Feynman Integral **Role of Intersection Theory**

Manoj Kumar Mandal

Mani L. Bhaumik Institute for Theoretical Physics, UCLA

INFN Padova

and

Why Scattering Amplitude ?

Collider Phenomenology

Gravitational Waves

Geometry and QFT

Scattering Amplitude

Cosmology

Scattering Amplitude

$$\sigma^0 \approx \int |\mathcal{M}_N^{(0)}|^2 d\Phi_N$$

Computation of the Loop Amplitude

$$i = \mathcal{O}(10^5)$$

Loop Amplitude

Number of Master Integrals

$$i = \mathcal{O}(10^2)$$

Decomposition of Feynman Integrals using Intersection Theory

Intersection Theory and Feynman Integral

Mastrolia, Mizera (2018) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020) Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022)

What is the Vector Space?

How to define the scalar product?

Computation of Intersection Number

Matsumoto (1998)

Mizera (2019)

Fibration Method

Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020) Wienzierl (2020)

Caron-Huot, Pokraka (2021)

Secondary Equation

Matsubara-Heo (2019)

Multivariate Differential Equation

Matsumoto (1998)

Published for SISSA by 2 Springer

RECEIVED: May 5, 2022 ACCEPTED: August 28, 2022 PUBLISHED: September 22, 2022

Macaulay matrix for Feynman integrals: linear relations and intersection numbers

Vsevolod Chestnov,^{*a,b*} Federico Gasparotto,^{*a,b*} Manoj K. Mandal,^{*b*} Pierpaolo Mastrolia,^{*a,b*} Saiei J. Matsubara-Heo,^{*c,d*} Henrik J. Munch^{*a,b*} and Nobuki Takayama^{*c*}

Intersection Numbers from Higher-order Partial Differential Equations

Vsevolod Chestnov,^{*a,b*} Hjalte Frellesvig,^{*c*} Federico Gasparotto,^{*a,b*} Manoj K. Mandal,^{*b*} Pierpaolo Mastrolia^{*a,b*}

Outlook

Collider Applications

Two-Loop amplitude with massless and massive particles

• Computation of 2-loop virtual amplitude for electron-muon scattering, relevant for the MUonE experiment ◆ Computation of 2-loop virtual amplitude for top pair production

NNLO Prediction for Muon-Electron Scattering

Solution First complete and fully differential NNLO calculation of a $2 \rightarrow 2$ process with two different non-vanishing masses on the external lines

Successful collaboration with the group at PSI

Gravitational Wave Observables

Computational Algorithm

Automated in-house codes

Aim to publish the code in future

Gravitational Spin-Orbit Hamiltonian at NNNLO in the post-Newtonian framework 2022

Manoj K. Mandal,^{*a*} Pierpaolo Mastrolia,^{*b*,*a*} Raj Patil,^{*c*,*d*,*e*} Jan Steinhoff^{*c*}

Gravitational Quadratic-in-Spin Hamiltonian at NNNLO in the post-Newtonian framework 2022

Manoj K. Mandal,^{*a*} Pierpaolo Mastrolia,^{*b*,*a*} Raj Patil,^{*c*,*d*,*e*} Jan Steinhoff^{*c*}

Status of Higher Order PN Corrections

PN order		1,5		2,5		3,5		4,5		5,	5 6,5		,5
0		1	2)	3		2	4	5		6		
N	1	IPN	2P	'N	3PN		4PN		5PN		6PN		
		LO	SO	NLC) SO	NNLC	D SO	N3L) SO	N4L0	D SO	NLC	D SO
			LO S2		NLC	NLO S2		NNLO S2		N3LO S2		N4LO S2	
					LO	S3	NLC	S3	N2L(D S3	N3L	O S3	
							LO S4		NLO S4		N2LO S4		
									LO	S5 NLC		D S5	
											LO	S6	

Kim, Levi, Yin (2022)

MKM, Mastrolia, Patil, Steinhoff (2022) Levi, Yin (2022)

MKM, Mastrolia, Patil, Steinhoff (2022)

Secondment at UCLA

Currently, I am having my secondment at UCLA with Prof. Zvi Bern

Calculating supergravity divergences at high loop order

Color Kinematics Duality

Generalized double copy

Building integrands using maximal cuts

 $(\mathcal{N} = 5 \text{ sugra})$: $(\mathcal{N} = 4 \text{ sYM}) \otimes (\mathcal{N} = 1 \text{ sYM})$

Other Activities

- ◆ Successfully organised the international conference on the EFT methods from bound states to binary systems
- ♦ On the Editorial board of the Proceedings of the MathemAmplitudes Conference, 2019
- ◆ Presented several talks in international conferences
- ◆ Co-supervised Giacomo Brunello for his Master's Thesis

Conclusion

Movel Algebraic Property Unveiled

- The algebra of Feynman Integrals is controlled by intersection numbers
- Intersection Numbers : Scalar Product/Projection between Feynman Integrals
- Useful for both Physics and Mathematics
- Applications to GW and Collider phenomenology
 - *Mon-electron scattering at NNLO has been obtained*
 - *if* top-pair production from quark annihilation has been computed analytically
 - *I* progress in understanding spin effects in the compact binaries
 - If A number of observables e.g binding energy, scattering angle has been computed to high precedition

I Future and ongoing works

- Progress towards computing intersection number using relative twisted co-homology
- Computation of tidal effects to higher PN order in case of compact binaries

Collaboration and Networking

Zvi Bern	
Alessandro Broggio	Seva C
Andrea Ferroglia	Hjalte F
Saiei Matsubara-Heo	Federic
Adrian Signer	Luca M
Jan Steinhoff	Jonatha
Nobuki Takayama	William
Francesco Tramontano	

Networking

Sergio Cacciatori Yoshiaki Goto Keiji Matsumoto Tiziano Perraro Donato Bini Thibault Damour Stefano Foffa Riccardo Sturani

- hestnov
- Frellesvig
- co Gasparotto
- lattiazzi
- an Ronca
- J. Torres-Bobadilla

Giacomo Brunello Giulio Crisanti Raj Patil

