

QCD Axion

- Pseudo Nambu-Goldstone boson associated with the spontaneous breaking of of the global Peccei-Quinn (PQ) symmetry at the scale f_a
- Solution to the strong-CP problem

• Suitable candidate for cold Dark Matter

• Acquires a mass below the QCD scale:

$$m_a \simeq 57 \mu \text{eV} \left(\frac{10^{11} \text{GeV}}{f_a}\right)$$

$$m_A |\theta|^2 R^3 = \frac{\rho_A}{m_A} R^3 \equiv N_A$$

damped harmonic oscillations around minimum, N_A adiabatically conserved

Axion Dark Matter Mass

• What is the "typical mass" of axion dark matter?

- Relic axion abundance depends on the PQ scale and hence on the axion mass: $\Omega_a = \Omega_a(f_a)$
- Assuming the axion is the (dominant) component of Dark Matter, we can give a precise prediction for its mass in certain scenarios:

$$\Omega_A \propto m_A N_A \frac{V'}{V} \qquad (\Omega_a h^2 \simeq 0.12)$$

Post-Inflationary Scenario

- If the PQ symmetry is broken after inflation, topological defects, known as axion strings form immediately after the phase transition via the Kibble mechanism Kibble [1976]
- In addition, domain walls ($N_{\rm DW}=1$) form at QCD phase transition

Axions on the Lattice

• Solve the classical EoM for a complex scalar field in comoving coordinates, discretized on (static) lattice:

$$\left(\partial_{\tau}^{2}\phi - \nabla^{2}\phi + \lambda\phi\left(|\phi|^{2} - \tau^{2}\right) = 0\right)$$

JAXIONS - Redondo, Saikawa, Vaquero (+ MK & Pierobon) (https://github.com/veintemillas/jaxions)

- Need to resolve two very different length scales:
 - String core radius $\sim m_s^{-1} \sim f_a^{-1}$
 - Hubble radius $\sim H^{-1}$
- String tension acquires logarithmic correction:

$$\mu = \frac{\text{Energy}}{\text{Length}} \simeq \pi f_a^2 \log \left(\frac{m_r}{H}\right) \equiv \kappa \sim 70$$

Cosmological Evolution in the Post-Inflationary Scenario

O'Hare, Pierobon, Redondo, Wong [2110.11014]

Axion Radiation from Strings

• Differential Energy Transfer Rate:

$$\mathcal{F}\left(\frac{k}{RH}, \frac{m_r}{H}\right) \equiv \frac{1}{(f_a H)^2} \frac{1}{R^3} \frac{\partial}{\partial t} \left(R^4 \frac{\partial \rho_a}{\partial k}\right)$$

Interpretation of current Simulation Results

Indirect Method:

- 1. Simulate
- 2. Compute Spectrum
- 3. Extrapolate
- 4. Derive Axion Number

VS.

Direct Method:

- 1. Simulate
- 2. Count Axions
- 3. Extrapolate

Extrapolation to higher String Tensions

ullet Results for the predicted number of axions strongly depend on value of q!

Possible error sources: ICs, discretization effects, missing statistics ...

How can we reach a larger dynamical range?

- Brute Force: Larger simulations on more powerful supercomputers
- Better: Use the given computational power more efficiently: AMR!
- **In addition:** Study effective models that allow us to study the network dynamics at high tension, Moore strings, with 2+3 extra degrees of freedom (two additional Higgs + one vector field) Klaer, Moore [1707.05566, 1708.07521, 1912.08058]

Adaptive Mesh Refinement I

- Need high resolution around the string cores
- Idea: Maintain high resolution only where its needed!
- Current codes mostly based on AMReX (axioNyx, GRchombo)

Drew & Shellard [1910.01718]

Benabou et al. [2308.01334]

Adaptive Mesh Refinement II

- We can (optimistically) estimate to achieve values of up to $\log \sim 18!$
- Buschmann *et al.* achieved $N_{\rm eff} = 65.536$ and $\log \sim 9$ in first simulation(s)

Buschmann et al. [2108.05368]

RAM Limitations for Axion String Simulations

RAM Estimates with AMR

Work in progress: Global String Loop Decays

Screenshot of one of our simulations with axioNyx Schwabe *et al.* [2007.08256]

Conclusion

- Understanding of the global axion string dynamics is very important for a precise prediction of the axion dark matter mass.
- Different ways of extrapolating/interpreting the results leads to discrepancies in the current literature.
- The use of AMR seems to be the logical next step to increase the dynamical range, although the current setup might not be optimised yet!
- Effective models such as the one introduced by Moore+ allow us to study the behaviour of the network evolution at "realistic" tensions.
- If we manage to provide a very precise prediction for the mass, experimental detection might be accelerated drastically!

Thank you for your attention!