin{pmatrix} (0.15^{\circ})^{2} \\ -0.9307 & (0.16^{\circ})^{2} \\ -0.9595 & 0.8939 & (0.15^{\circ})^{2} \end{pmatrix}$$

EE – BB information



Test on CMB + realistic noise simulations

Not affected by foreground residuals

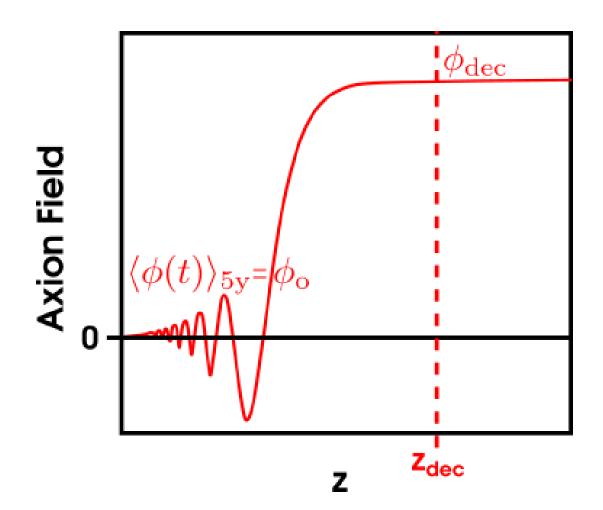
Covariance matrix perfectly describes the data

Parameter	Input	Recovered
τ	0.060	0.061 ± 0.006
β_{reio} [deg]	0.15	0.12 ± 2.56

Searching for ULA through their gravitational imprint

CMB Rogers+[arXiv:2301.08361] kSZ Farren+[arXiv:2109.13268]


Galaxy clustering Laguë+[arXiv:2104.07802]


Galaxy weak lensing Dentler+[arXiv:2111.01199]

Lyman-alpha forest Rogers&Peiris[arXiv:2007.12705]

Dwarf galaxies Dalal&Kravtsov[arXiv:2203.05750]

21cm observations Flitter&Kovetz[arXiv:2207.05083]

Suppose that ALP field is homogeneous and varies with time

$$m_\phi \leq H_{\rm dec}$$
 For ALP to start oscillating after decoupling

$$m_{\phi} \geq H_{
m o} \quad {
m For \, ALP \, to \, start \, oscillating \ before \, today}$$

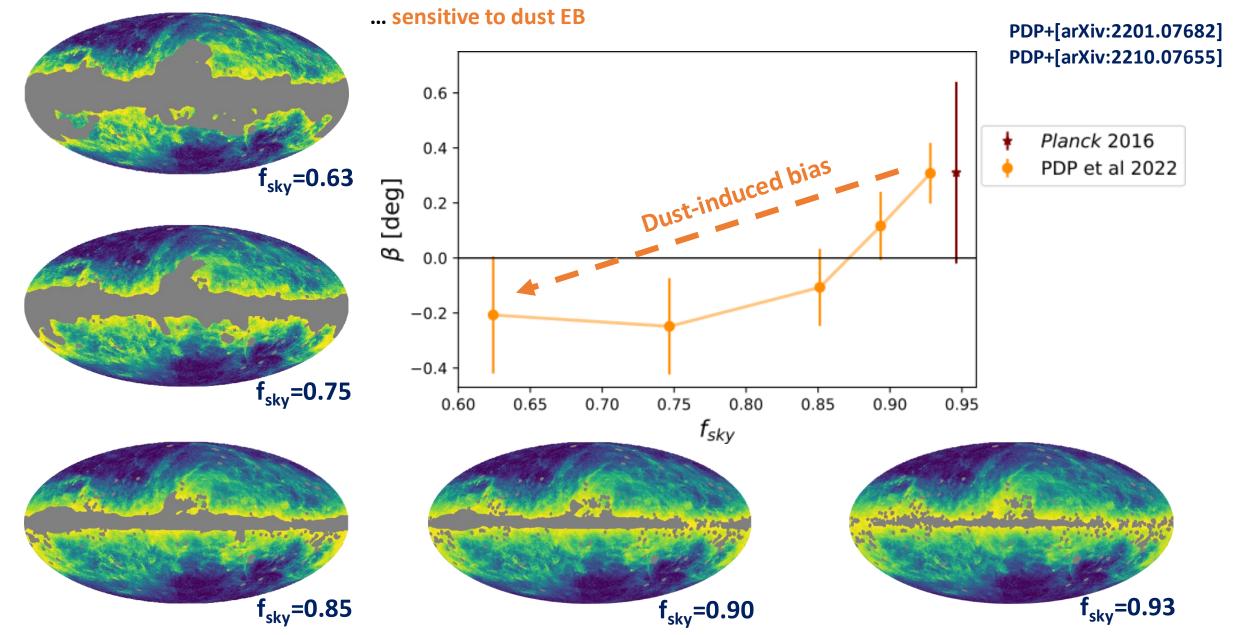
$$10^{-33} \text{eV} \le m_{\phi} \le 10^{-28} \text{eV}$$

Constant birefringence angle, mainly sensitive to the ALP field value during decoupling

$$\beta = -\frac{1}{2}g_{\phi\gamma} \int \frac{\partial \phi}{\partial t} dt = -\frac{1}{2}g_{\phi\gamma}(\phi_{\rm o} - \phi_{\rm dec}) \approx \frac{1}{2}g_{\phi\gamma}\phi_{\rm dec}$$

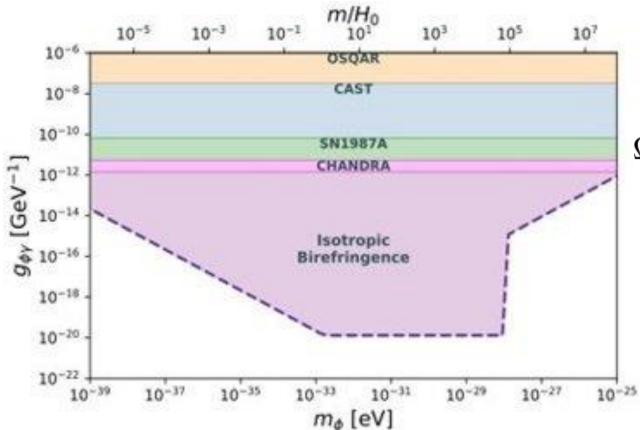
Improved calibration strategies for upcoming data

Artificial calibrators:


- Rotating polarised source BICEP3 recently achieved ≈ 0.03° precision Cornelison+[arXiv:2207.14796] Exciting results coming soon!
- Drone/satellite carrying a polarised source Expected to reach ≈ 0.01° Nati+[arXiv:1704.02704], Casas-Reinares+[DOI:10.3390/s21103361]

Astrophysical calibrators:

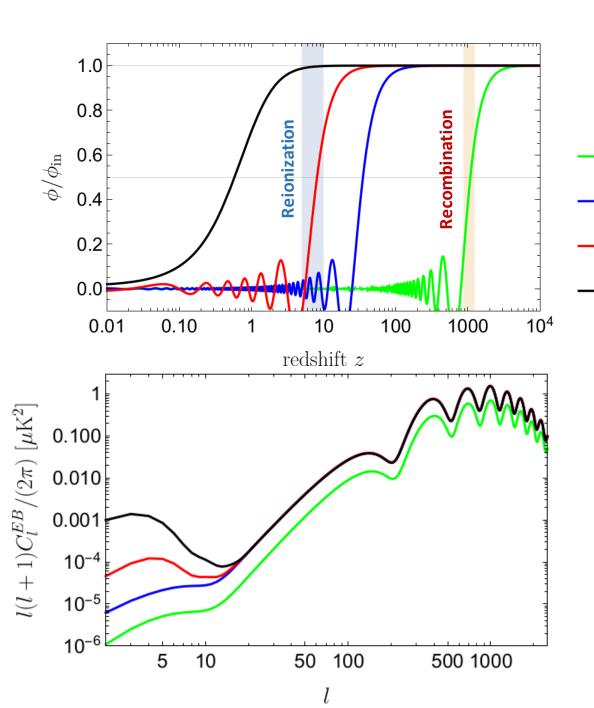
- Crab Nebula
 Measured to 0.33° precision Ritacco+[arXiv:1804.09581], Aumont+[arXiv:1805.10475]
- Galactic thermal dust emission Minami+[arXiv:1904.12440], Minami&Komatsu[arXiv:2011.11254]


Using dust as a calibrator, birefringence measurements are...

... robust against the miscalibration of polarisation angles and other systematics

Constraining power of CMB observations alone was the β ≈ 0.3° measurement confirmed

Fujita+[arXiv:2008.02473]

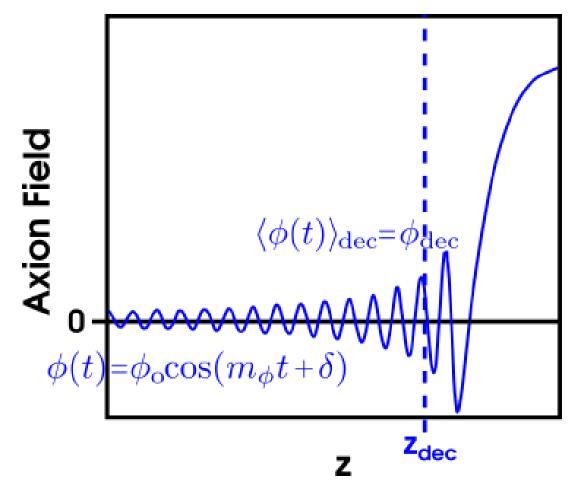

Assuming the largest ALP abundance allowed

$$\Omega_{\phi} \begin{cases} \Omega_{\Lambda} = 0.69 & m_{\phi} \le 9.26 \times 10^{-34} \text{eV} \\ 0.006h^{-2} & 10^{-32} \text{eV} \le m_{\phi} \le 10^{-25.5} \text{eV} \end{cases}$$

Planck Collab [arXiv:1807.06209]

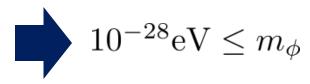
with ALP density only bounded from above, putting an upper constraint on the ALP-photon coupling is not possible

Nakatsuka+[arXiv:2203.08560]


CMB photons emitted at recombination and reionization will suffer different rotations

$$C_{\ell}^{EB,o} \approx \frac{1}{2} \sin(4\beta_{\rm rec}) C_{\ell}^{E_{\rm rec}E_{\rm rec}}$$

$$+ \frac{1}{2} \sin(4\beta_{\rm rei}) C_{\ell}^{E_{\rm rei}E_{\rm rei}}$$


$$+ \sin(2\beta_{\rm rec} + 2\beta_{\rm rei}) C_{\ell}^{E_{\rm rec}E_{\rm rei}}$$

The study of low-multipoles gives a tomographic view of the ALP field

Suppose that ALP field is homogeneous and varies with time

$$m_{\phi} \geq H_{\mathrm{dec}} \quad \begin{array}{l} \text{For ALP to start oscillating before} \\ \text{decoupling} \end{array}$$

(Q,U) rotating as if the polarisation angle oscillated with a period

$$T_{\phi} \sim 1 \mathrm{y} \left(\frac{10^{-22} \mathrm{eV}}{m_{\phi}} \right)$$

Planck, LiteBIRD
$$\sim 1 \mathrm{y}$$
BICEP/Keck, SPT $\sim 1 \mathrm{h}$

Planck, LiteBIRD
$$\sim 1 \mathrm{y}$$
 $10^{-24} \mathrm{eV} \le m_\phi \le 10^{-19} \mathrm{eV}$

Oscillation depending on ALP field at absorption

$$(Q \pm iU)(t, \vec{n}) = J_0[g_{\phi\gamma}\phi_{\text{dec}}]\exp[\mp 2i(\frac{g_{\phi\gamma}}{2}\phi_0\cos(m_{\phi}t + \delta))](Q \pm iU)_0(\vec{n})$$

Washout depending on ALP field at emission

Fedderke+[arXiv:1903.02666]

Fedderke+[arXiv:1903.02666]

Washout is a consequence of decoupling not being

 $\vec{P}(\vec{n})$ an instantaneous process Photons emitted at different times... ... see a slightly different ALP field ... are rotated by a slightly different angle

CMB detectors do an incoherent sum over the fanned-out states

Reduction of polarization intensity

$$J_0[g_{\phi\gamma}\phi_{\mathrm{dec}}] \approx 1 - \frac{1}{4}(g_{\phi\gamma}\phi_{\mathrm{dec}})^2$$

Constraints from time-dependent birefringence

Planck washout

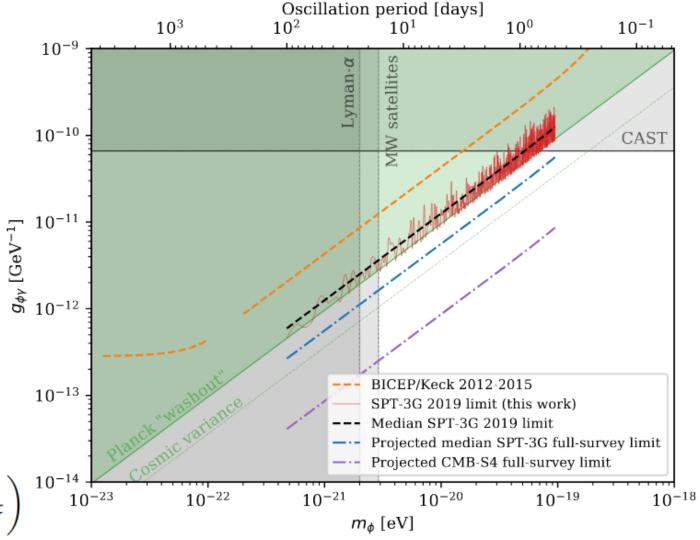
Fedderke+[arXiv:1903.02666]

$$g_{\phi\gamma} \lesssim 9.6 \times 10^{-13} \,\mathrm{GeV}^{-1}$$

$$\times \left(\frac{m_{\phi}}{10^{-21}\,\mathrm{eV}}\right) \times \left(\kappa \times \frac{\Omega_c^0 h^2}{0.11933}\right)^{-1/2}$$

SPT-3G data

Ferguson+[arXiv:2203.16567]


For periods 1 day $\leq T_{\phi} \leq$ 100 days ...

... probing $10^{-22} \text{eV} \le m_{\omega} \le 10^{-19} \text{eV}$

... upper limit $(\beta+\alpha)(t) \leq 0.071^{\circ}$

Assuming DM made of one ALP species with local density of 0.3 GeV/cm³

$$g_{\phi\gamma} < 1.18 \times 10^{-12} \text{ GeV}^{-1} \times \left(\frac{m_{\phi}}{1.0 \times 10^{-21} \text{ eV}}\right)$$

Based on...

PDP et al 2022 [arXiv:2210.07655]

Accepted at JCAP

Minami et al 2019, PTEP, 083E02 The original presentation of the methodology

Minami 2020, PTEP, 063E01 Extension to partial-sky observations

Minami & Komatsu 2020, PTEP, 103E02 Extension to frequency cross-spectra

Minami & Komatsu 2020, PRL, 125, 221301 Application to *Planck* HFI PR3

Without foreground modeling

PDP et al 2022, PRL, 128, 091302 Application to *Planck* HFI PR4

With foreground modeling

Eskilt 2022, A&A, 662, A10 Application to *Planck* LFI & HFI PR4

Study of the frequency dependence of birefringence

Eskilt & Komatsu 2022, PRD, 106, 063503 **Joint analysis of** Planck LFI & HFI PR4 and WMAP 9-year

Alternative semi-analytical implementation

Simulation study and assessment of the impact of systematics

Polarization primer

Cabella & Kamionkowski 2003 [arXiv:astro-ph/0403392]

Linearly polarized light propagating along the z direction

$$E_x = a_x \cos(\omega t - \delta_x) E_y = a_y \cos(\omega t - \delta_y)$$

can be described through the Stoke's parameters

$$I = a_x^2 + a_y^2$$

$$Q = a_x^2 - a_y^2$$

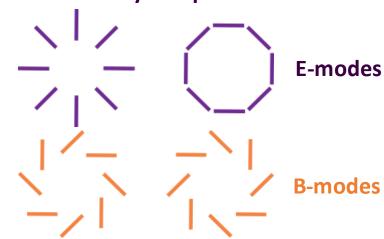
$$U = 2a_x a_y \cos(\delta_x - \delta_y)$$

Relative to the chosen coordinate system

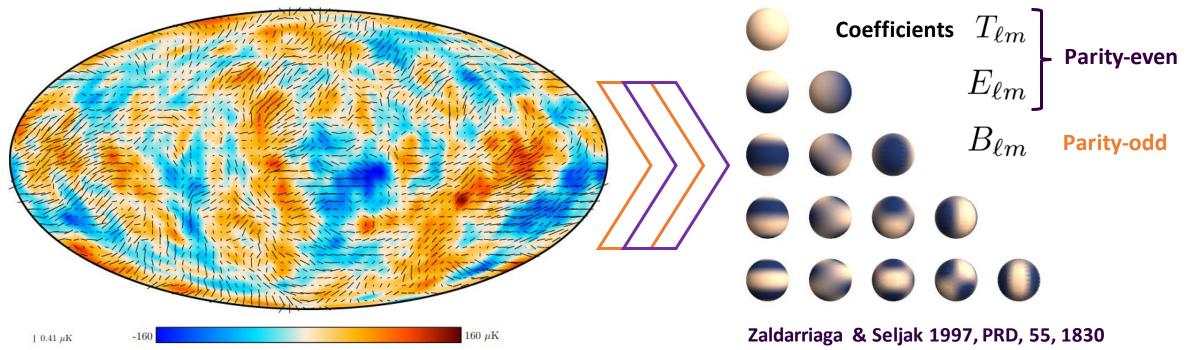
Q>0 Q<0 Q=0 Q=0 U=0 U>0 U<0

Helmholtz's theorem

Express vector fields as the sum of curl-free and divergence-free fields


Q and U define a spin-2 field

$$P_{ab} = \frac{1}{2} \begin{pmatrix} Q(\vec{r}) & U(\vec{r}) \\ U(\vec{r}) - Q(\vec{r}) \end{pmatrix}$$


Express the polarization field in terms of its gradient and curl components

$$\nabla^2 E = \partial_a \partial_b P_{ab} \quad \nabla^2 B = \epsilon_{ac} \partial_b \partial_c P_{ab}$$

Locally independent

Decompose CMB maps into spherical harmonics

Planck Collaboration I. 2020, A&A, 641, A1

Analyzing CMB polarization in terms of spherical harmonics

$$\begin{split} \langle E_{\ell m} E_{\ell' m'}^* \rangle &= \delta_{m m'} \delta_{\ell \ell'} C_\ell^{EE} \\ \langle B_{\ell m} B_{\ell' m'}^* \rangle &= \delta_{m m'} \delta_{\ell \ell'} C_\ell^{BB} \\ \langle E_{\ell m} B_{\ell' m'}^* \rangle &= \delta_{m m'} \delta_{\ell \ell'} C_\ell^{BB} \end{split} \ \, \text{Parity-even}$$

$$\langle E_{\ell m} B_{\ell' m'}^* \rangle &= \delta_{m m'} \delta_{\ell \ell'} \\ \end{split} \ \, \text{Parity-odd}$$

Kamionkowski et al 1997, PRD, 55, 7368

ACDM

The Universe has no preferred direction so the statistics of CMB anisotropies must be invariant under parity transformation

EB≠**0** evidence of parity-violating physics Lue et al 1999, PRL, 83, 1506

Past measurements

early WMAP & BOOMERANG	$\alpha + \beta = -6.0^{\circ} \pm 4.0^{\circ} \text{ (stat)} \pm ?? \text{ (sys)}$	Feng et al 2006, PRL, 96, 221302
QUaD	$\alpha + \beta = 0.55^{\circ} \pm 0.82^{\circ} \text{ (stat) } \pm 0.5^{\circ} \text{ (sys)}$	Wu et al 2009, PRL, 102, 161302
WMAP 9-year	$\alpha + \beta = -0.36^{\circ} \pm 1.24^{\circ} \text{ (stat) } \pm 1.5^{\circ} \text{ (sys)}$	Hinshaw et al 2013, ApJS, 208, 19
Planck 2015	$\alpha + \beta = 0.31^{\circ} \pm 0.05^{\circ} \text{ (stat) } \pm 0.28^{\circ} \text{ (sys)}$	Planck Collaboration XLIX. 2016, A&A, 596, A110
POLARBEAR 2020	$\alpha + \beta = -0.61^{\circ} \pm 0.22^{\circ} \text{ (stat) } \pm ?? \text{ (sys)}$	Polarbear Collaboration 2020, ApJ, 897, 55
ACT 2020	$\alpha + \beta = -0.07^{\circ} \pm 0.09^{\circ} \text{ (stat)} \pm ?? \text{ (sys)}$	Choi et al 2020, JCAP, 12, 045
SPT 2020	$\alpha + \beta = 0.63^{\circ} \pm 0.04^{\circ} \text{ (stat) } \pm ?? \text{ (sys)}$	Bianchini et al 2020, PRD, 102, 083504

Systematic uncertainties dominate the analysis

Current calibration strategies set a ≈0.5°-1° limit

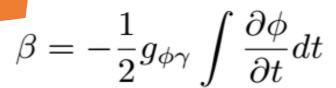
DM/DE could be a parity-violating pseudoscalar field $\phi(-\vec{n}) = -\phi(\vec{n})$

$$\phi(-\vec{n}) = -\phi(\vec{n})$$

Carroll at al 1990, PRD, 41, 1231 Carroll & Field 1991, PRD, 43, 3789 Harari & Sikivie 1992, PLB, 289, 67

Chern-Simons coupling to EM $\frac{1}{4}g_{\phi\gamma}\phi F_{\mu\nu}\tilde{F}_{\mu\nu}$

$$\frac{1}{4}g_{\phi\gamma}\phi F_{\mu\nu}\tilde{F}_{\mu\nu}$$


Axion-like particles

Marsh 2016, Phys Rep, 643, 1

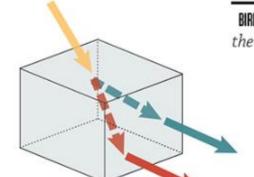
Early Dark Energy

Murai et al 2022 [arXiv:2209.07804]

rotation of the plane of linear polarization clockwise on the sky

Faraday rotation from primordial magnetic fields

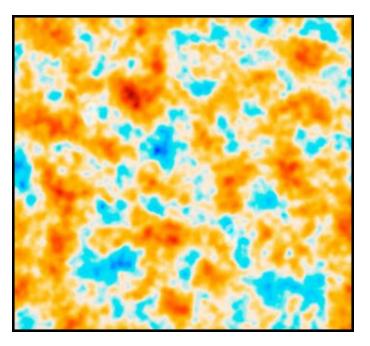
Subramanian 2016, Rep Prog Phys, 79, 076901


Superluminal Lorentz-violating electrodynamics emerging from a non-vanishing Weyl tensor

Shore 2005, Nucl Phys B, 717, 86118

Quantum gravity models that modify the dispersion relation of photons

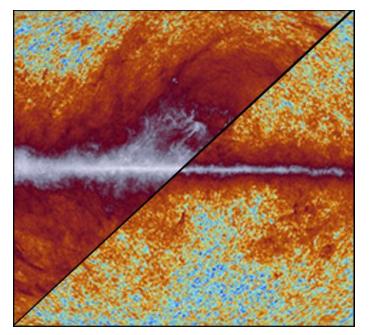
Gleiser & Kozameh 2001, PRD, 64, 8, 083007


Cosmic birefringence

BIREFRINGENCE Birefringence describes the optical property where a ray of light is split by polarization into two rays taking slightly different paths.

disfavored by data

Eskilt 2022, A&A, 662, A10


Improve instrument calibration

- Provides tighter constraints and does not directly depend on foregrounds (subject to the foreground residuals)
- Optimal strategy for ground-based experiments as new calibration sources allow a precise measurement of polarization angles

BICEP3: rotating polarized source

systematic error of <0.1° with a ≈0.03° statistical uncertainty on the calibration of polarization angles

Cornelison & Vergès Proc SPIE Int Soc Opt Eng 12190 (2022) 829

Use Galactic foregrounds as calibrator

- (Currently) optimal strategy for satellite missions where calibration is limited by prior knowledge of astrophysical sources
- Proven to be robust against instrumental systematics but sensitive to dust EB

PDP et al 2022 [arXiv:2210.07655]

PDP et al 2022, PRL, 128, 091302

Tightest constraint to date coming from Planck PR4 + WMAP-9y $\beta = 0.342^{\circ} \pm 0.093^{\circ}$

Eskilt & Komatsu 2022, PRD, 106, 063503

Minami et al 2019, PTEP, 083E02 Minami 2020, PTEP, 063E01 Minami & Komatsu 2020, PTEP, 103E02

Observed signal is a rotation of the CMB and Galactic foreground emissions

$$\begin{pmatrix} E_{\ell m}^{\rm o} \\ B_{\ell m}^{\rm o} \end{pmatrix} = \begin{pmatrix} \cos(2\alpha) - \sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm fg} \\ B_{\ell m}^{\rm fg} \end{pmatrix} + \begin{pmatrix} \cos(2\alpha + 2\beta) - \sin(2\alpha + 2\beta) \\ \sin(2\alpha + 2\beta) & \cos(2\alpha + 2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m}^{\rm cmb} \\ B_{\ell m}^{\rm cmb} \end{pmatrix}$$

so the observed EB is

$$C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{1}{\cos(4\alpha)} \left(C_{\ell}^{EE,cmb} - C_{\ell}^{BB,cmb} \right)$$

Planck Collaboration XI. 2020, A&A, 641, A11 Martire et al 2022, JCAP, 04, 003

Build a Gaussian likelihood to simultaneously determine both angles

$$-2\ln\mathcal{L} = \sum_{b=1}^{N_{\text{bins}}} \left(\mathbf{A}\bar{C}_b^{\text{o}} - \mathbf{B}\bar{C}_b^{\text{cmb}}\right)^T \mathbf{M}_b^{-1} \left(\mathbf{A}\bar{C}_b^{\text{o}} - \mathbf{B}\bar{C}_b^{\text{cmb}}\right) + \sum_{b=1}^{N_{\text{bins}}} \ln|\mathbf{M}_b|$$

Only two ingredients needed:

Cross-correlation of frequency bands of any CMB experiment

$$\bar{C}_b^{\text{o}} = \left(C_b^{E_i E_j, \text{o}} C_b^{B_i B_j, \text{o}} C_b^{E_i B_j, \text{o}} \right)^T$$

Theoretical prediction for CMB angular power spectra

Planck PR4 (NPIPE reprocessing)

Planck Collaboration 2020, A&A, 643, A42

The NPIPE pipeline processes raw, uncalibrated detector data from both LFI and HFI into polarized frequency and detector-set maps. NPIPE fits and corrects for gain fluctuations, ADCNL, bolometric transfer-function residuals and bandpass mismatch by fitting time-domain templates while solving for the polarized map.

NPIPE achieves a smaller noise by:

- (1) including data acquired during repointing maneuvers between scans
- (2) better modeling the data via a short baseline offset model for noise, suppressing degree-scale noise residuals
- (3) multi-frequency polarization model used in calibration greatly reduces large-scale polarization uncertainty but introduces a pipeline transfer-function that suppresses CMB polarization power at ℓ < 20
- (4) second-order analog-to-digital conversion nonlinearity (ADCNL) model

The net effect on polarization is a scaledependent reduction in the total uncertainty:

- (1) $\sim 50 \%$ lower N_e at $\ell \sim 10$
- (2) 20–30 % lower N_e at $\ell \sim 100$
- (3) 10–20 % lower N_ℓ at $\ell \sim$ 1000 (also in temperature)

Planck PR4 (NPIPE reprocessing)

Reprocessing of raw LFI and HFI Planck data Scale-dependent reduction of total uncertainty due to

- Addition of data acquired during repointing maneuvers
- Improved modeling of instrumental noise and systematics

Planck Collaboration 2020, A&A, 643, A42

- NPIPE 100, 143, 217, 353 GHz data
- Focus on small-scale information (ℓ >50) to target the birefringence angle from recombination
- Cross-correlating A/B detector splits $\rightarrow \beta$, α_i (i=1,...,8) Consistent results across 4 independent pipelines
- Start by considering a null foreground EB

PDP et al 2022, PRL, 128, 091302

Pipeline	Implementation	Pseudo-C _ℓ
JRE	Posterior distribution via	PolSpice
MT		Xpol
YM	MCMC	
PDP	Analytical minimization	NaMaster

PDP et al 2022 [arXiv:2210.07655]

Planck 2018 (PR3)

100, 143, 217, 353 GHz data

Half-mission splits $\rightarrow \beta$, α_i (i=1,...,4)

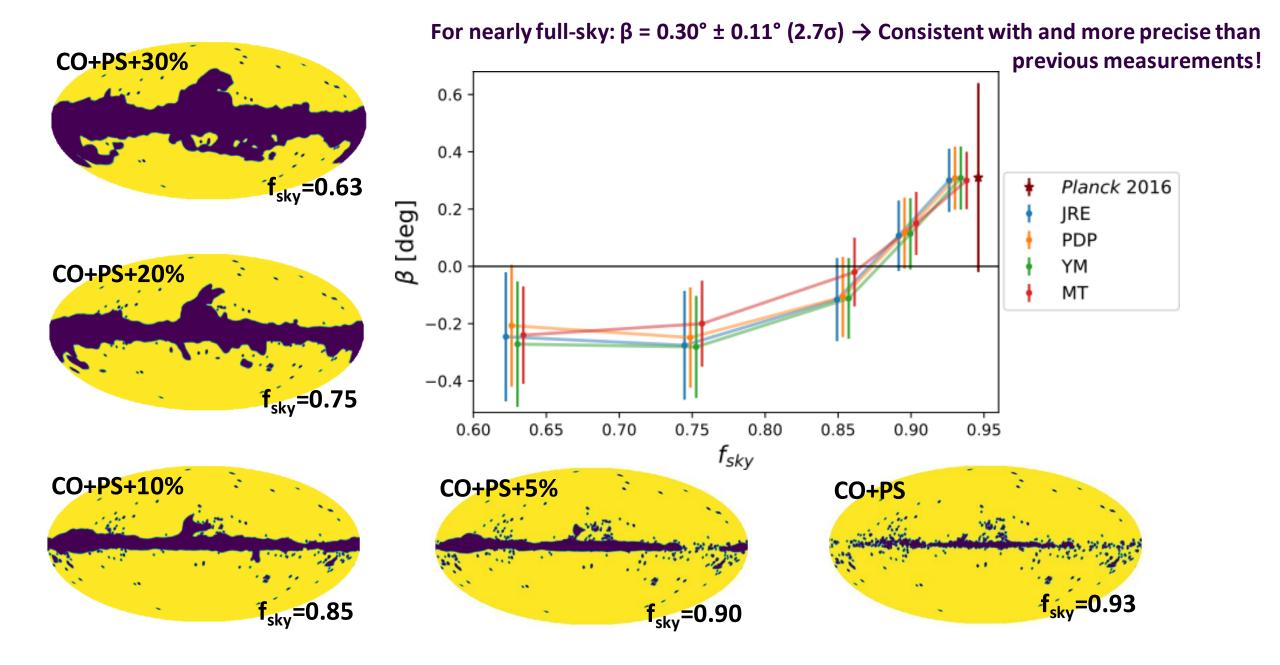
High- ℓ data \Rightarrow bin C_{ℓ}/M_{ℓ} from ℓ_{min} =51 to ℓ_{max} =1490 with $\Delta \ell$ = 20 spacing

Specific mask for each band

Neglecting foreground EB

 $\beta = 0.35^{\circ} \pm 0.14^{\circ} (2.4\sigma)$ for nearly full-sky Planck 2020 (PR4 or NPIPE)

100, 143, 217, 353 GHz data

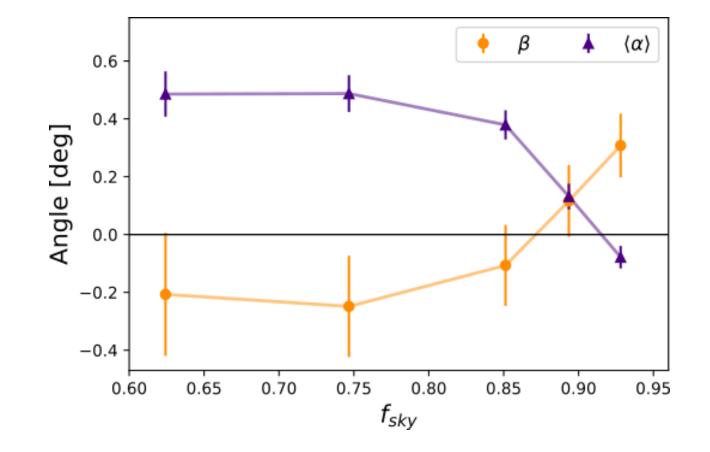

A/B detector splits $\rightarrow \beta$, α_i (i=1,...,8)

High- ℓ data \Rightarrow bin C_{ℓ}/M_{ℓ} from ℓ_{min} =51 to ℓ_{max} =1490 with $\Delta \ell$ = 20 spacing

Common mask for all bands

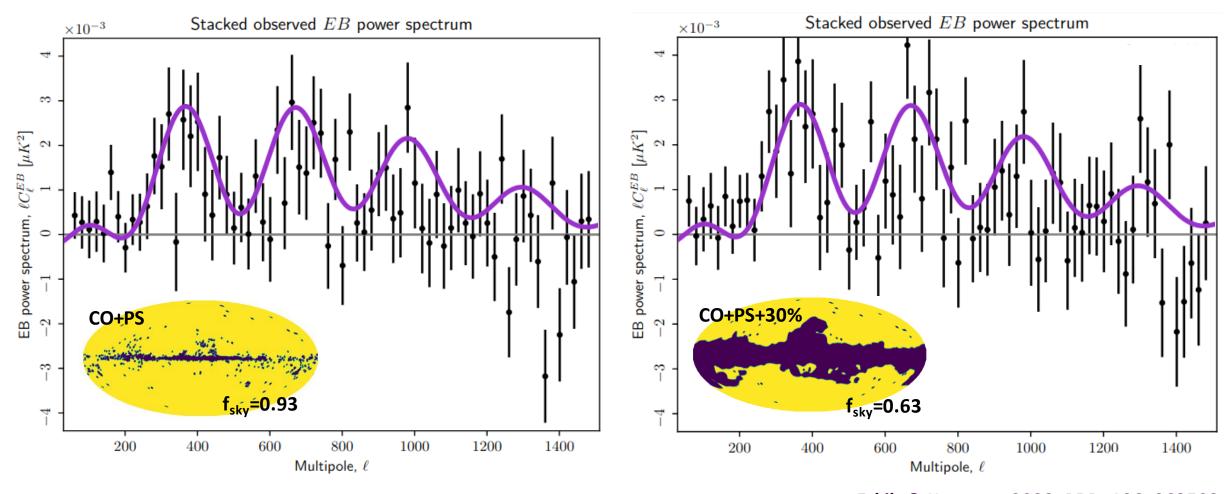
Correcting for foreground EB

 $\beta = 0.30^{\circ} \pm 0.11^{\circ} (2.7\sigma)$ for nearly full-sky


... but our inferred value of α depends on Galactic dust

Dust EB biases our estimation of miscalibration angles, dragging with them the measurement of β

Misalignment of dust filaments and Galactic magnetic fields produces TB and EB


Clark et al 2021, ApJ, 919, 53

- Dust TB > 0 detected by Planck
 Planck Collaboration XI. 2020,
 A&A, 641, A11
- Expected dust EB > 0

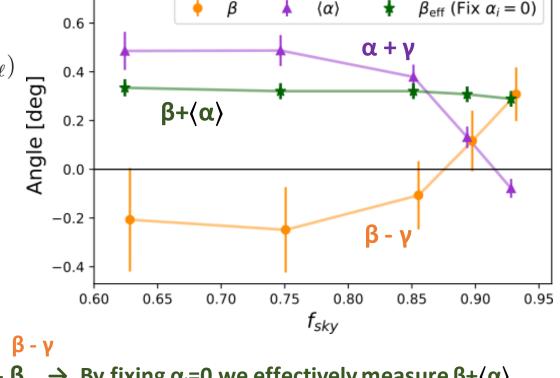
Indirect detection of dust EB

The EB signal created by birefringence exists regardless of the Galactic mask ...

Eskilt & Komatsu 2022, PRD, 106, 063503

... but our inferred value of α depends on Galactic dust

Observed foreground signal can be rewritten as


$$\begin{split} C_{\ell}^{EB, \text{fg,o}} &= \frac{1}{2} \sin(4\alpha) \left(C_{\ell}^{EE, \text{fg}} - C_{\ell}^{BB, \text{fg}} \right) + \cos(4\alpha) C_{\ell}^{EB, \text{fg}} \\ &= \frac{1}{2} \sqrt{4 \left(C_{\ell}^{EB, \text{fg}} \right)^2 + \left(C_{\ell}^{EE, \text{fg}} - C_{\ell}^{BB, \text{fg}} \right)^2} \sin(4\alpha + 4\gamma_{\ell}) \end{split}$$

Within the small angle approximation

$$\gamma_{\ell} pprox rac{C_{\ell}^{EB, \mathrm{fg}}}{C_{\ell}^{EE, \mathrm{fg}} - C_{\ell}^{BB, \mathrm{fg}}}$$

If
$$C_\ell^{EB,\mathrm{fg}} \propto C_\ell^{EE,\mathrm{fg}} - C_\ell^{BB,\mathrm{fg}}$$

then
$$\gamma_{\ell} = \gamma \rightarrow \frac{\text{degenerate}}{\text{with } \alpha}$$

then $\gamma_{\ell} = \gamma \rightarrow \begin{cases} \text{degenerate} \\ \text{with } \alpha \end{cases}$ measure $\alpha + \gamma$ and $\beta - \gamma$ does not affect $\alpha + \beta \rightarrow \beta$ By fixing $\alpha_i = 0$ we effectively measure $\beta + \langle \alpha \rangle$

Planck Collaboration XI. 2020, A&A, 641, A11

Planck reported dust TB > 0 \rightarrow Plausible dust EB > 0 \rightarrow Expect $\uparrow \alpha$ and $\downarrow \beta$

Observed foreground signal can be rewritten as

$$C_{\ell}^{EB, fg, o} = \frac{1}{2} \sqrt{4 \left(C_{\ell}^{EB, fg} \right)^2 + \left(C_{\ell}^{EE, fg} - C_{\ell}^{BB, fg} \right)^2} \sin(4\alpha + 4\gamma_{\ell})$$

Within the small angle approximation $\,\gamma_\ell pprox rac{C_\ell^{EB,{
m fg}}}{C_\ell^{EE,{
m fg}}-C_\ell^{BB,{
m fg}}}$

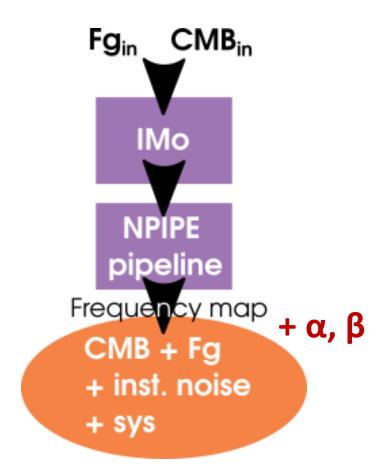
If
$$C_\ell^{EB,\mathrm{fg}} \propto C_\ell^{EE,\mathrm{fg}} - C_\ell^{BB,\mathrm{fg}}$$
 then $\gamma_\ell = \gamma o \frac{\mathrm{degenerate}}{\mathrm{with} \ \alpha}$ measure α + γ and β - γ does not affect α + β

nen
$$\gamma_e = \gamma \rightarrow \frac{\text{degenerat}}{\text{with } \alpha}$$

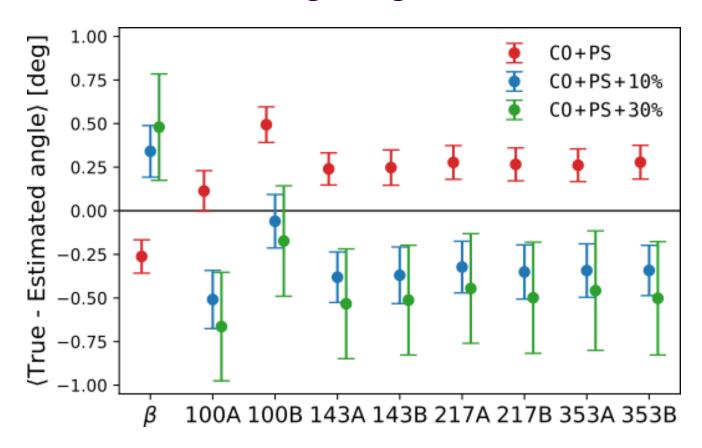
Clark et al 2021, ApJ, 919, 53

Synchrotron

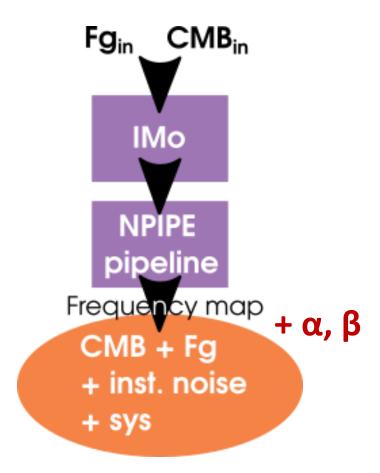
Synch EB statistically compatible with null Martire et al 2022, JCAP, 04, 003

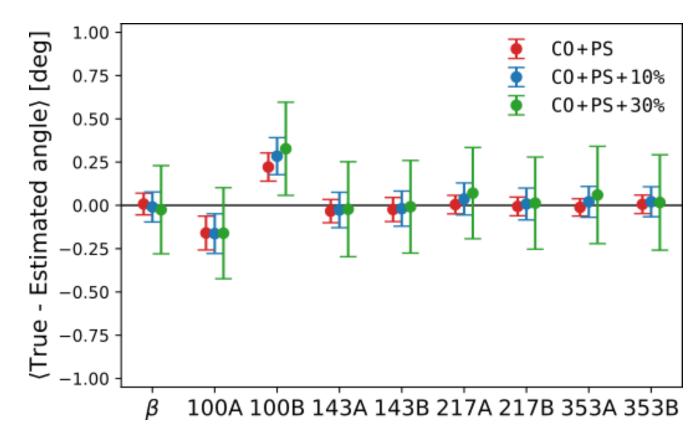

No physical process known to produce synch EB

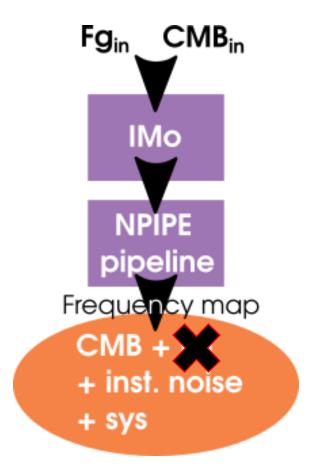
Dust

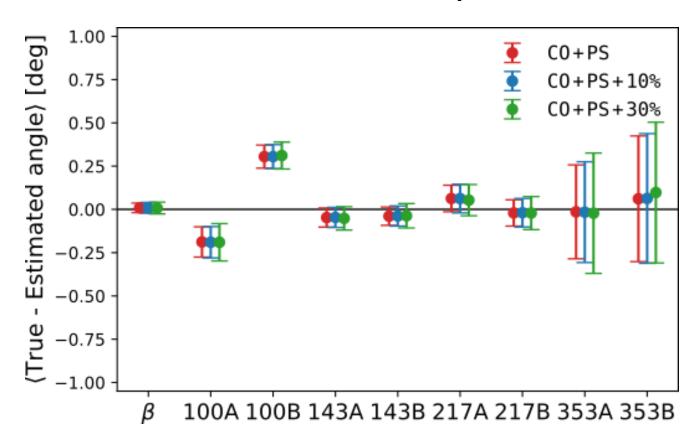

Misalignment between dust filaments and Galactic magnetic fields creates TB and EB correlations

Planck reported:

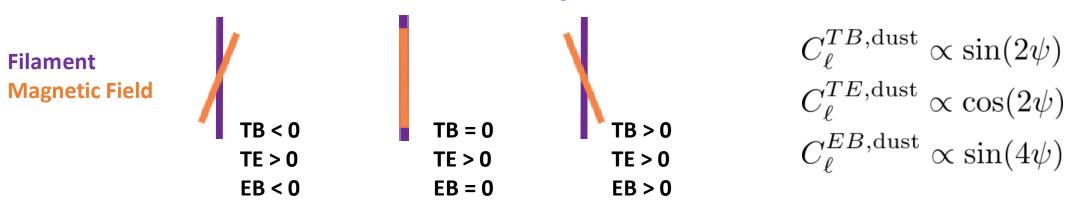

- Dust TB > 0
- A hint of dust EB > 0 (still statistically compatible with null) Planck Collaboration XI. 2020, A&A, 641, A11
 - \rightarrow Expect $\gamma > 0$ leading to $\uparrow \alpha$ and $\downarrow \beta$


Ignoring dust EB


Average over 100 simulations Error bar = simulations dispersion

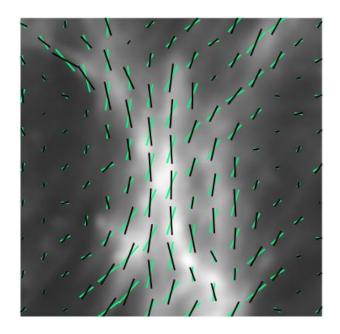

Correcting for dust EB Exact description of the fiducial foreground model

Average over 100 simulations Error bar = simulations dispersion

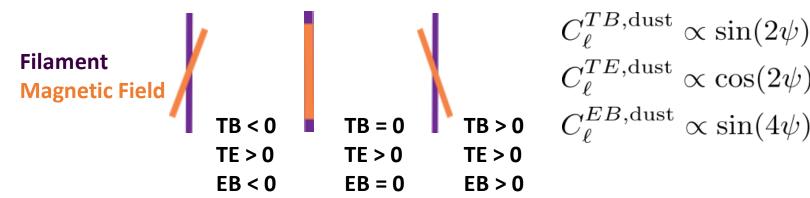

Removing foregrounds Sims of CMB + Noise + Systematics

Average over 100 simulations Error bar = simulations dispersion

Misalignment between the filamentary dust structures of the ISM and the plane-of-sky orientation of the **Galactic magnetic field**


$$C_{\ell}^{TB, \mathrm{dust}} \propto \sin(2\psi)$$
 $C_{\ell}^{TE, \mathrm{dust}} \propto \cos(2\psi)$
 $C_{\ell}^{EB, \mathrm{dust}} \propto \sin(4\psi)$

Sign and magnitude of EB can be predicted by measuring TE and TB


$$C_{\ell}^{EB,\mathrm{dust}} = r_{\ell}^{TB,\mathrm{dust}} \sqrt{C_{\ell}^{EE,\mathrm{dust}} C_{\ell}^{BB,\mathrm{dust}}} \sin\left(2\arctan\left(\frac{C_{\ell}^{TB,\mathrm{dust}}}{C_{\ell}^{TE,\mathrm{dust}}}\right)\right)$$

Small angle approximation
$$C_\ell^{BB,\mathrm{dust}} \propto C_\ell^{EE,\mathrm{dust}} \text{ thus } \sqrt{C_\ell^{EE,\mathrm{dust}}C_\ell^{BB,\mathrm{dust}}} \to C_\ell^{EE,\mathrm{dust}}$$

$$|r_\ell^{TB,\mathrm{dust}}| \to A_\ell \text{ free amplitude parameter } 0 \le A_\ell \ll 1$$

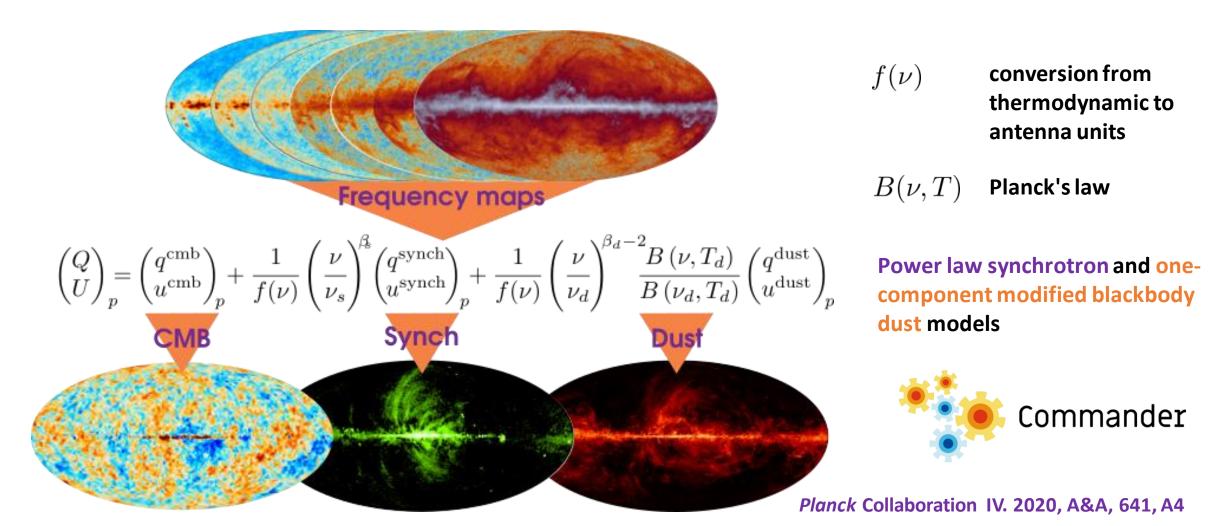
$$C_\ell^{EE,\mathrm{dust}} \simeq A_\ell C_\ell^{EE,\mathrm{dust}} \simeq A_\ell C_\ell^{EE,\mathrm{dust}} \simeq A_\ell C_\ell^{EE,\mathrm{dust}}$$

$$C_{\ell}^{EB, \text{dust}} \approx A_{\ell} C_{\ell}^{EE, \text{dust}} \frac{C_{\ell}^{TB, \text{dust}}}{C_{\ell}^{TE, \text{dust}}}$$

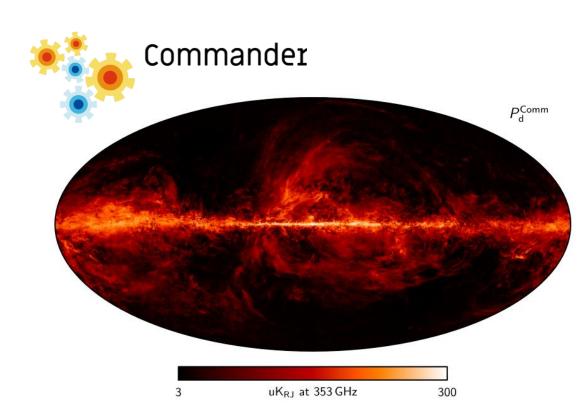
Misalignment between the dust filaments of the ISM and the plane-of-sky orientation of the Galactic magnetic field sources TE, TB, EB correlations

Sign and magnitude of EB predicted from EE, TE, and TB

$$C_{\ell}^{EB,\mathrm{dust}} \approx A_{\ell} C_{\ell}^{EE,\mathrm{dust}} \frac{C_{\ell}^{TB,\mathrm{dust}}}{C_{\ell}^{TE,\mathrm{dust}}}$$


Take dust C_{ℓ} to be that of NPIPE @ 353GHz

 A_ℓ free amplitude parameter $\,0 \leq A_\ell \ll 1\,$


Caveats and limitations

- Assumes that all dust is sourcing the misalignment while only filaments are expected to produce EB
- Noisy proxy as it is built from Planck polarization measurements

Take the Commander sky model as our foreground model

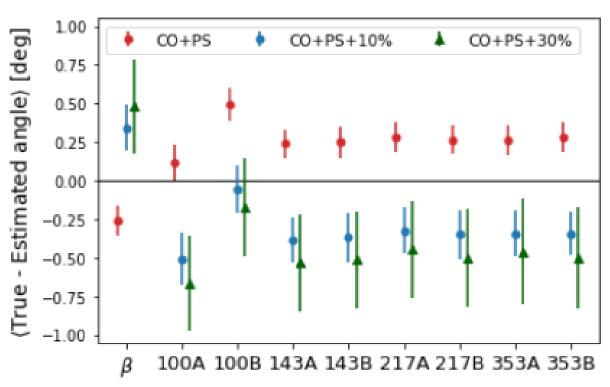
$$C_{\ell}^{EB,\mathrm{o}} = \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,\mathrm{o}} - C_{\ell}^{BB,\mathrm{o}} \right) + \frac{\mathcal{D}}{\cos(4\alpha)} C_{\ell}^{EB,\mathrm{fg}} + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,\mathrm{cmb}} - C_{\ell}^{BB,\mathrm{cmb}} \right)$$

$$\frac{1}{f(\nu)} \left(\frac{\nu}{\nu_d}\right)^{\beta_d - 2} \frac{B(\nu, T_d)}{B(\nu_d, T_d)} \begin{pmatrix} q^{\text{dust}} \\ u^{\text{dust}} \end{pmatrix}_p$$

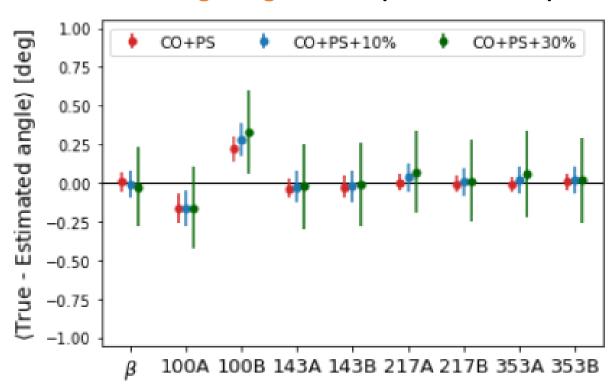
Caveats and limitations

Limited signal-to-noise of EB template leads to a 20% underestimation of uncertainties

PDP et al 2022 [arXiv:2210.07655]

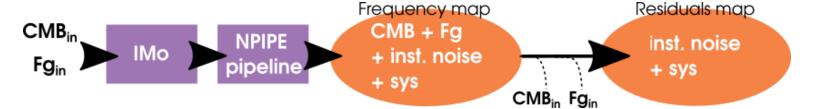

- → High-precision measurements from next-generation experiments
- Spurious EB correlations through ignoring instrumental polarization angles in the SED model
 - → Inclusion of polarization angles in SED de la Hoz et al 2022, JCAP, 03, 032
- Spurious EB correlations from the integration of different dust clouds along the line-of-sight

Vacher et al 2022 [arXiv:2210.14768]


→ Dust model beyond the single modified blackbody

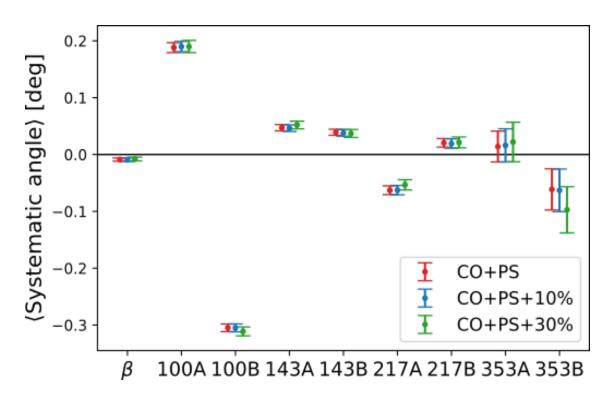
Simulations of CMB + Foregrounds + Noise + Systematics

Baseline analysis (ignoring foreground EB)

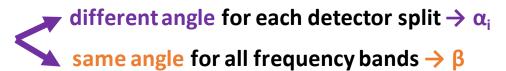


Modeling foreground EB (Commander)

Average over 100 simulations Error bar = simulations dispersion PDP et al 2022 [arXiv:2210.07655]


Quantifying systematics with NPIPE end-to-end simulations

PDP et al 2022 [arXiv:2210.07655]


Simulations of CMB + Noise + Systematics

No foreground to break the $\alpha+\beta$ degeneracy

Average over 100 sims

Error bar = sim' dispersion / sqrt(100)

From sims

FIUII SIIIIS	o _{stat} iit to data
$\langle \alpha_{100A} \rangle = 0.188^{\circ} \pm 0.009^{\circ}$	0.13°
$\langle \alpha_{100B} \rangle = -0.305^{\circ} \pm 0.007^{\circ}$	0.13°
→ cross-polarization e	effect
$\langle \alpha_{143A} \rangle = 0.047^{\circ} \pm 0.006^{\circ}$	0.11°
$\langle \alpha_{143B} \rangle = 0.039^{\circ} \pm 0.005^{\circ}$	0.11°
$\langle \alpha_{217A} \rangle$ = - 0.063° ± 0.008°	0.11°
→ beam leakage	

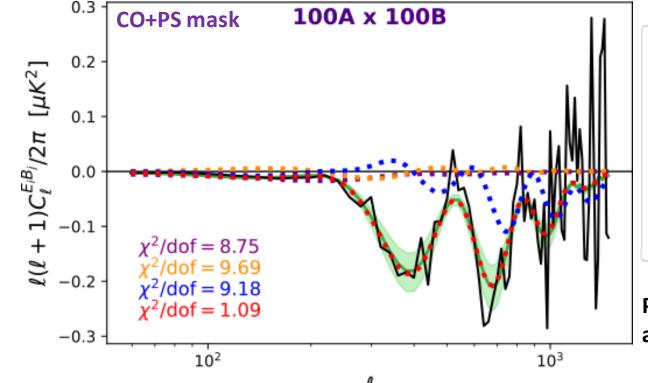
 α_{svs} don't need to agree with data

 \rightarrow simulations can't include the real α_i in the data

fit to data

Negligible impact on β

$$\langle \beta_{\text{sys}} \rangle = -0.009^{\circ} \pm 0.003^{\circ}$$
 0.11°


Intensity-to-polarization leakage →

$$C_\ell^{EB} \propto C_\ell^{TT}$$

$$\rightarrow$$
 $C_{\ell}^{EB} \propto C_{\ell}^{EB}$

$$ightarrow$$
 $C_\ell^{EB} \propto C_\ell^{TE}$

PDP et al 2022 [arXiv:2210.07655]

Beam leakage

$$\begin{array}{ll} \rightarrow & C_{\ell}^{EB} \propto C_{\ell}^{EE} & C_{\ell}^{EB} = \omega_{\ell,\mathrm{pix}}^2 \sum_{XY} W_{\ell}^{EB,XY} C_{\ell}^{XY,\mathrm{cmb}} \\ \rightarrow & C_{\ell}^{EB} \propto C_{\ell}^{TE} & XY \in \{TT, EE, BB, TE\} \end{array}$$

QuickPol's polarization matrices

Hivon et al 2017, A&A, 598, A25

--- (CMB+N)

$$C_l^{EB}$$
 from α_{sys} (68% C.L.)

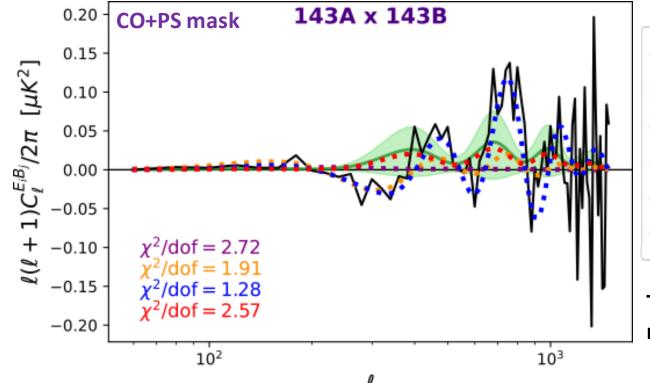
if to $A \times C_l^{TT, CMB}$

if to $A \times C_l^{TE, CMB}$

if to $C_l^{EB, beam leakage}$

if to $C_l^{EB, beam leakage}$

if to $C_l^{EE, CMB}$


Particularly dangerous since our estimator relies on finding a signal resembling EEcmb in EB

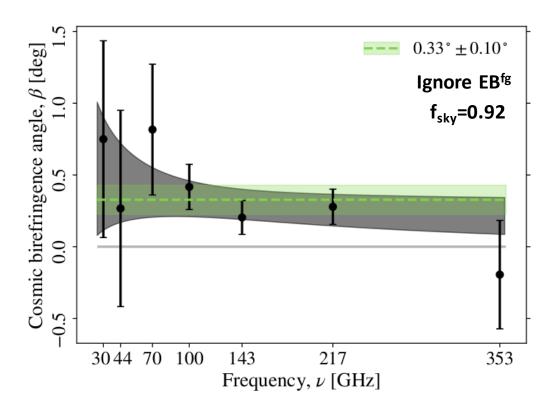
Intensity-to-polarization leakage ightarrow $C_\ell^{EB} \propto C_\ell^{TT}$

Cross-polarization effect
$$ightarrow C_{\ell}^{EB} \propto C_{\ell}^{EB}$$

A combination of both
$$ightarrow C_\ell^{EB} \propto C_\ell^{TE}$$

PDP et al 2022 [arXiv:2210.07655]

Beam leakage


$$\begin{array}{ll} \rightarrow & C_{\ell}^{EB} \propto C_{\ell}^{EE} & C_{\ell}^{EB} = \omega_{\ell,\mathrm{pix}}^2 \sum_{XY} W_{\ell}^{EB,XY} C_{\ell}^{XY,\mathrm{cmb}} \\ \rightarrow & C_{\ell}^{EB} \propto C_{\ell}^{TE} & XY \in \{TT, EE, BB, TE\} \end{array}$$

QuickPol's polarization matrices

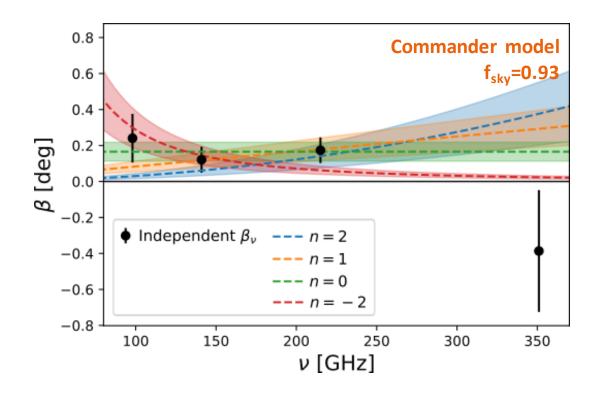
Hivon et al 2017, A&A, 598, A25

The estimator is trying to accommodate beam leakage as a rotation of EE

Frequency-dependent constraints on cosmic birefringence from the LFI and HFI Planck data release 4 Eskilt 2022, A&A, 662, A10

$$\beta_{\nu} = \beta_{\rm o} (\nu/\nu_{\rm o})^n \begin{cases} \beta_{\rm o} = 0.29^{+0.10}_{-0.11} \text{deg} \\ n = -0.35^{+0.48}_{-0.47} \end{cases}$$

First follow-up work adding *Planck* low-frequency bands


 \rightarrow $\beta = 0.33^{\circ} \pm 0.10^{\circ}$ (3.3 σ) for nearly full-sky data

Forcing an integer index

n	Δχ² - Ignore EB ^{fg}	Δχ² - Model EB ^{fg}
2	8.21	9.45
1	4.67	5.60
0	0.00	0.00
-2	2.25	3.01

Data seems to favor a frequency-independent birefringence

- →Quantum gravity theories $β∝v^2$
- \rightarrow Lorentz-violating electrodynamics β∝ν
- → Chern-Simons coupling to a light pseudoscalar field $β \propto v^0$
- → Faraday rotation from primordial magnetic fields $β \propto v^{-2}$

n	β_0 [deg]	Δχ²
2	0.07±0.03	5.08
1	0.13±0.04	1.77
0	0.17±0.05	0.00
-2	0.13±0.05	2.15

Independent β_{v} for each frequency

 β_{ν} = $\beta_{0}\nu^{2}$ Quantum gravity models that modify the dispersion relation of photons

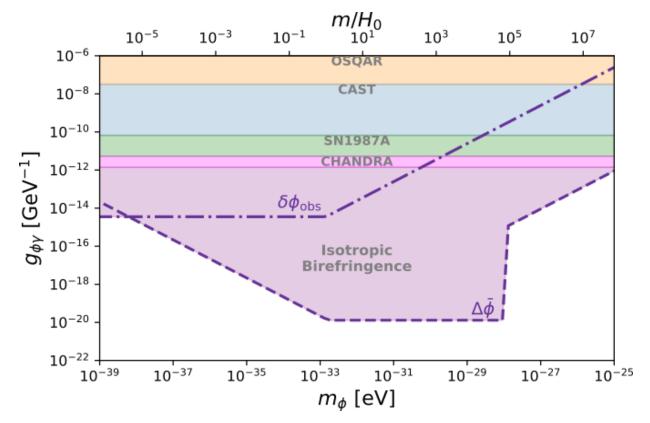
Gleiser & Kozameh 2001, PRD, 64, 8, 083007

 β_{ν} = $\beta_{0}\nu$ Superluminal Lorenzt-violating electrodynamics emerging from a non-vanishing Weyl tensor Shore 2005, Nucl Phys B, 717, 86118

 $\beta_{\nu} = \beta_0$ Chern-Simons coupling to a light pseudoscalar field like that of axion-like particles

β_v=β₀v⁻² Faraday rotation from Galactic or Primordial magnetic fields
Subramanian 2016, Rep Prog Phys, 79, 076901

Data seems to favor a frequency-independent birefringence


See Eskilt 2022, A&A, 662, A10 for a more detailed analysis

Constraining power of CMB observations on ALP parameter space

Fujita et al 2021, PRD, 103, 063508

Assuming:

- A simple potential $\,V(\phi)={1\over 2}m_\phi^2\phi^2\,$
- A scale-invariant power spectrum for the ALP field

A spatially flat FLRW universe, leading to EoM

$$\bar{\phi}'' + 2\mathcal{H}\bar{\phi}' + a^2m_{\phi}^2\bar{\phi} = 0$$

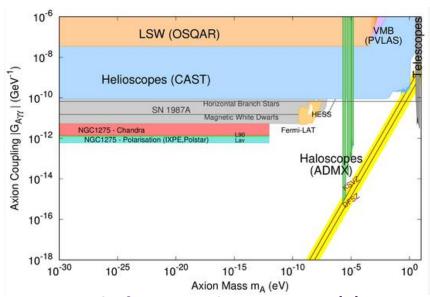
$$\delta\phi'' + 2\mathcal{H}\delta\phi' - \nabla^2\delta\phi + a^2m_{\phi}^2\delta\phi = 0$$

The largest allowed ALP abundance

$$\Omega_{\phi} \begin{cases} \Omega_{\Lambda} = 0.69 & m_{\phi} \leq 9.26 \times 10^{-34} \mathrm{eV} \\ 0.006 h^{-2} & 10^{-32} \mathrm{eV} \leq m_{\phi} \leq 10^{-25.5} \mathrm{eV} \end{cases}$$
 Planck Collaboration VI. 2020, A&A, 641, A6

- r<0.032 Tristram et al 2022, PRD, 105, 083524
- β≈0.30°

Chern-Simons coupling to a light ($m < 10^{-27}eV$) pseudoscalar field


$$\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{4}g_{\phi\gamma}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$$

Marsh 2016, Phys Rep, 643, 1

Axion-like particles (ALP)

Initially proposed to solve the strong-CP problem

Evolved beyond the QCD axion to the more general axion-like particles from supersymmetry or string theories $(10^{-33} \text{eV} < \text{m} < 10^{-18} \text{eV})$

Day & Krippendorf 2018, Galaxies 2018, 6(2), 45

Kamionkowski & Riess 2022 [arXiv:2211.04492]

Early Dark Energy (EDE)

Early-time solution to the Hubble tension that modifies the sound horizon, increasing the H₀ inferred from CMB data

Fluid that behaves like a cosmological constant before matter-radiation equality (≈10% contribution to the total energy density briefly before recombination) and decays faster than radiation afterward so that late-time evolution is unchanged

Suppresses the growth of perturbations at early times, potentially increasing σ_8

→ worsening the tension between CMB and LSS measurements

Hill et al 2020, PRD, 102, 043507

Global U(1) shift symmetry, broken by non-perturbative effects (instantons)

$$V(\phi) = m_{\phi}^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]^n$$

Integer values of n

Axion-like particles (ALP)

$$n = 1$$

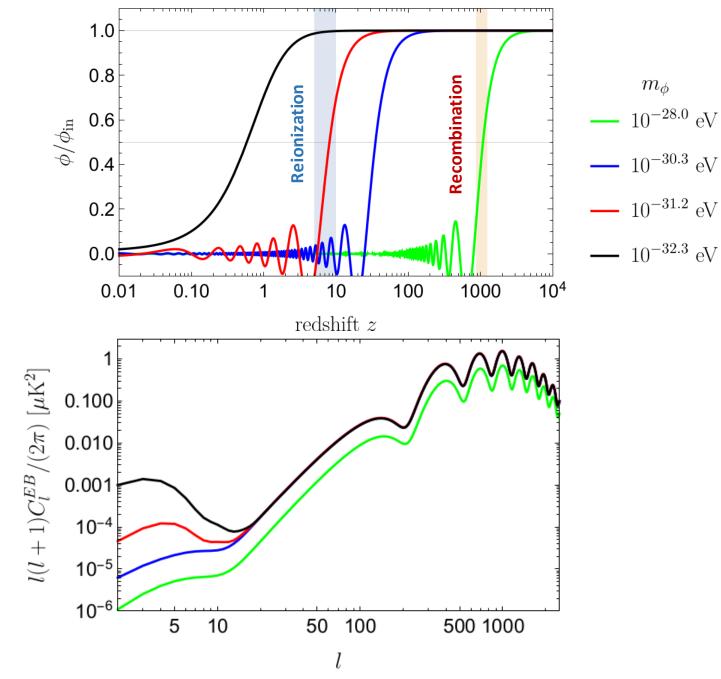
$$V(\phi) \to \frac{1}{2} m_{\phi}^2 \phi^2$$

 $\Omega_{\phi} \propto a^{-3}$

ALP dilute like matter

Around the minimum behaves as

$$w_{\phi} = \frac{n-1}{n+1}$$


$$\Omega_{\phi} \propto a^{-3(w_{\phi}+1)}$$

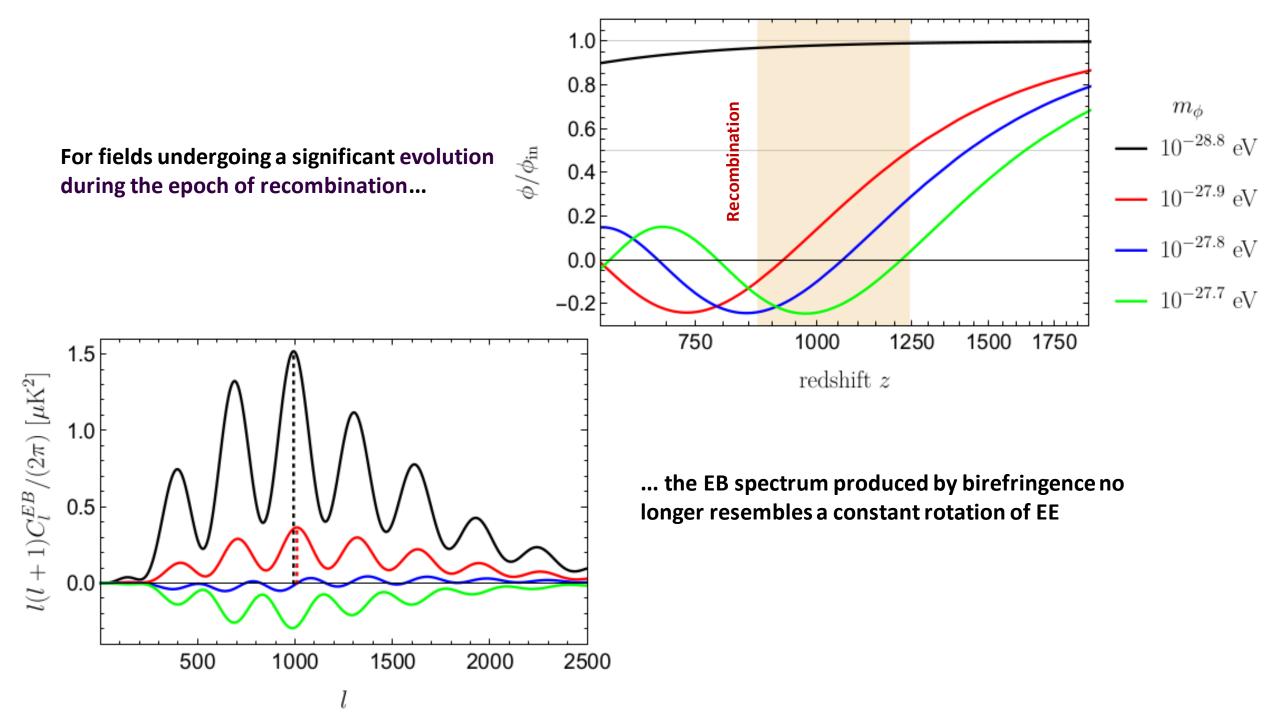
Early Dark Energy (EDE)

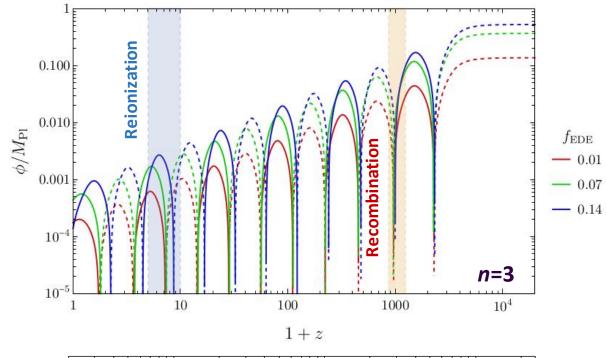
$$\Omega_{\phi} \propto a^{-4.5}$$
 (or steeper)

Nakatsuka et al 2022, PRD, 105, 123509

$$\beta = -\frac{1}{2}g_{\phi\gamma} \int \frac{\partial \phi}{\partial t} dt$$

 m_{ϕ}

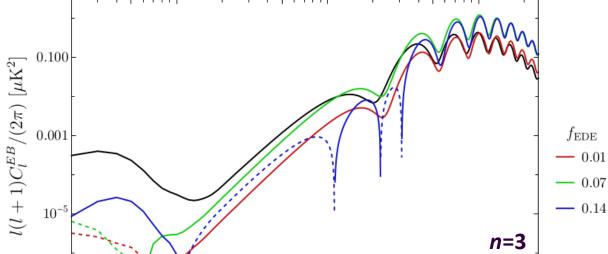

Birefringence depends on the value of the field at photon emission and absorption


CMB photons emitted at recombination and reionization will suffer different rotations

$$C_{\ell}^{EB,o} \approx \frac{1}{2} \sin(4\beta_{\text{rec}}) C_{\ell}^{E_{\text{rec}}E_{\text{rec}}}$$

$$+ \frac{1}{2} \sin(4\beta_{\text{rei}}) C_{\ell}^{E_{\text{rei}}E_{\text{rei}}}$$

$$+ \sin(2\beta_{\text{rec}} + 2\beta_{\text{rei}}) C_{\ell}^{E_{\text{rec}}E_{\text{rei}}}$$



By definition, the EDE field must evolve before recombination

EB no longer resembles a constant EE rotation

EB is strongly dependent on the EDE model (n and f_{EDE})

50

10

100

Rotation of EE

1000

500

CMB data alone can discern between ALPs and EDE as the source of birefringence

→ in the next decade, experiments like CMB-S4 will have enough sensitivity

WIP:

Obtain the first measurement of β from the epoch of reionization using only low-ℓ information