Axion experiments – part II

A partial overview of the experimental searches for axions and axion like particles

Lecce, September 14th, 2023 COST «Cosmic Wispers» Training School

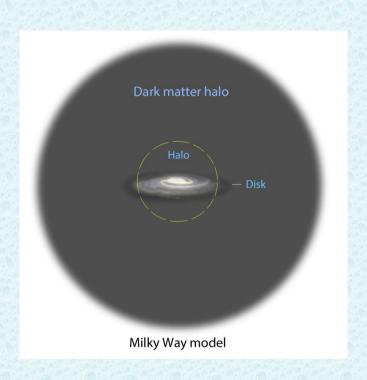
Giuseppe Ruoso Laboratori Nazionali di Legnaro

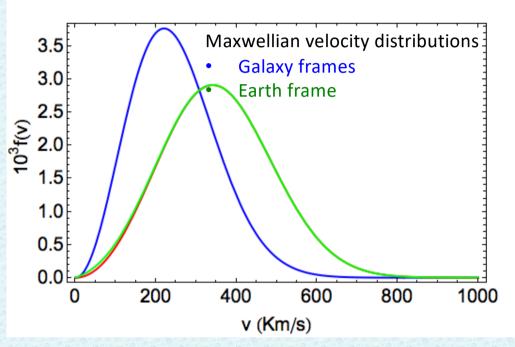
Part II

Axion dark matter direct searches

[C] Haloscopes – Galactic axions

Magnetic haloscopes




Standard Halo Model for ρ_{DM} and $f(v_a)$

Standard Halo Model: Isothermal, isotropic Maxwell-Boltzmann Distribution of DM assuming ρ_{DM} = 0.3 – 0.45 Gev/cm³

$$f(v) = 4\pi \left(\frac{\beta}{\pi}\right)^{3/2} v^2 \exp(-\beta v^2)$$

M. S. Turner, Periodic signatures for the detection of cosmic axions, Phys. Rev. D 42, 3572 (1990).

Observed axion velocity $\mathbf{v}_a = \mathbf{v} - \mathbf{v}_E$, where the Earth velocity $\mathbf{v}_E = \mathbf{v}_{sun} + \mathbf{v}_{orb}$

$$f(v_a) = 2\left(\frac{\beta}{\pi}\right)^{1/2} \frac{v_a}{v_E} \exp(-\beta v_a^2 - \beta v_E^2) \sinh(2\beta v_E v_a)$$
$$\simeq 2\left(\frac{\beta}{\pi}\right)^{1/2} \frac{v_a}{v_E} \exp(-\beta (v_a - v_E)^2)$$

Axions in the galactic halo

- In order to explain galaxy rotation curves, a halo of dark matter is hypothesized
- Accepted value for local dark matter density

$$\rho_{DM} \approx 0.3 - 0.45 \text{ GeV/cm}^3$$

- Cold dark matter component is **thermalized** and has a Maxwellian velocity distribution, with a dispersion $\sigma_v \approx 270 \text{ km/s}$
- There might be a nonthermalized component with sharper velocity distribution

- Axion can be a dominant component of the galactic DM halo
- Its occupation number is large

$$n_a \approx 3 \times 10^{14} \left(\frac{10^{-6} \text{ eV}}{m_a} \right)$$
 axions/cm³

 It can be treated as a classical oscillating field with frequency given by the axion mass

$$\frac{\omega_a}{2\pi} = 2.4 \left(\frac{10^{-6} \text{ eV}}{m_a} \right) \quad \text{GHz}$$

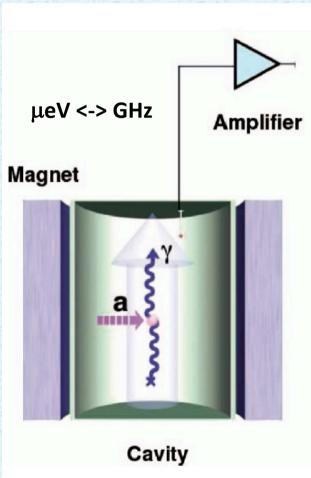
It has coherence length and time

$$\lambda = 1400 \left(\frac{10^{-6} eV}{m_a}\right) \text{m}$$

$$t = 5 \left(\frac{10^{-6} eV}{m}\right) \text{ms}$$

[C] Haloscopes – Galactic axions – Sikivie Type

- Search for axions as cold dark matter constituent
- Original proposal by P. Sikivie (1983)


• DM particles converted into photons inside a magnetic field (Primakoff effect), sensitivity to g_{av}

 The mass of the DM particle determines the frequency of the photons to be detected. For axions we are in the microwave range.

$$hv = E_{\rm a} = m_{\rm a}c^2 \left(1 + \frac{1}{2}\beta_{\rm a}^2\right) = m_{\rm a}c^2 (1 + O(10^{-6}))$$

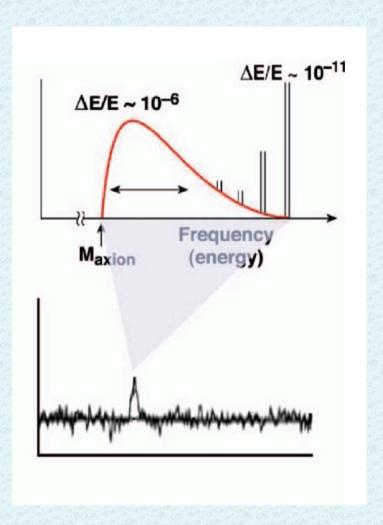
 β_a ~10⁻³ axion velocity

Use a microwave cavity to enhance signal. Cavity
must be tuned to axion mass. Being this
unknown, tuning is necessary: very time
consuming experiment!

Haloscopes – Galactic axions

- Search for axions as cold dark matter constituent
- Original proposal by P. Sikivie (1983)
- DM particles converted into photons inside a magnetic field (Primakoff)
 - Expected signal a nearly monochromatic line.
 Broadened by the thermal distribution of DM in the Milky Way

$$\frac{\Delta E}{E} \approx 10^{-6} = 1/Q_a$$


• Possible very sharp component due to nonthermalised axion falling in and out of the Milky Way ΔE

$$\frac{\Delta E}{E} \approx 10^{-11}$$

 Power proportional to the number density and the square of the axion-photon coupling

$$P_{a o \gamma} \propto \left(B_0^2 V Q\right) \left(g_{\gamma}^2 \frac{\rho_{\rm a}}{m_{\rm a}}\right).$$

Typical powers to be measured below 10⁻²³ W

Sensitivity

• When the frequency of the axion induced photon matches the frequency of the **cavity eigenmode**, the conversion power is **resonantly enhanced** via cavity Q_c ($Q_c << Q_a$) $Q_L = Q_c / (1+\beta)$

$$P_{\text{axion}} = 1.1 \times 10^{-23} \,\text{W} \left(\frac{g_{\gamma}}{1.92}\right)^2 \left(\frac{\rho_a}{0.45 \,\text{GeV/cm}^3}\right) \left(\frac{\nu_a}{1 \,\text{GHz}}\right) \left(\frac{B_0}{10 \,\text{T}}\right)^2 \left(\frac{V}{1 \,\text{liter}}\right) \left(\frac{C_{mnl}}{0.69}\right) \left(\frac{Q_L}{10^5}\right) \frac{\beta}{(1+\beta)}$$

- The **power is picked up by an antenna** with coupling β and read by an amplifier. Extremely low power levels are detected by sensitive amplifiers
- In the absence of a signal, the output of a receiver is noise measured on a **bandwidth** B_a corresponding to the axion linewidth

$$P_{
m noise} = Gk_B(T_{
m cav} + T_{
m ampl})B_a = Gk_BT_{
m sys}B_a$$

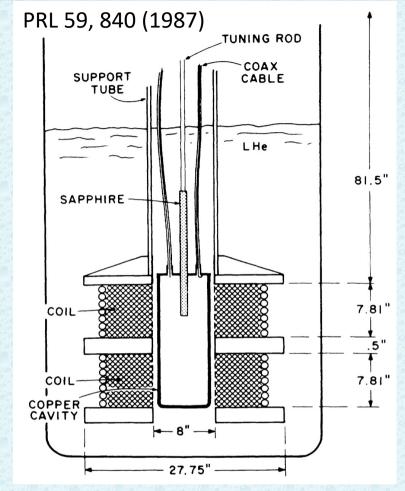
 T_{ampl} = amplifier noise temperature G – gain; k_B – Boltzmann constant T_{sys} = total system noise temperature

- The SNR can be calculated with Dicke's radiometer equation for a measurement time t_m
- $SNR = \frac{P_{axion}}{k_B T_{sys}} \sqrt{\frac{t_m}{B_a}}$

 Since all the frequencies within a cavity bandwidth can be scanned simultaneously, we can calculate a scanning rate as

$$\frac{df}{dt} = \frac{1}{\text{SNR}^2} \frac{P_{\text{axion}}^2}{k_B^2 T_{\text{sys}}^2} \frac{Q_a}{Q_L}$$

Major R&D efforts are made to increase $B_0^2 V C$ Q_c and minimizing T_{sys}


Haloscopes – Galactic axions

 Resonant detection of DM axions in a magnetic field. One measurement explores only sharp cavity linewidth.
 Scanning is necessary.

Figure of merit for scanning (mass or frequency)

$$\frac{\Delta f}{\Delta t} \propto V^2 B^4 C^2 T_{sys}^{-2} \ Q$$

- High Q microwave cavity operating inside a strong magnetic field B
- Large volume V cavity at high rf frequency f
- Low noise T_{sys} radio frequency receiver
- Use cavity modes with large form factor C

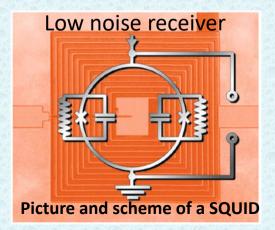
Schematic diagram of the RBF apparatus (1987)

- Scanning to high mass high frequency very difficult due to reduced cavity volumes
- Scanning to low mass low frequency implies large cavities and thus very big magnets

! All current limits assumes axion/ALPs saturate the local DM density

Main components of cavity haloscopes

Refrigeration system

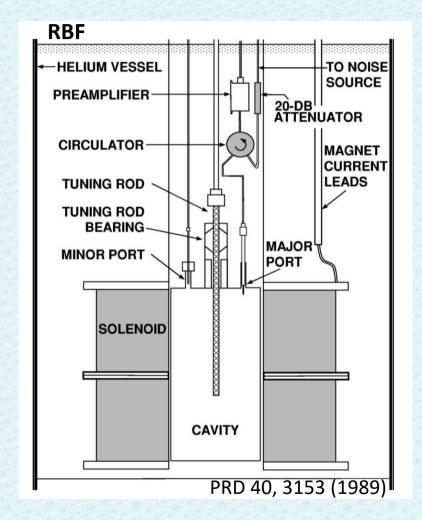


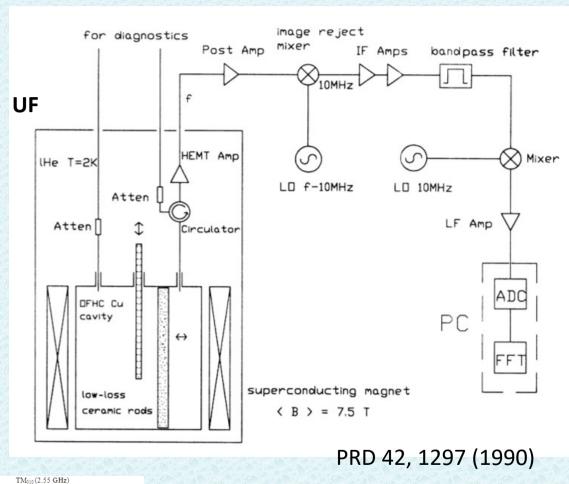
Base temperature T

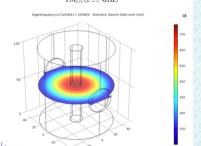
Microwave cavity

Resonance frequency f Tuning

Noise temperature T_n

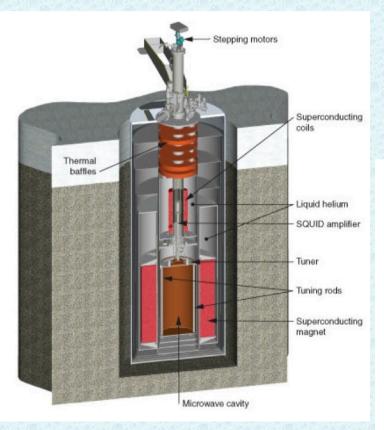

Magnetic source


Magnetic energy B² V


Haloscope detectors - precursors

- Pilot experiments in Brookhaven (RBF) (1988) and University of Florida (UF) (1990)
- Provided basic structure for even today's most sensitive experiments

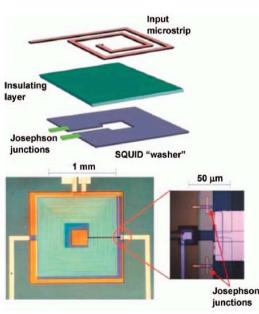
7 cavities, Brms 7.5 T phi 20 cm, L 40 cm Copper cavity TM010 with Q_L up to 70000 Cavity tuning with sapphire rods 7 GaAs FET amplifier, T_n 10-20 K



HEMT amplifier, T_n 3-6 K

Haloscope detectors – 1st gen - ADMX

ADMX – Axion Dark Matter eXperiment – phase I



Collaboration started in 1990 to explore new ways forward:

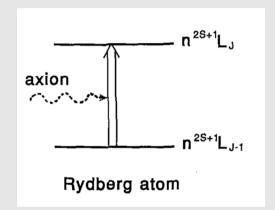
- SC quantum interference device (SQUID) receiver
- Large size copper cavity inside 8.5 T magnet
- Running temperatures around 1.5 K
- System noise temperature at few K

10-24

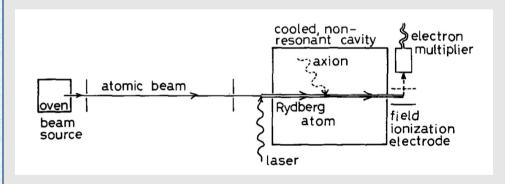
Cavity tuning with rods

10-25 10-26 (2-Neg) 10-28 10-27 **HEMT** <2004 SQUID 2007-09 10-29 10-30 Axion **RBF** UF 10-31 **ADMX** 10-32 10 m_a(µeV) 11

Reached QCD axion model (KSVZ)

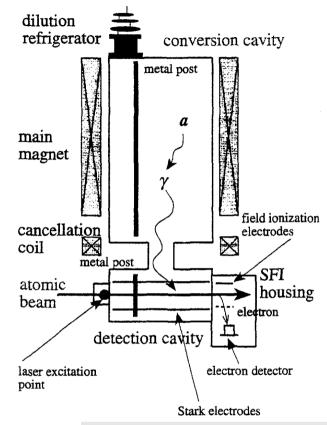

Haloscope detectors – precursors - CARRACK

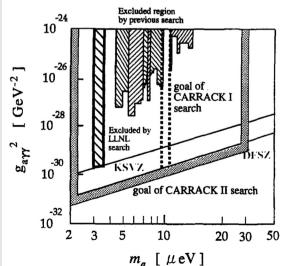
Different ideas already from the beginning: **Rydberg atoms**


1. Rydberg atoms as direct axion DM detectors

Exploit the axionelectron coupling to excite Rydberg transitions

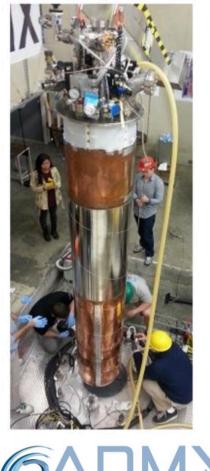
f~GHz Range




Use alkaline atomic beam in an inhibited cavity regime

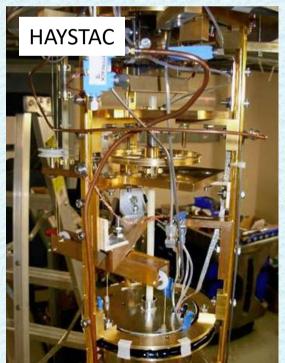
PLB 263, 523 (1991)

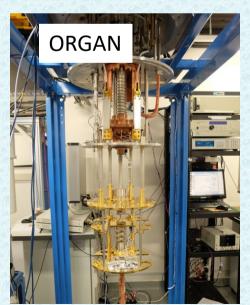
2. Rydberg atoms as photon detectors in a Sikivie's type scheme

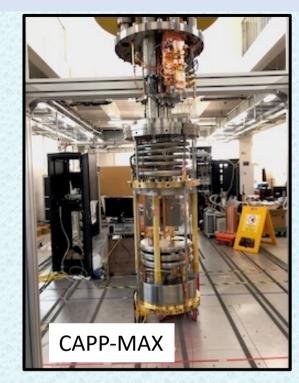


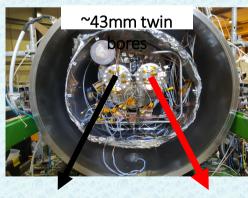
NPB (PS) 72, 164 (1999)

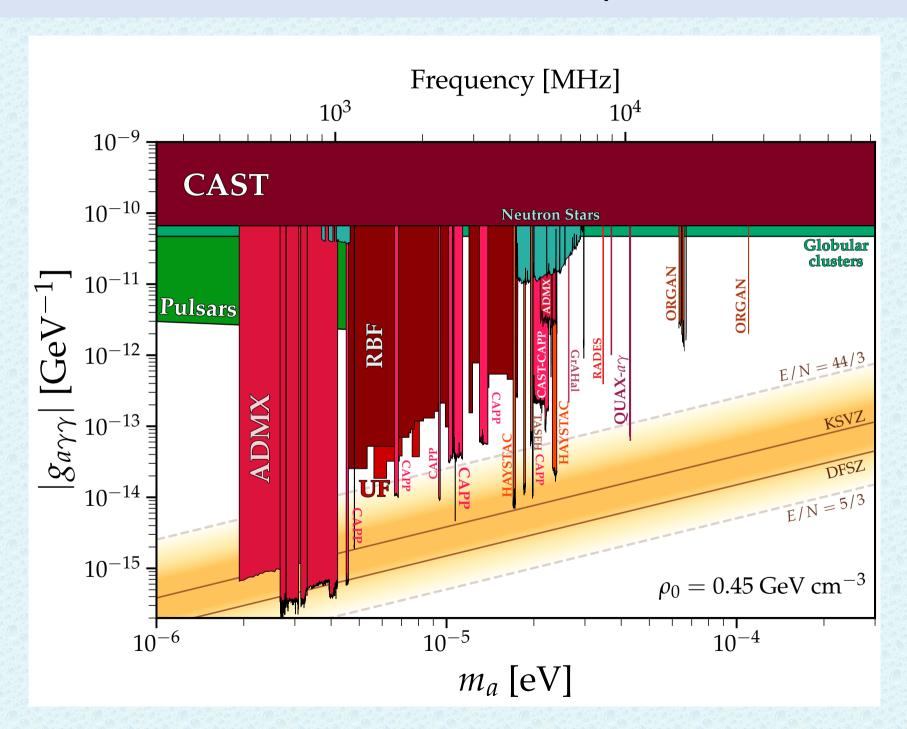
12


Haloscope detectors – current situation

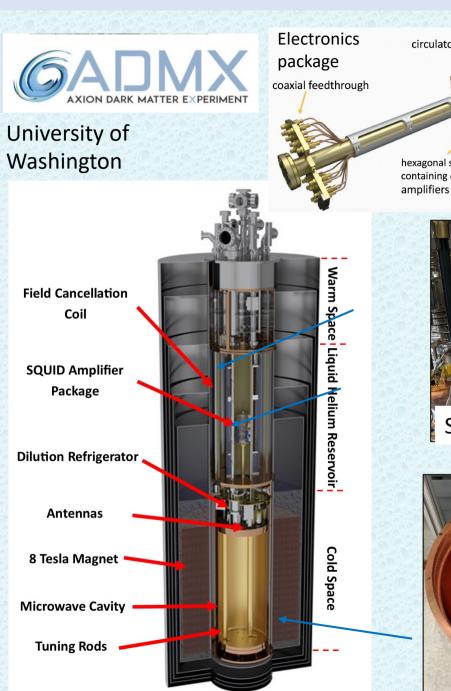

 Within the last 10 years ADMX has evolved and a large number of new apparata based on Sikivie's scheme came into play

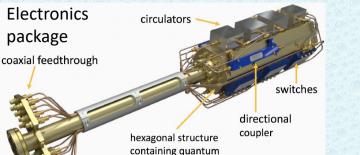






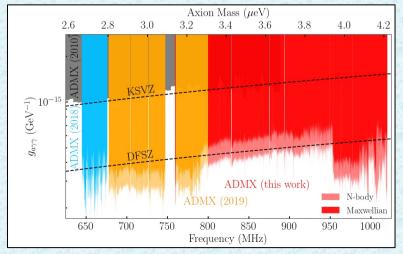
CAST-RADES


CAST-CAPP


Current limits – Sikivie's haloscopes

AxionLimits by cajohare.

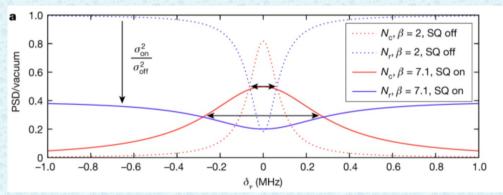
ADMX – Axion Dark Matter Experiment

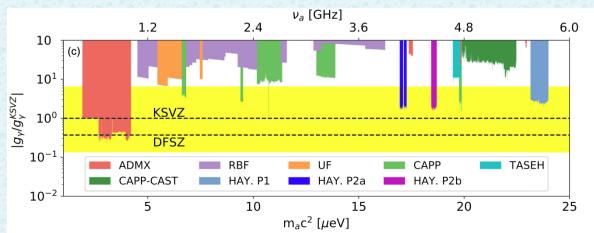

Main cavity

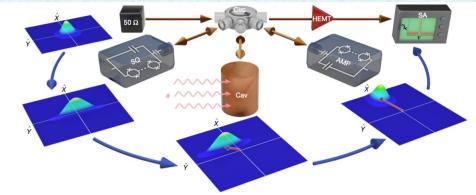
ADMX has evolved in time with the implementation of several improvements:

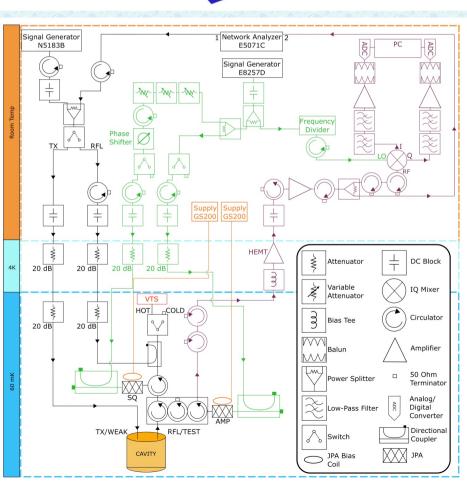
- Dilution refrigerator with lower base temperature : cavity @ 150 mK
- SQUID, JPA and TWPA amplifiers
- Multimode searches

First haloscope to reach DFSZ axion model sensitivity




Phys. Rev. Lett. **127**, 261803 (2021) ¹⁵


HAYSTAC – Haloscope at Yale Sensitive To Axion CDM


- Designed to search for dark matter axions with masses above 10 μeV
- First haloscope to use a Josephson Parametric Amplifier
- First haloscope to employ a Squeezed-state receiver (SSR)

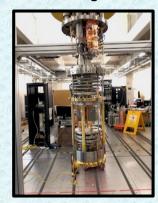
Scan rate enhancement 1.9 over quantum limit

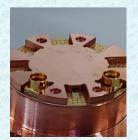


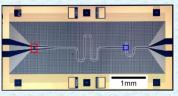
IBS-CAPP Institute of Basic Science

• IBS – CAPP was established in Korea with the aim of building a laboratory equipped with top infrastructure for cavity haloscope searches with enhanced sensitivities over a broader range in the microwave region.

- High Temperature Magnets based on ReBCo tape
- High field and large volume Low Temperature magnet
- Powerful dilution refrigerators to achieve ultralow temperature
- Design and construction of largeeffective-volume high-frequency high-Q microwave resonator
- Use of very low noise Josephson Parametric Amplifiers working at different frequencies

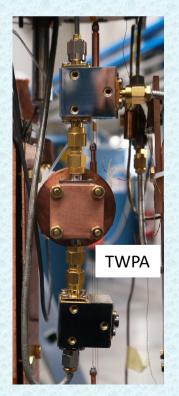

Cryogenics (<40mK)
Dilution Refrigerators

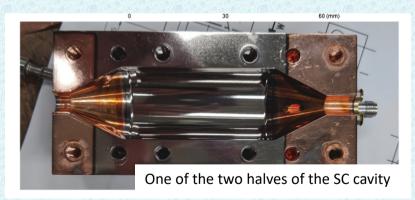

High Q Tunable Cavity
Superconducting tapes



High Field &
Big bore Magnet
12T LTS Big Bore SC Magnet

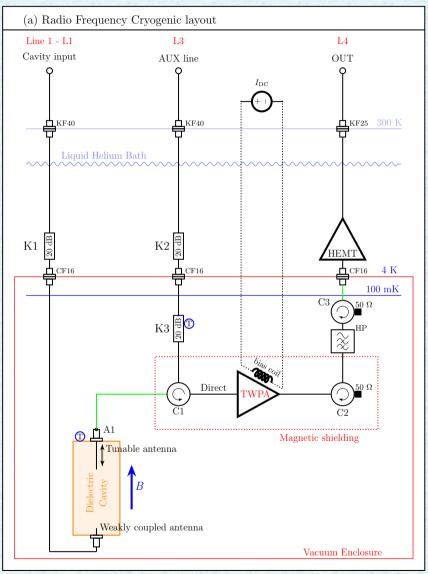
Quantum Amplifier SQUID and/or JPA (T_N ~ SQL)


Axion experiments at CAPP


	CAPP- PACE	CAPP- 8TB	САРР-НБ	CAPP- PACE -JPA	CAPP- PACE -JPA-6cell	CAPP- 8TB -JPA-8cell	CAPP- PACE -JPA-SC	CAPP- MAX	CAPP- AQN-SC	CAPP- HeT-SC	CAPP- 12T-HF- 3cell
Year	2018	2019	2019	2020	2021	2021	2021	2021	2023	2023	2023
Magnet [T]	8	8	9	8	8	8	8	12	8	8	12
m _a [GHz]	~2.5	~1.6	~4.0	~2.3	~5.6	~5.8	~2.3	1.0 ~ 2.0	~2.3	~5.4	~5.3
$\Delta m_{a} \ [ext{MHz}]$	250	200	250	30	80	>100	30	20 ~ 300	-	> 50	~30
Sensitivity	10*KSVZ +KSVZ	4*KSVZ	10*KSVZ	2*KSVZ	3*KSVZ	KSVZ	KSVZ	DFSZ	DFSZ	KSVZ	KSVZ
$T_{phy}[K]$	< 0.05	< 0.05	~2	~0.05	~0.05	~0.03	~0.04	~30 mK	60 mK	30 mK	30 mK
T _{sys} [K, mK]	~1 K (HEMT)	~1 K (HEMT)	~2 K (HEMT)	~200 mK	<300 mK	<300 mK	<200 mK	<300 mK	~200 mK	~400 mK	~400 mK
Comments	R&D machine: First physics run (coldest axion data)	First result published by CAPP	First multi-cell cavity result	First run with JPA	First run with JPA+6-cell	First run with JPA+8-cell	First run with JPA+SC	CAPP's main axion detector with JPA	Axion Quark Nugget + SC cavity (Q~1.6M)	First run with He tuning + SC cavity (Q~10M)	3-cell with 12T mag + JPA SC cavity (future)
Publication	Published in PRL	Published in PRL	Published in PRL	Published in PRL		Will publish	Will publish	Published in PRL			

QUAX – QUaerere AXion – QUest for AXion

Experiment designed to look for dark matter axion in the 10 GHz region

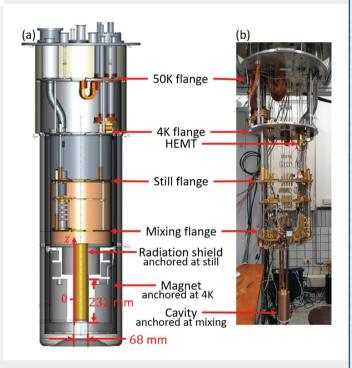

- First apparatus to use a superconducting cavity in a strong magnetic field $Q0 = 4.5 \ 10^5 \ @ \ 2 \ T$
- Operation of a quantum limited JPA at high frequency
- Operation of a near quantum limited TWPA at high frequency
- Use of hybrid cavity design (copper-sapphire) to get high Q and large volume
- First haloscope employing a cavity with Qc > Qa

Achieved Tsys = 2.1 K @ 10.5 GHz Reached QCD axion models sensitivity

Layout with novel calibration scheme

See description in the tutorial this afternoon

Others running


TASEH

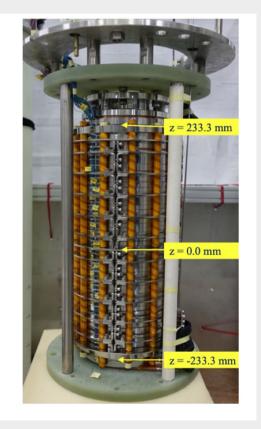
PRD 106, 052002 (2022) PRL 129, 111802 (2022)

Range (4.70750 – 4.79815) GHz

- OFHC copper, split cavity
- Volume *V*: ~ 0.234 L
- *Q*0: ~ 62000
- $C010 \sim 0.62$
- \bullet B = 8 T
- Tsys 2.1 2.4 K

• Reach ~ 10 times KSVZ sensitivity over a 100 MHz window

Next steps:

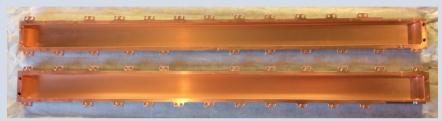

- New dilution unit for lower temperature
- Magnet upgrade 9 T and larger volume
- Use of a JPA
- New conical tunable cavity (see next)

CAPP18T

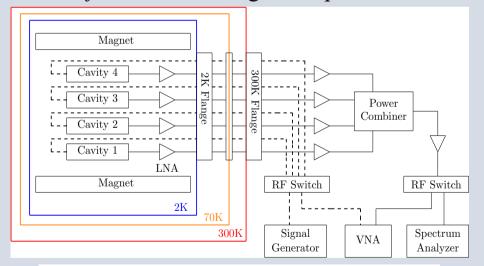
PRL 128, 241805 (2022) PRD 106, 092007 (2022) PRL 131, 081801 (2023)

Range (4.7789 – 4.8094) GHz

- Strongest magnet for haloscope 18 T
- JPC amplifier
- Tsys 0.62 K
- Reach KSVZ sensitivity over a 40 MHz window


Others running II

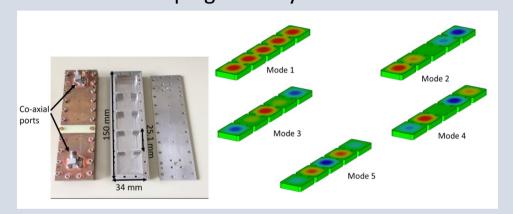
CAST - CAPP


NatComm 13, 6180(2022)

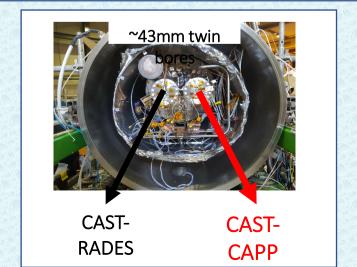
Use of the LHC – CAST magnet as an haloscope

4 identical stainless steel tunable cavities

Increase the sensitivity via *coherent* combination of the power outputs of 4 frequency-matched cavities *after* individual signal amplification.


- No phase-matching: $SNR_N = \sqrt{N} \cdot SNR_{single}$
- With phase-matching: $SNR_N = N \cdot SNR_{single}$
- Frequency range: ~4.8 5.4 GHz (660 MHz)
- Axion mass range: ~19.7 22.4 μeV

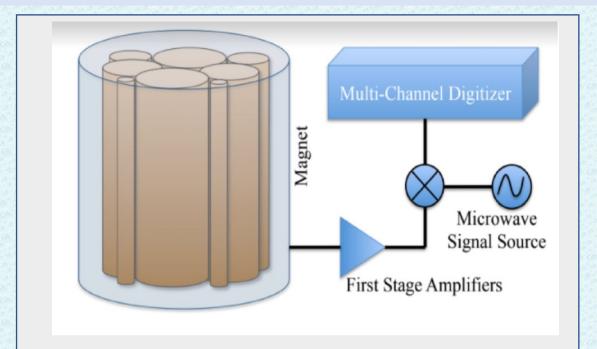
CAST - RADES


JHEP10(2021)075

Use of the LHC – CAST magnet as an haloscope

A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry.

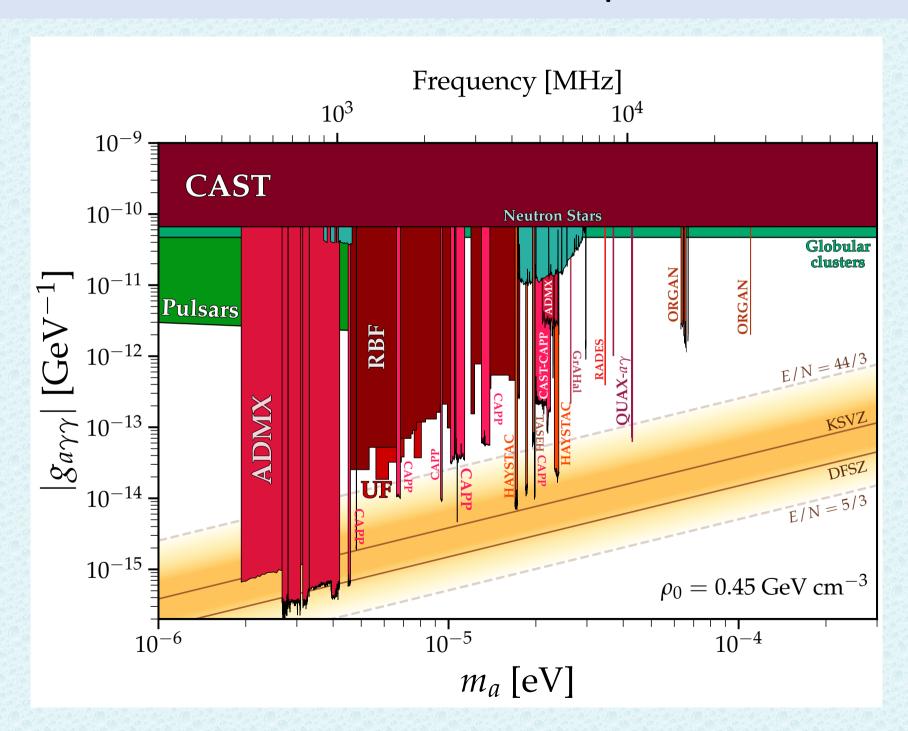
Q_L ~ 11000 @ Frequency 8.384 GHz (34.67 eV)



Others running III

The Grenoble Axion Haloscope project (**GrAHal**) aims at developing a haloscope platform in Grenoble (France), able to run detectors of different sizes and designs for the search of galactic axions and ALPs at the best sensitivity in the 0.3 – 30 GHz frequency range

Pilot experiment with a 14 T magnet And 6.4 GHz cavity


The **ORGAN** experiment (situated in Perth, Australia) is a microwave cavity axion haloscope that aims to search the mass range of $50-200 \, \mu \text{eV}$ using a multi-cavity design.

Pathfinder meas @ 26.5 GHz

@ 15.3 – 16.2 GHz

Current limits – Sikivie's haloscopes

AxionLimits by cajohare.

Cavity Haloscopes: what next?

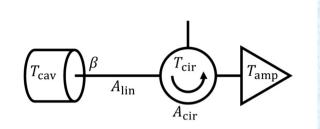
- Haloscopes seems to be CURRENTLY the most promising detectors to search for QCD axion dark matter – bandwidth limited – scanning required
- BEWARE: limits always assume axion as the dominant (100%) DM component
- How fast can we scan with a resonant detector?

$$\frac{df}{dt} = \frac{1}{SNR^2} \frac{g_{a\gamma\gamma}^4 \rho_a^2}{m_a^2} \frac{B_0^4}{k_B^2 T_{sys}^2} \frac{\beta^2 C_{mnl}^2 V^2}{(1+\beta)^2} \frac{Q_c Q_a^2}{(Q_c + Q_a)}$$

SNR - target signal to noise ratio

Dark matter axion parameters – independent of detector

Magnetic field B₀ and system noise temperature T_{svs} (related to apparatus environment)

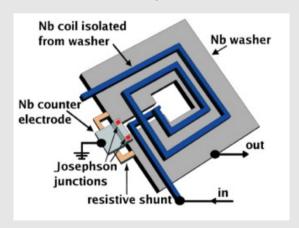

Resonant cavity volume V, mode form factor C_{mnl} , coupling β and Q factor

Optimization of values of technical parameters will be strongly dependent on the frequency range where the detector is operated

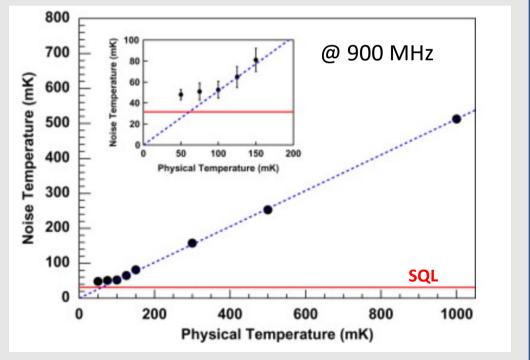
The road to the future: detectors

- Frequency scan inversely proportional to square of detection noise level
- Linear amplifiers limited to the Standard Quantum Limit (SQL)

$$k_{\rm B}T_{\rm N} = h\nu \left(\frac{1}{{\rm e}^{\,h\nu/k_{\rm B}T}-1} + \frac{1}{2}\right) + k_{\rm B}T_{\rm A}.$$



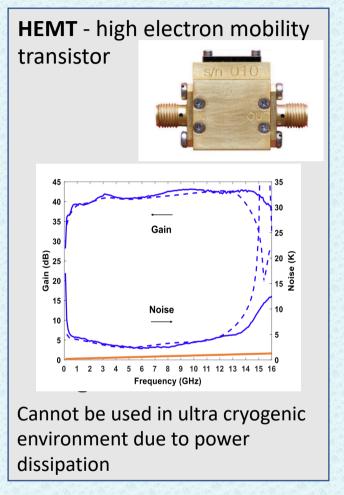
Total System Noise Level = cavity temperature + detector noise temperature

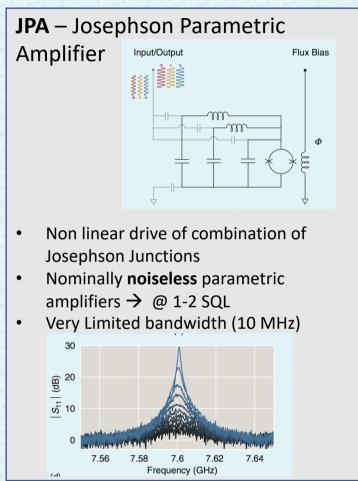

• Irreducible noise $k_{
m B}T_{
m SQL}=h
u$, dominant noise above 2 GHz @ 100 mK

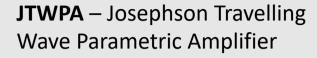
Low frequency

Microstrip SQUID amplifier (ADMX) almost reached SQL

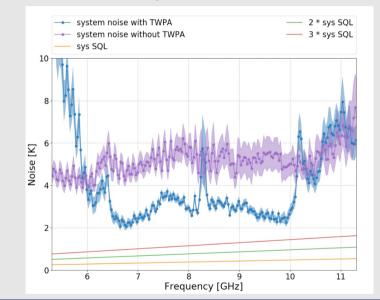
Nucl. Instrum. Methods Phys. Res. A 656, 39 (2011).




Performances drops for frequencies above a few GHz

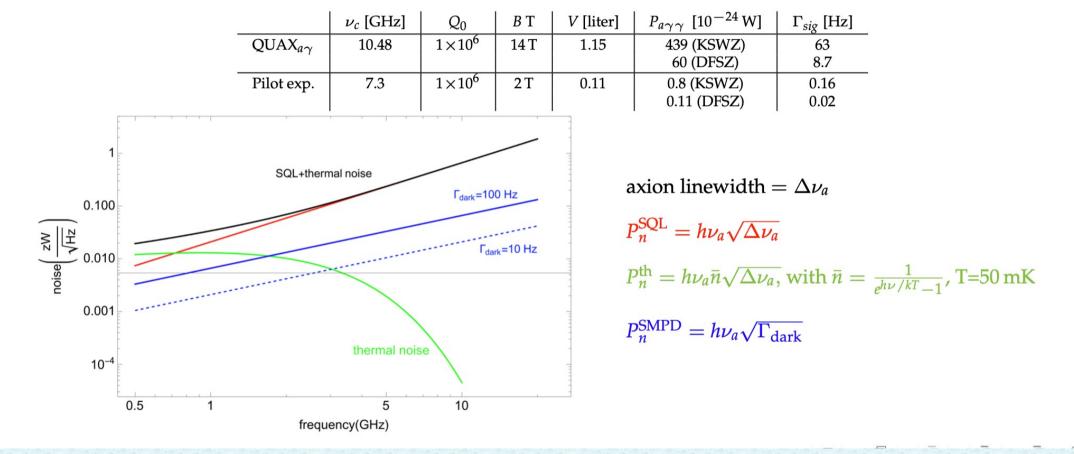

https://doi.org/10.1016/j.nima.2011.07.019

The road to the future: detectors (high frequency)


For frequencies above a few GHz, it is much difficult to reach the limit of a linear amplifier

- Transmission lines comprised of series connected junctions
- Can operate over a wide bandwidth (GHz)
- Still @ a development level

Other options:

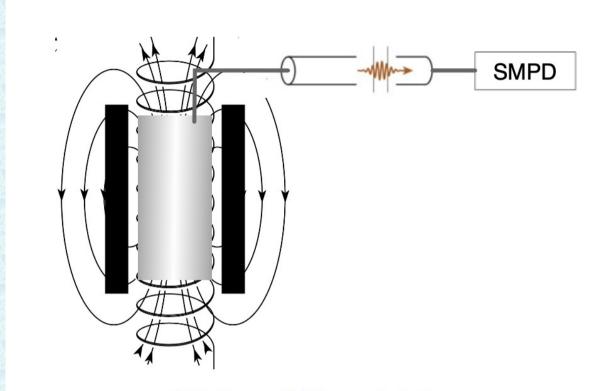

Squeezing → Increase the measurement bandwidth

Single photon counter → Lots of R&D on the way

Single photon counting

Why do we need Single Microwave Photon Detectors (SMPD) in haloscope search?

Using quantum-limited **linear amplifiers** (Josephson parametric amplifiers) the **noise set by quantum mechanics** exceeds the **signal** in the high frequency range, whereas **photon counting** has no intrinsic limitations

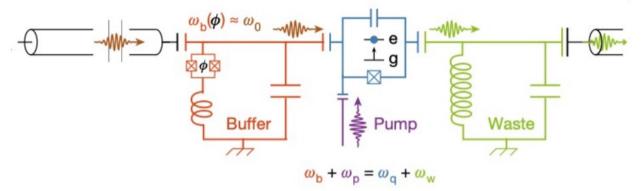


➤ Detection of individual microwave photons is a challenging task because of their **low** energy e.g. $hv = 2.1 \times 10^{-5}$ eV for v = 5 GHz

Single photon counting

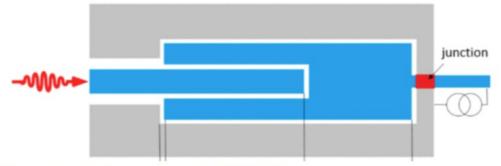
Requirements for axion dark matter search:

- detection of *itinerant photons* due to involved intense **B** fields
- lowest dark count rate Γ < 100 Hz
- $\gtrsim 40-50\%$ efficiency
- large "dynamic" bandwidth ~ cavity tunability


detection of *itinerant photons* applicable to axion searches (multi-Tesla fields)

Single microwave photon counter (SMPD)

Most advanced schemes for the detection of **itinerant photons**

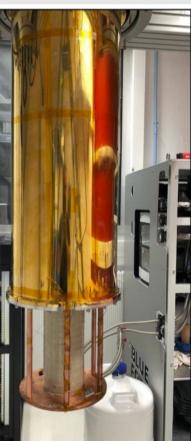

Details in the tutorial this afternoon

 "artificial atoms" introduced in circuit QED, their transition frequencies lie in the ∼GHz range

- E. Albertinale *et al*, Nature **600**, 434–438 (2021)
- R. Lescanne et al, Phys. Rev. X 10, 021038 (2020)

single current-biased Josephson junction (JJ)

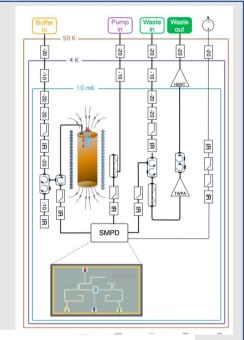
npj Quantum Information 8, 61 (2022)


IEEE Tras. Appl. Supercond. 33, 1-9 (2023)

SMPD Haloscopes

Pilot experiment conducted @ Quantronics lab in Saclay (Paris) SMPD @ 7 GHz, 2 T Magnetic field Hybrid cavity with small tuning Manuscript in preparation

SMPD (top) and cavity



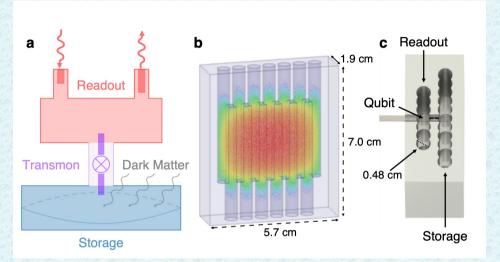
SC magnet

A copy of the Saclay device will be installed in Padova for an haloscope with:

- Larger tuning (200 MHz)
- Higher Magnetic field (6 T)

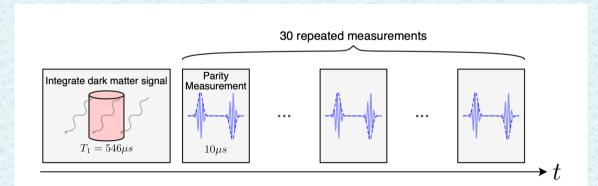
We are looking for students!!

building a SMPD-HALOSCOPE IN PADOVA

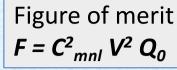




Dark photon haloscopes – quantum sensing

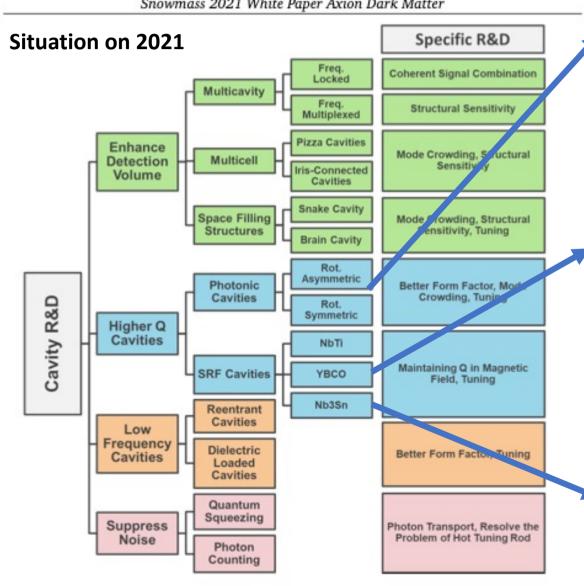

A transmon qubit coupled to a microwave cavity has been used to search for dark photons - A. Dixit et al. Phys. Rev. Lett. **126**, 141302 (2021)

Storage Cavity 6.011 GHz Readout Cavity 8.052 GHz Qubit 4.749 GHz


- A superconducting qubit bridges the storage and readout cavities.
- The storage is used to hold the dark matter generated photon
- The readout is used to measure the state of the qubit.
- Dedicated dark matter search protocol to look for qubit state changes induced by the presence of a photon in the cavity

Sensitivity improved by factor 37 over SQL 1300 x faster scanning rate

No tuning No magnetic field Axion searches needs more development


The road to the future: microwave cavities

$$C_{mnl} = \frac{\left| \int_{V} \mathbf{E_{mnl}} \cdot \mathbf{B} \, d^{3}x \right|^{2}}{\int_{V} \left| \mathbf{B} \right|^{2} d^{3}x \int_{V} \varepsilon \left| \mathbf{E_{mnl}} \right|^{2} d^{3}x},$$

+ Tuning

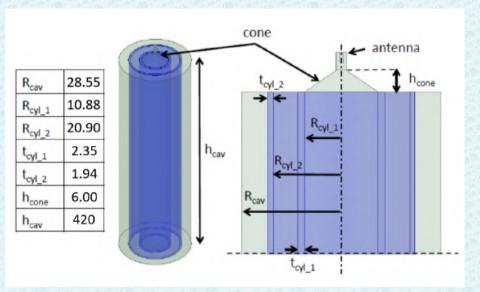
Snowmass 2021 White Paper Axion Dark Matter

QUAX dielectric cavity

- Two nested sapphire cylinders configuration
- $Q > 9x10^6 in a 8T$ field @ 10.4 GHz

- **CAPP** biaxially textured YBa2Cu3O7-x cavity
- Q ~ 500 000 @ 8T field @ 2.3 GHz

(Patras workshop 2021)


Fermilab (SQMS) - QUAX

arXiv 2201.10733

- SC cavity with optimized geometry and choice of fabrication technique
- Q~500000@ 6T field @ 3.9 GHz

Cavities developments – larger Q

QUAX double shell dielectric cavity

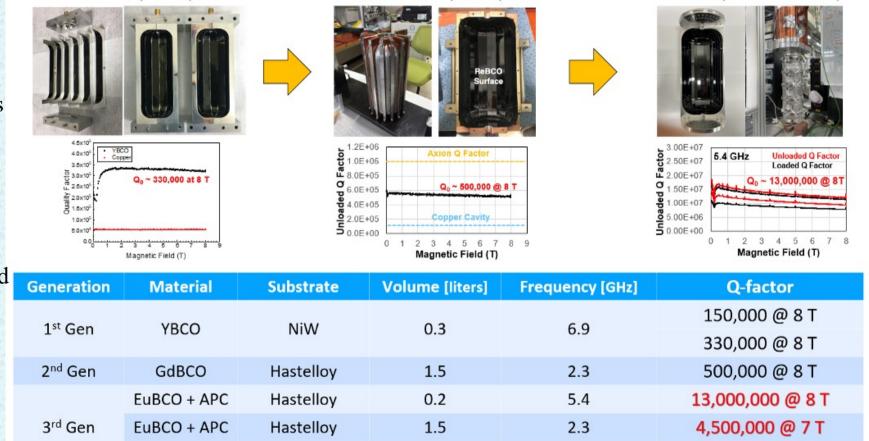
• dielectric materials properly placed inside traditional cylindrical resonant cavities, operated in TM modes of higher order

PHYS. REV. APPLIED 17, 054013 (2022)

- Exploit TM030 mode
- High Q-factor due to field confinement by dielectric shells
- Q0 = 9.3 million in a 8 T magnetic field
- Small cavity tuning (few MHz) with sapphire rods

Q value @ 4 K

Cavity	$ u_{cav}$	V	C _{nml}	$V_{eff} = C \cdot V$	Q_0
QUAX 2020	10.4 GHz	80 cm ³	0.69	55.6 cm ³	76000
QUAX 2022	10.35 GHz	1056 cm ³	0.033	34.7 cm ³	$9.1 \cdot 10^6$



Cavities developments – larger Q

First Gen. (6.9 GHz)

CAPP High Temperature Superconductor cavities

- A polygon-shaped cavity design with biaxially textured ReBCO superconducting tapes covering the entire inner wall.
- Using a 12-sided polygon cavity, substantially improved Q factors
- No considerable degradation in the presence of magnetic fields up to 8 T

36

Second Gen. (2.3 GHz)

From Woohyun Chung talk @ Patras 2023

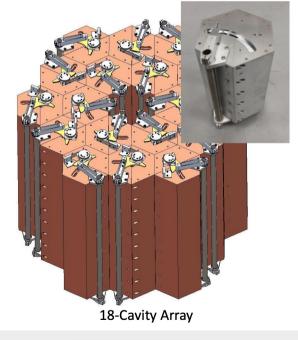
~ 1

Third Gen. (2.2 GHz & 5.4 GHz)

HTS cavity can reach 10 times larger than axion quality factor ($\sim 10^6$)

Hastelloy

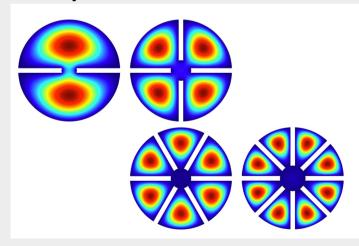
EuBCO + APC


Cavities developments - new geometries

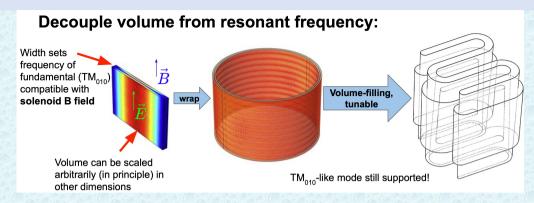
Find ways to increase volume at high frequency while keeping tuning

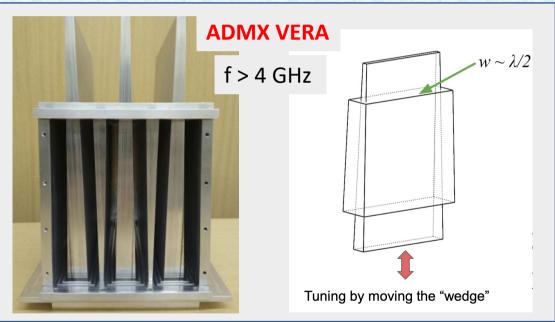
For right cylindrical cavity, main mode volume

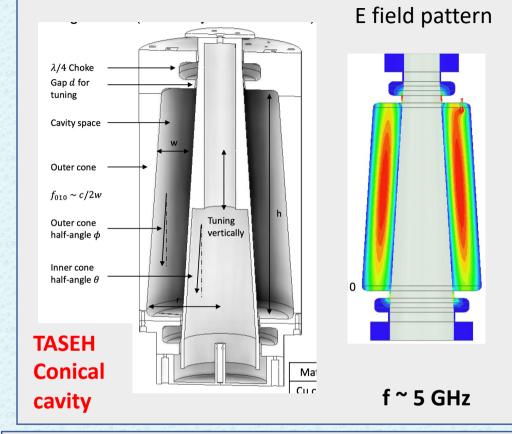
V ~ 1/d^2 ~ 1/f^2



80 liters Avg C ~ 0.4 Q ~ 90 000

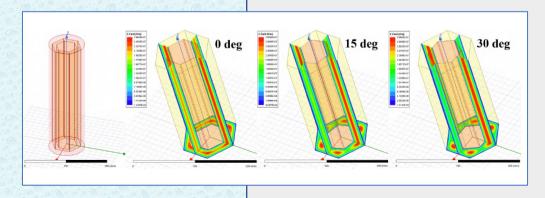

Multiple cell cavity at CAPP

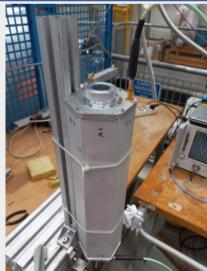

- Resonant frequency increases with the cell multiplicity.
- Same frequency tuning mechanism as multiple cavity system can be employed.
- A single RF antenna extracts the signal out of the cavity.



Frequency up to 8 GHz

Cavities developments – new geometries



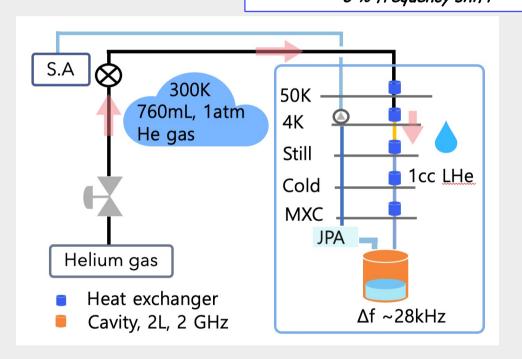

QUAX Polygonal cavity

f ~ 10 GHz

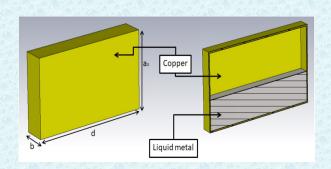
Major issues for all:

- Surface quality
- Alignment
- Spurious modes
- All degrade Cmnl
- Q factor?

Cavities developments – tuning

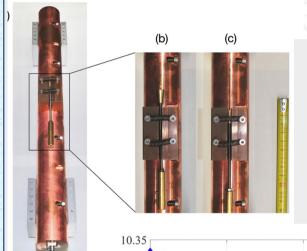

CAPP Superfluid Helium Tuning

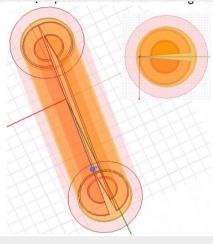
- Fill SC cavities with He
- He Level set the frequency change

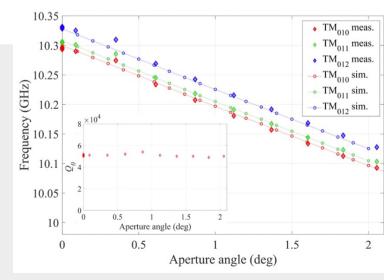

Superfluid Helium ($\epsilon_r \approx 1.057$) tuning

$$\bullet \qquad f_{TM010} = \frac{1}{2\pi\sqrt{\mu\epsilon}} \frac{2.405}{R}$$

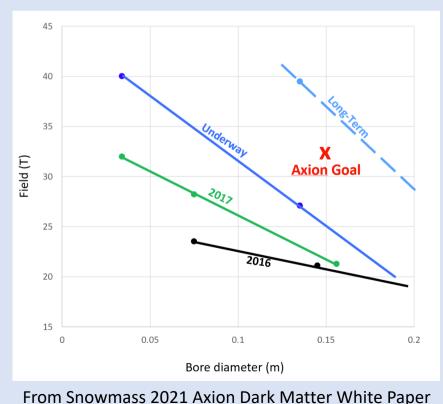
• $\frac{f_{empty} - f_{LHe}}{f_{LHe}} = \sqrt{\epsilon_{LHe}} - 1 \approx 0.028,$ ~3 % frequency shift




arXiv:1804.03443v1 QUAX Liquid Metal Tuning of a resonator


QUAX Clamshell cavity

- Simple way to tune right circular cavities
- Effective radius can be modified by separating the two halves of a clamshell

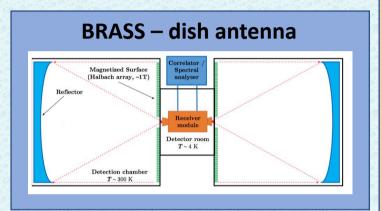

- Lack of mode crossings
- Tuning linear with aperture

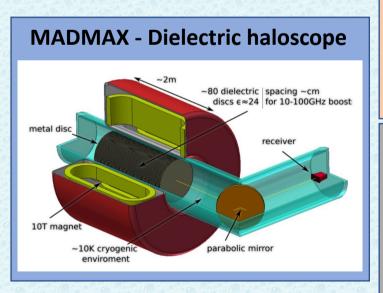
The road to the future: magnets

- For haloscope a dedicated magnet R&D program for higher strength (up to 45+ Tesla) and optimized magnet designs is needed to maximize B^2 V
- Up to now standard superconducting magnets provided field up to about 12-14 T
- Hybrid magnets are foreseen to be used in next generation haloscopes

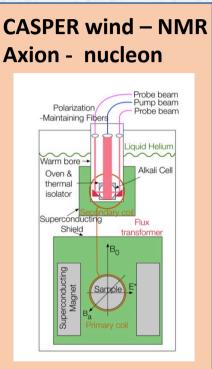
In the **US** the National High Magnetic Field Laboratory (MagLab) has been developing higher field REBCO (Rare Earth barium copper oxide) inserts with current designs reaching a maximum field of 45 T

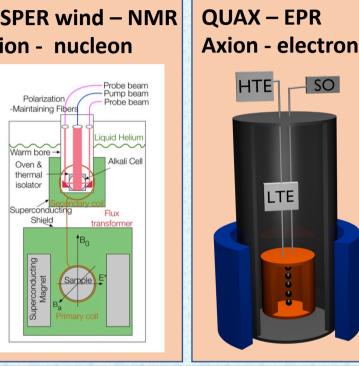
In **Grenoble** a combination of resistive polyhelix and Bitter coils inserted within a large bore superconducting one, a maximum field of at least **43 T** will be produced in a 34 mm diameter aperture with **24 MW** of electrical power

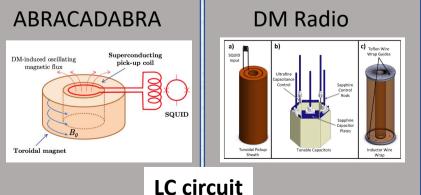

Several lower field option will also be available


GraHal Project

arXiv:2110.14406


Dark matter haloscopes – what's going on


- Several other activities are starting or being proposed in the very recent time
- It is a field which is expanding very rapidly

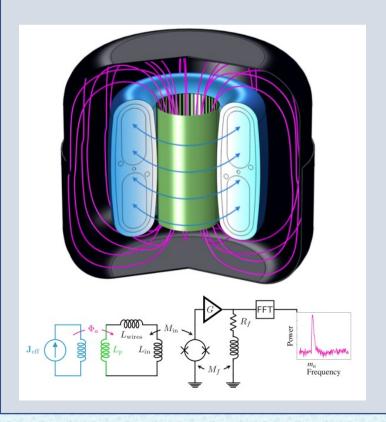


ONLY A SELECTION!!!!!

RADES / CAPP – cavities inside CAST

ORPHEUS

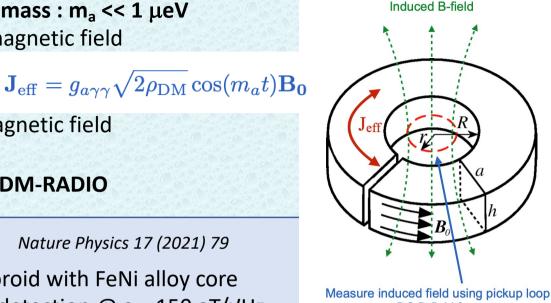
WISPDMX @DESY

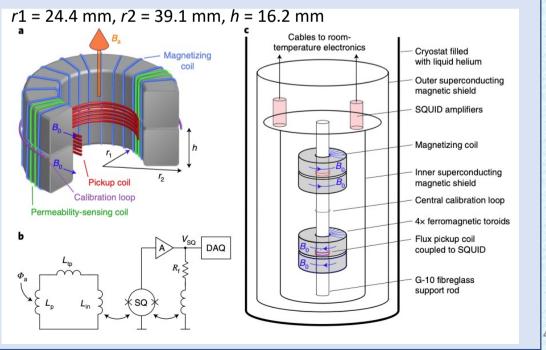

Standard Sikivie's detectors

Update: Dark Matter Haloscopes – Lumped elements

- A new way to look for dark matter axion of very low mass: $m_a \ll 1 \mu eV$
- Measure axion induced electric current in a strong magnetic field
- **Toroidal** magnet configuration
- Broadband and resonant detection of induced ac magnetic field

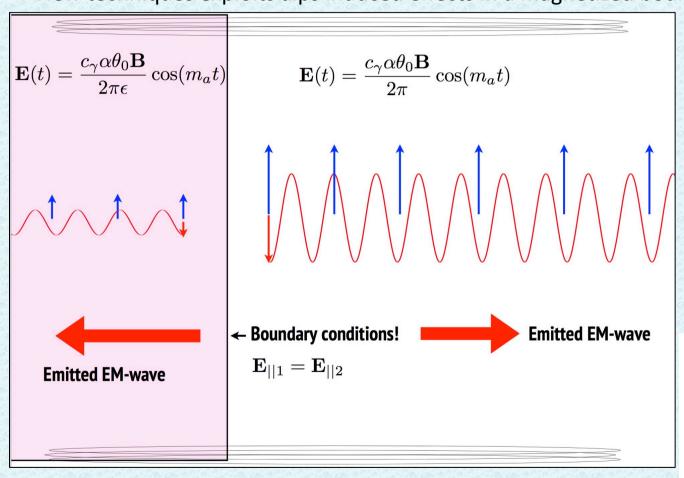
ABRACADABRA (PRL 127, 081801 (2021))

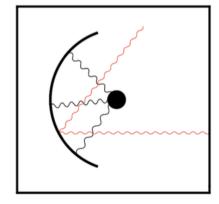

12 cm x 12 cm 1 T toroid **SQUID** detection m_a range 0.41–8.27 neV (50 kHz – 2 MHz)


See also DM-RADIO

SHAFT Nature Physics 17 (2021) 79

1.5 T toroid with FeNi alloy core SQUID detection @ s = 150 aT/vHz m_a range 0.012 –12 neV (3 kHz – 2.9 MHz)


DC B-field free


Other techniques for DM detection: dish antenna

Axion-Induced Electromagnetic Radiation from Reflecting/Refractive Surface in Magnetic Field

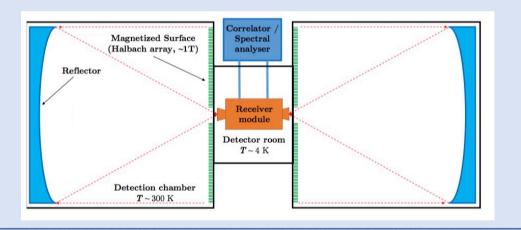
- Very hard to reach high masses (tens of μeV) with resonant cavities
- New techniques exploits alps induced effects in a magnetized boundary

- A dielectric/conductive interface immersed in a static homogeneous magnetic field will radiate EM-wave at the frequency corresponding to the mass of the ALP dark matter surrounding it
- Wide band system

"Dish Antenna"
Horns, Jaeckel,
Lindner,
Lobanov,
Redondo &
Ringwald, 2012

Emtted power

 $P \propto AB^2 f^{-2}$

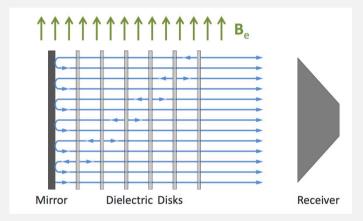

Large area A, Strong Fields B

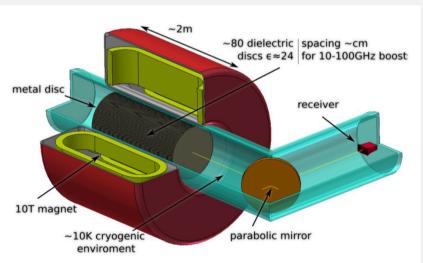
Other techniques: proposals

Conductive mirror

BRASS experiment (Hamburg)

- Large surface mirror; 8 m radius
- Halbach array of permanent magnets
- Rejection of background thanks to spherical shape

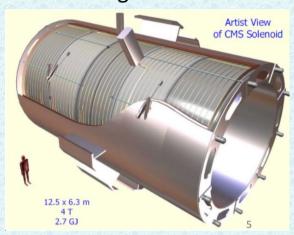

- 80 dielectric discs with 60 cm diameter (1 m²) each
- 10 T magnetic field
- Large epsilon material to increase boost factor
- Tuning mechanism (interference is not broadband)

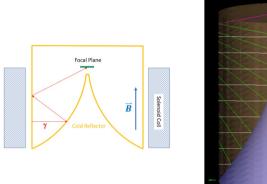

More details in the tutorial this afternoon

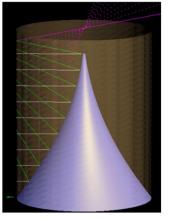
Stacked dielectric mirrors

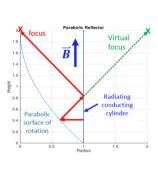
MADMAX experiment (Germany)

- Stacked structure of dielectric plates
- Interference between each emission boost sensitivity

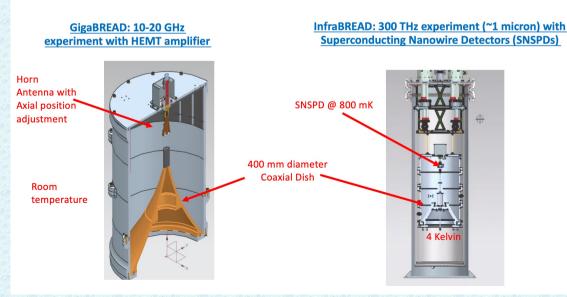


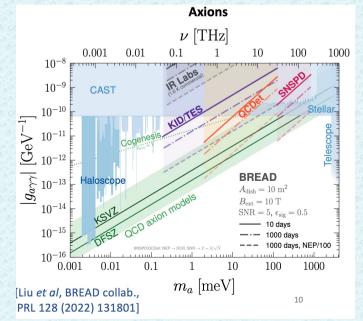

Large volume dish antenna


Broadband Reflector Experiment for Axion Detection (BREAD) - PRL **128**, 131801 (2022)


Find solution for large solenoids

"Coaxial Dish": Optical Concentrator for Solenoid Magnets

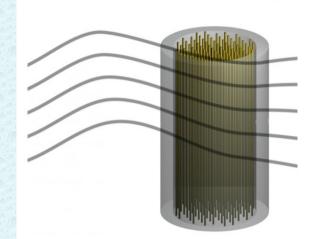




• Rays emitted from cylindrical inner surface of solenoid are focused to a point after two reflections.

Proof of Concept Experiments: GigaBREAD and InfraBREAD

With state of the art sensors QCD axion sensitivity

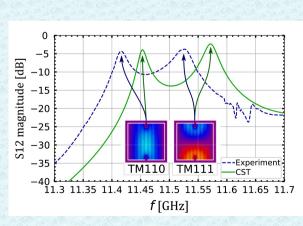

The road to the future: high frequency (>20 GHz)

Plasma haloscopes use a wire metamaterial to create a tuneable artificial plasma frequency, decoupling the wavelength of light from the Compton wavelength and allowing for much stronger signals.

Plasma haloscope: project ALPHA

- Meta material composed by a dense array of parallel wires electrically connected to top and bottom walls.
- Large conversion volume in a magnetic field even for high frequency
- Recent experimental work on seems to confirm feasibility

Resonance w/ plasma frequency



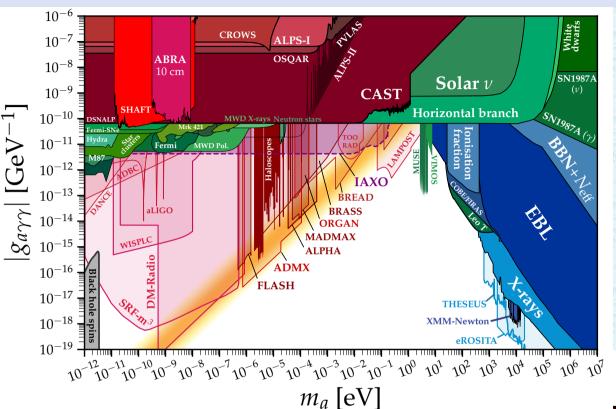
$$\omega_p^2 = \frac{n_e e^2}{m_{eff}} = \frac{2\pi}{s^2 \log(s/d)}$$

 ω_p depends on s & d

- s: inter space
- d: wire radius

Phys. Rev. D 107, 055013 (2023)

ALPHA PHASE I

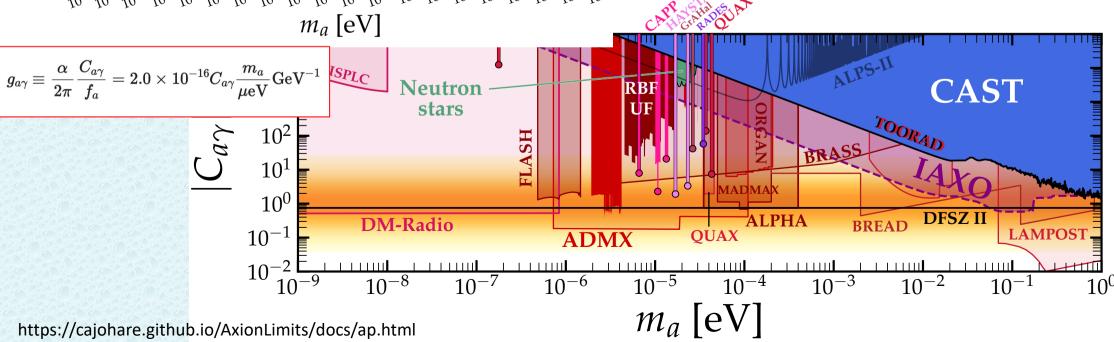

- 2 years run
- $(5 \div 40)$ GHz
- HEMT amplifiers
- Single scan (see [8])

ALPHA PHASE II

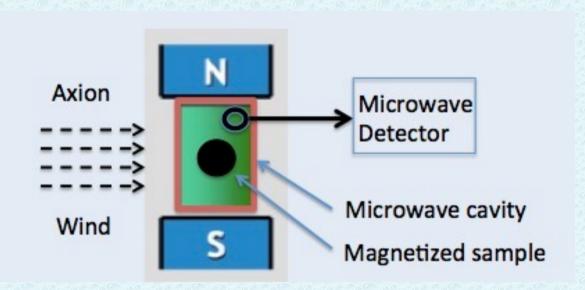
- 2 years run
- $(5 \div 45)$ GHz
- Quantum limited
- Single scan (see [8])

 $(Q \sim 10^4, B \sim 10 \,\mathrm{T}, V \approx 0.3 \,\mathrm{m}^3)$

Photon coupling – what next



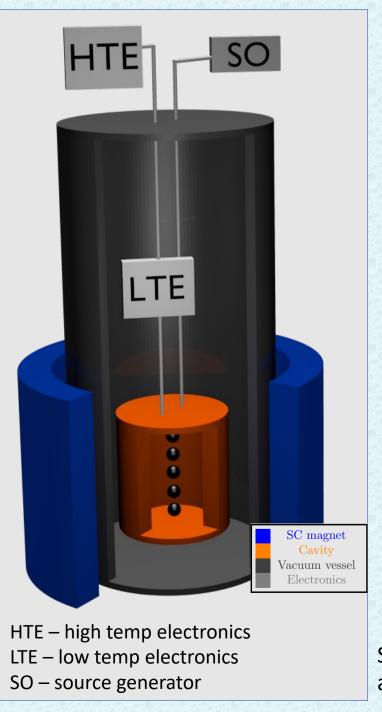
FLASH – Italian based proposal to use FINUDA 1.1 T magnet


TOORAD – International collaboration planning to use metamaterials - topological insulators allowing axion quasiparticles @ THz

 Preliminary material study in CSN5 – project TERAPOL

Electron Paramagnetic Resonance: the QUAX proposal

- A new proposal tries to exploit the axion electron coupling $g_{\rm aee}$
- Due to the motion of the solar system in the galaxy, the axion DM cloud acts as an effective magnetic field on electron spin $g_{\rm aee}$
- The ferromagnetic transition in a magnetized sample can be excited and thus emits microwave photons

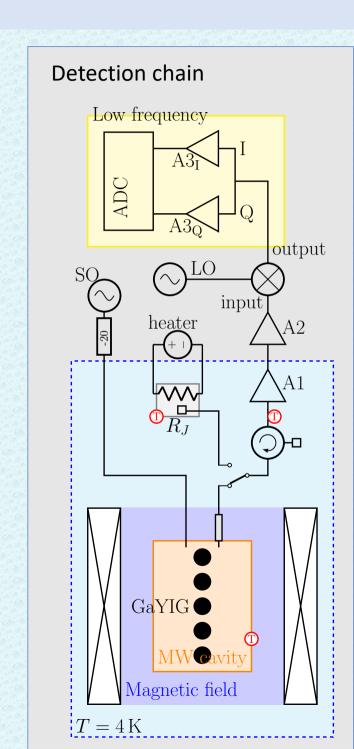

Effective magnetic field

$$B_a = 2.0 \cdot 10^{-22} \left(\frac{m_a}{200 \, \mu \text{eV}} \right) \, \, \, \text{T},$$

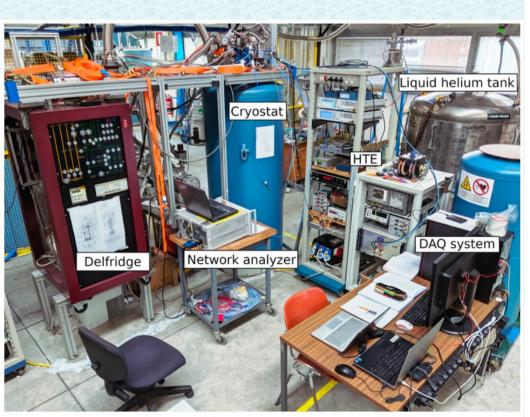

$$B_a \equiv \frac{g_p}{2e} \nabla a$$
 directionality

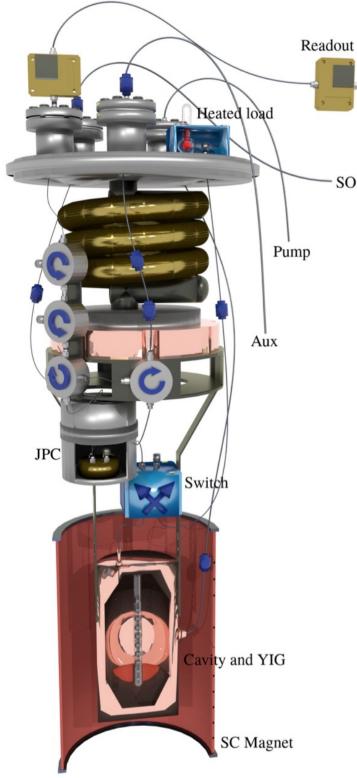
$$P_{\text{out}} = \frac{P_{\text{in}}}{2} = 3.8 \times 10^{-26} \left(\frac{m_a}{200 \,\mu\text{eV}} \right)^3 \left(\frac{V_s}{100 \,\text{cm}^3} \right) \left(\frac{n_S}{2 \cdot 10^{28} / \text{m}^3} \right) \left(\frac{\tau_{\text{min}}}{2 \,\mu\text{s}} \right) \,\text{W}$$

First prototype of QUAX - 2018



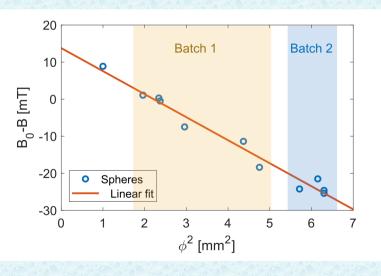
Resonant cavity with 5 GaYIG spheres inside

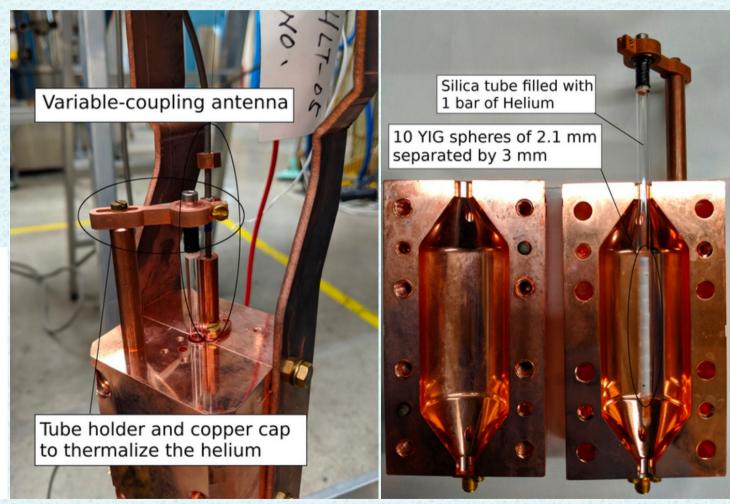



Spheres are free to rotate for correct alignment (easy axis | | B)

2nd prototype of QUAX

- Increase signal
 10 YIG sphere 2.1 mm diameter
- Reduce noise
 Quantum limited amplifier (JPC)
 Dilution refrigerator (100 mK)
- Scan axion mass range
 Magnetic field tuning

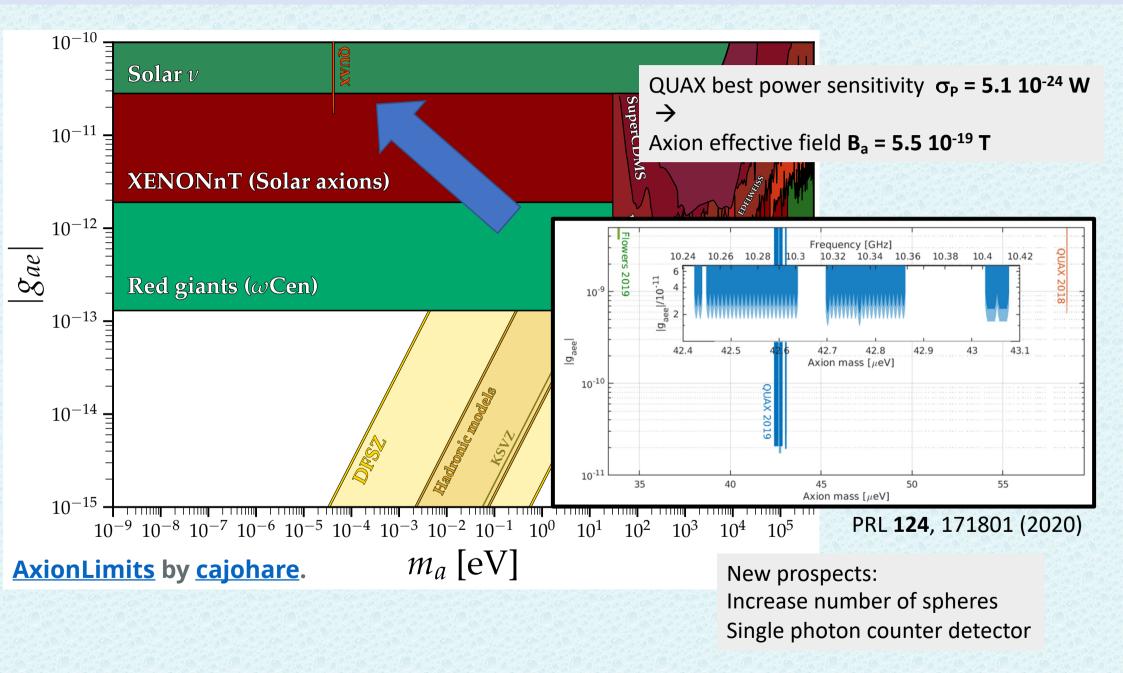

QUAX - Multi sphere system


A new cavity with resonance frequency of 10.7 GHz was realize to match the JPC amplifier working frequency

YIG spheres were produced with diameter ~ 2.1 mm, maximum value to avoid non linear effects with rf coupling

Ten good spheres were selected out of about 20

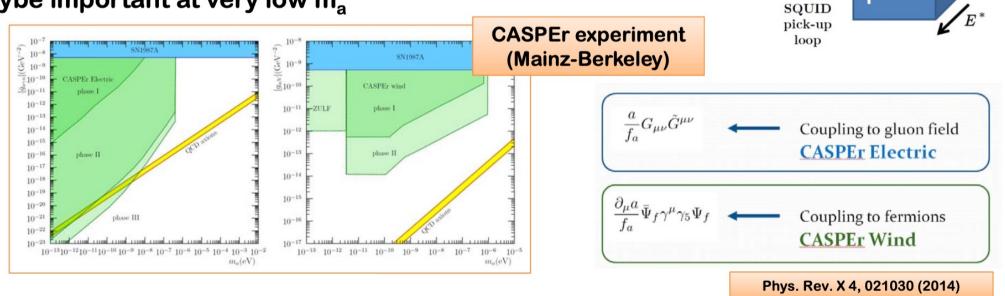
- Best linewidth
- Same Larmor frequency for a given external static field



Magnetizing field for a given frequency vs sphere diameter

All the sphere must couple coherently to the cavity resonance

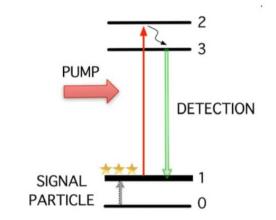
Axion electron coupling

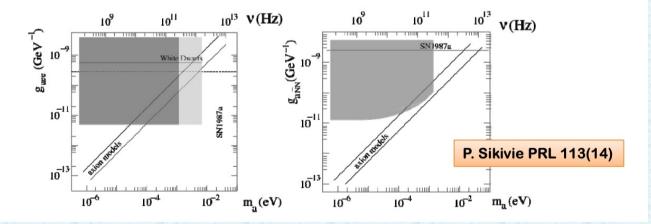

Probing a different coupling gives prospects for model discrimination in the event of discovery

NMR Casper

 DM-induced spin precession → it can be detected with very sensitive NMR techniques

Directly sensitive to the gluon term (also to fermionic couplings)


Maybe important at very low m_a

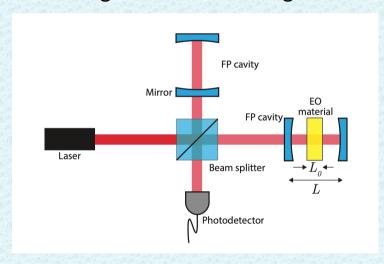

M

Dark matter induced atomic transitions

- DM can induce atomic excitations equal to m_a.
- Sensitive to axion-electron and axion-nucleon coupling
- Zeeman effect → create atomic transitions tunable to m_a
- Detection of excitation via pump laser
- AXIOMA → recent project aiming at an implementaiton

Relevant sensitivity for $m_a \sim 10^{-4} \text{ eV}$ seems possible for kg-sized samples

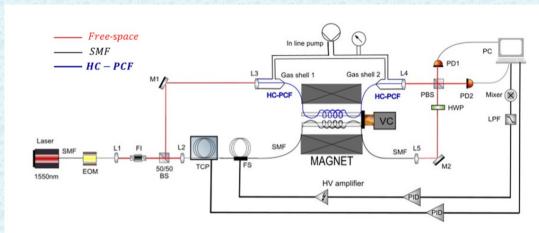
Other ideas - Optical devices

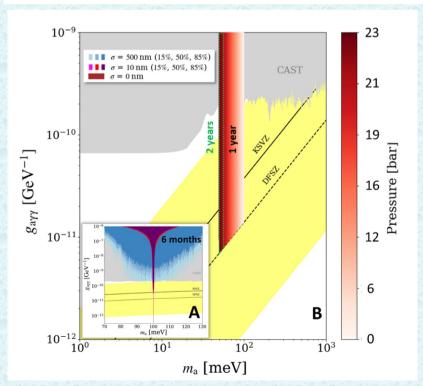

arXiv:2306.02168

Galactic Axion Laser

Interferometer Leveraging

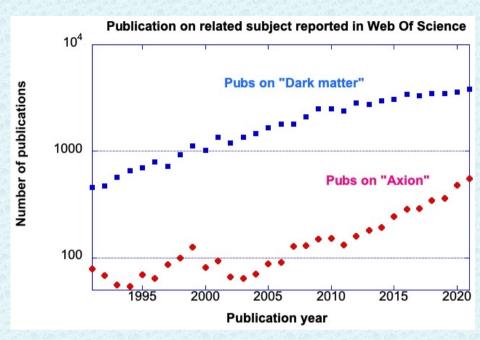
Electro-Optics: GALILEO

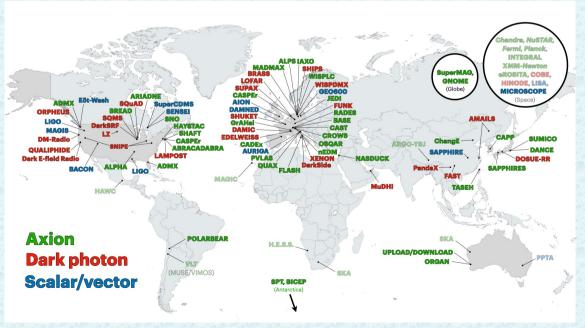

electro-optical material's refractive index modified by the presence of a coherently oscillating dark matter background



$$\mathrm{SNR} \simeq \left(\frac{L_0 N \mathcal{F}}{6.7 \, \mathrm{mm} \times 1.5 \times 10^5}\right) \left(\frac{\lambda}{1064 \, \mathrm{nm}}\right)^{-1/2} \left(\frac{P_\mathrm{in}}{5 \, \mathrm{W}}\right)^{1/2} \left(\frac{T}{\mathrm{s}}\right)^{1/4} \times \begin{cases} 20 \left(\frac{g_{a \gamma \gamma}}{10^{-10} \, \mathrm{GeV}^{-1}}\right) \left(\frac{B}{10 \, \mathrm{T}}\right) \left(\frac{m_\mathrm{DM}}{100 \, \mu \mathrm{eV}}\right)^{-5/4} \\ 120 \left(\frac{\kappa}{10^{-11}}\right) \left(\frac{m_\mathrm{DM}}{100 \, \mu \mathrm{eV}}\right)^{-1/4} \end{cases}$$

WISP Searches on a Fiber Interferometer under a Strong Magnetic Field: WISPFI


arXiv:2305.12969



Summarizing the axion

- The research on axion is showing an increasing interest in the physics community
- Different detection schemes have been developed to probe different mass ranges – different couplings (useful to obtain axion DM fractional density)
- The haloscope experiments have entered a very exciting phase, reaching the theoretically interesting territory to test the favoured axion models (QCD axion)
- We are still in a pioneering era with several small scale experiments running and being proposed

Thank you