Feynman Integral Role of Intersection Theory

Manoj Kumar Mandal

INFN Padova
and

Mani L. Bhaumik Institute for Theoretical Physics, UCLA

Why Scattering Amplitude?

Collider Phenomenology

Gravitational Waves

Cosmology

Scattering Amplitude

$$
\sigma^{0} \approx \int\left|\mathcal{M}_{N}^{(0)}\right|^{2} d \Phi_{N}
$$

$$
\begin{aligned}
\sigma_{N}^{(1)} & \approx \int 2 \operatorname{Re}\left(\mathcal{M}_{N}^{(0) *} \mathcal{M}_{N}^{(1)}\right) d \Phi_{N} \\
& +\int\left|\mathcal{M}_{N+1}^{(0)}\right|^{2} d \Phi_{N+1}
\end{aligned}
$$

$\int\left[\frac{V V_{4}}{\epsilon^{4}}+\frac{V V_{3}}{\epsilon^{3}}+\frac{V V_{2}}{\epsilon^{2}}+\frac{V V_{1}}{\epsilon^{1}}+V V_{0}\right] d \phi_{2} \quad \int\left[\frac{R V_{2}}{\epsilon^{2}}+\frac{R V_{1}}{\epsilon^{1}}+R V_{0}\right] d \phi_{3} \quad \int\left[R R_{0}\right] d \phi_{4}$

$$
\begin{aligned}
\sigma_{N}^{(2)} & \approx \int 2 \operatorname{Re}\left(\mathcal{M}_{N}^{(0) *} \mathcal{M}_{N}^{(2)}\right) d \Phi_{N} \\
& +\int 2 \operatorname{Re}\left(\mathcal{M}_{N+1}^{(0) *} \mathcal{M}_{N+1}^{(1)}\right) d \Phi_{N+1} \\
& +\int\left|\mathcal{M}_{N+2}^{(0)}\right|^{2} d \Phi_{N+2}
\end{aligned}
$$

Computation of the Loop Amplitude

Generation of the Diagrams via QGRAF

Dirac algebra, Color sum, Trace in the numerators

Reduction to scalar integrals

$$
\mathcal{M}=\sum_{i} a_{i} I_{i} \quad i=\mathcal{O}\left(10^{5}\right)
$$

Loop Amplitude

Reduction of scalar integrals to Master integrals

Compute the Master Integrals

Number of Master Integrals

$$
\mathcal{M}=\sum_{i} c_{i} J_{i} \quad i=\mathcal{O}\left(10^{2}\right)
$$

Decomposition of

Feynman Integrals using Intersection Theory

Intersection Theory and Feynman Integral

Feynman Integral decomposition

Feynman Integral

Intersection Number

Intersection Theory

What is the Vector Space?

Computation of Intersection Number

	Matsumoto (1998)
Fibration Method	Mizera (2019)
	Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019)
	Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020)
	Wienzierl (2020)

Caron-Huot, Pokraka (2021)

Secondary Equation Matsubara-Heo (2019)


```
Published for SISSA by 祭 Springer
                                    Received: May 5, 2022
                                    Accepted: August 2s, 2022
                                    Published: September 22, 2022
```

Macaulay matrix for Feynman integrals: linear relations and intersection numbers

Vsevolod Chestnov, ${ }^{a, b}$ Federico Gasparotto, ${ }^{a, b}$ Manoj K. Mandal, ${ }^{b}$ Pierpaolo Mastrolia, ${ }^{a, b}$ Saiei J. Matsubara-Heo, ${ }^{c, d}$ Henrik J. Munch ${ }^{a, b}$ and Nobuki Takayama ${ }^{c}$

Intersection Numbers from Higher-order Partial Differential Equations

[^0]
Outlook

Collider Applications

Two-Loop amplitude with massless and massive particles

- Computation of 2-loop virtual amplitude for electron-muon scattering, relevant for the MUonE experiment
- Computation of 2-loop virtual amplitude for top pair production

PHYSICAL REVIEW LETTERS 128, 022002 (2022)

Two-Loop Four-Fermion Scattering Amplitude in QED
 A. Primo, ${ }^{9, * *}$ J. Ronca $\odot,^{10, \uparrow \dagger}$ U. Schubert, ${ }^{11, * *}$ W. J. Torres Bobadilla,$^{12, \& 8}$ and F. Tramontano $\odot^{10,\| \|}$

Two-loop scattering amplitude for heavy-quark pair production through light-quark annihilation in QCD

Manoj K. Mandal, ${ }^{a}$ Pierpaolo Mastrolia, ${ }^{a, b}$ Jonathan Ronca ${ }^{c}$ and William J. Torres Bobadilla ${ }^{d}$

NNLO Prediction for Muon-Electron Scattering

Muon-electron scattering at NNLO
A. Broggio, ${ }^{a}$ T. Engel, ${ }^{b, c, d}$ A. Ferroglia, ${ }^{e, f}$ M.K. Mandal, ${ }^{g, h}$ P. Mastrolia, ${ }^{i, g}$
M. Rocco, J. Ronca, ${ }^{j}$ A. Signer, ${ }^{b, c}$ W.J. Torres Bobadilla, ${ }^{k}$ Y. Ulrich ${ }^{l}$ and M. Zoller ${ }^{b}$
[First complete and fully differential NNLO calculation of a $2 \rightarrow 2$ process with two different non-vanishing masses on the external lines

Successful collaboration with the group at PSI

Gravitational Wave Observables

Solving two-body problem in GR

Antelis, moreno (2016)

Hierarchy of scales

$$
r_{\star} \ll r \ll \lambda_{G W}
$$

Tower of EFTs

Key Observation

Computational Algorithm

Gravitational Spin-Orbit Hamiltonian at NNNLO in the post-Newtonian framework

Manoj K. Mandal, ${ }^{a}$ Pierpaolo Mastrolia, ${ }^{b, a}$ Raj Patil,,${ }^{c, d, e}$ Jan Steinhoff ${ }^{c}$

Gravitational Quadratic-in-Spin Hamiltonian at NNNLO in the post-Newtonian framework

『Automated in-house codes
© Aim to publish the code in future

Status of Higher Order PN Corrections

MKM, Mastrolia, Patil, Steinhoff (2022) Levi, Yin (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)

Secondment at UCLA

VCurrently, I am having my secondment at UCLA with Prof. Zvi Bern

Color Kinematics Duality

Generalized double copy

Building integrands using maximal cuts

$$
(\mathcal{N}=5 \text { sugra }):(\mathcal{N}=4 \mathrm{sYM}) \otimes(\mathcal{N}=1 \mathrm{sYM})
$$

Other Activities

- Successfully organised the international conference on the EFT methods from bound states to binary systems
\downarrow On the Editorial board of the Proceedings of the MathemAmplitudes Conference, 2019
- Presented several talks in international conferences
- Co-supervised Giacomo Brunello for his Master's Thesis

Conclusion

```
| Novel Algebraic Property Unveiled
    \square The algebra of Feynman Integrals is controlled by intersection numbers
    |}\mathrm{ Intersection Numbers : Scalar Product/Projection between Feynman Integrals
    |. Useful for both Physics and Mathematics
\ Applications to GW and Collider phenomenology
    | muon-electron scattering at NNLO has been obtained
    | top-pair production from quark annihilation has been computed analytically
    | progress in understanding spin effects in the compact binaries
    I] A number of observables e.g binding energy, scattering angle has been computed to high prececision
Future and ongoing works
\square Progress towards computing intersection number using relative twisted co-homology
| computation of tidal effects to higher PN order in case of compact binaries
```


Collaboration and Networking

Zvi Bern
Alessandro Broggio
Andrea Ferroglia
Saiei Matsubara-Heo
Adrian Signer
Jan Steinhoff
Nobuki Takayama
Francesco Tramontano

Seva Chestnov	Giacomo Brunello
Hjalte Frellesvig	Giulio Crisanti
Federico Gasparotto	Raj Patil
Luca Mattiazzi	
Jonathan Ronca	
William J. Torres-Bobadilla	

Networking

Sergio Cacciatori	Donato Bini
Yoshiaki Goto	Thibault Damour
Keiji Matsumoto	Stefano Foffa
Tiziano Perraro	Riccardo Sturani

Thank You

[^0]: Vsevolod Chestnov, ${ }^{a, b}$ Hjalte Frellesvig, ${ }^{c}$ Federico Gasparotto, ${ }^{a, b}$ Manoj K. Mandal, ${ }^{b}$ Pierpaolo Mastrolia ${ }^{a, b}$

