
Feynman  Integral 

Role of Intersection  Theory

Manoj Kumar Mandal

INFN Padova 
and 

Mani L. Bhaumik Institute for Theoretical Physics, UCLA



2

Why Scattering Amplitude ?

» SCATTERING AMPLITUDES for precision physics  
60 orders of magnitudes in Energy scales:  
from quarks and gluons to black-hole binary systems

» one tool: Feynman diagrams  
crucial for Elementary Particles  
and Gravitational Waves Phenomenology:  
form hard scattering cross-sections to astrophysical coalescing systems

» Interdisciplinary competences required

» Impact  
Physics and Mathematics, but also Biology, 
Chemistry, Statistics and Economy

www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |         (2018) 8:17537 �ȁ����ǣͷͶǤͷͶ;Ȁ�ͺͷͻͿ;ǦͶͷ;ǦͻͻͻͽǦ

analysis is not restricted to biomolecules, and can be applied to interactions within any polymer-like system of 
chains. Nonetheless, when discussing speci!c applications, we focus on biomolecules, which provide a huge set of 
examples and for which our methods can be particularly useful.


���������������������
Before introducing the genus trace, we recall what the genus is and how it can be used in the analysis of biopol-
ymers. Note that the genus of RNA structures was considered before, e.g. in1–8, or for proteins in9. However in 
those works the genus was computed only for the entire chain length, and taking into account only canonical 
Watson-Crick base pairs in the RNA case. Here we show that much more detailed information is revealed once 
genus is computed for various types of bonds in a given structure, e.g. also for non-canonical base pairs, including 
those involved in helix backbone packing interactions in RNA. Moreover, the genus trace that we introduce in 
what follows captures much more information than solely the genus of the whole chain.

What is genus and how to compute it? Consider a polymer-like chain consisting of a number of resi-
dues, with bonds connecting various pairs of these residues, as in the example in Fig. 1(a). #e structure of such a 
chain can be presented in the form of a chord diagram. A chord diagram consists of b horizontal intervals (called 
backbones) that represent one or more polymer-like chains, and n arcs (chords) representing bonds, which con-
nect pairs of residues, and are drawn as half-circles in the upper-half plane. In this work we consider con!gura-
tions with only one backbone, =b 1. A chord diagram corresponding to the structure in Fig. 1(a) is shown in 
Fig. 1(b). Such diagrams are commonly used to present the structure of RNA chains3,4. A stack of parallel chords 
contributes in the same way as a single chord to the genus, so each set of parallel chords can be replaced by one 
chord, as in Fig. 1(c). Furthermore, to compute the genus it is of advantage to replace all backbones and chords by 
ribbons of !nite width, also as in Fig. 1(c). In this way we obtain a two-dimensional surface with r boundaries, 
which – a$er shrinking a backbone to a small circle – can be drawn in a smooth way on an auxiliary surface of 
genus g (i.e. having g “holes”), as in Fig. 1(d). #e genus of a chord diagram is de!ned as the genus of this auxiliary 
surface. #is genus can be determined from the Euler formula

− = − − .b n g r2 2 (1)

For example, in Fig. 1(c) there is =b 1 backbone, =n 2 chords, and =r 1 boundary (drawn in red). #erefore 
it follows from the Euler formula that the genus =g 1, so that the auxiliary surface is a torus, see Fig. 1(d).

Note that if no chords intersect in a given chord diagram then =g 0; in this case the chord diagram is called 
planar. In particular, a large complicated RNA with a secondary structure having all nested basepairs has genus 

=g 0, so it is quite simple from the point of view of this paper. Furthermore, for a !xed number of chords and 
backbones the genus cannot exceed some maximal value. We also recall that chord diagrams are used by mathe-
maticians to characterize moduli spaces of Riemann surfaces, while physicists reinterpret them as a particular 
class of Feynman diagrams arising in certain quantum !eld theories or matrix models4,7. Certain properties of 
chord diagrams have been also discussed in10.

Types of bonds and bifurcations. To determine the genus, for example using the formula (1), one simply 
considers all bonds in a given chain. However in various contexts, in particular for biomolecules, one can distin-
guish between various types of bonds. In this work we propose to consider such a distinction; as we will see, this 
provides some new information about those di%erent types of bonds. For RNA, an important classi!cation of base 
pairs have been introduced by Leontis and Westhof11,12. #ey noticed that RNA bases can be regarded as triangles 
with three di%erent edges, referred to as: Hoogsteen edge (denoted HG or H), Watson-Crick edge (denoted WC 
or W), and Sugar or Shallow Groove edge (denoted S or SG), see Fig. 2(a). Base pairs are formed by any of these 

Figure 1. How to compute the genus. (a) A chain with several bonds (in blue and orange) connecting various 
pairs of residues (black dots). (b) Chord diagram representing the same structure. (c) Parallel chords replaced 
by a single chord, and then – together with the backbone – replaced by ribbons, whose single boundary is 
shown in red. (d) A$er shrinking the backbone to a small circle, the ribbon diagram can be smoothly drawn on 
a surface of a torus, whose genus is g = 1.
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Scattering Amplitude
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after the phase space integration.
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Computation of the Loop Amplitude

Generation of the Diagrams via QGRAF

Dirac algebra, Color sum, Trace in the numerators 

Reduction to scalar integrals
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Loop Amplitude

Reduction of scalar integrals to Master integrals

Compute the Master Integrals
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Number of Master Integrals
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Intersection Theory and Feynman Integral
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Intersection Theory Feynman Integral

Feynman Integral decomposition

JMI

IMI

KMI
Feynman Integral

Intersection Number

What is the Vector Space ?

How to define the scalar product ? 

Mastrolia, Mizera (2018)

Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019)
Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019)

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020)
Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022)
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Computation of Intersection Number

Multivariate Differential Equation

Secondary Equation

Fibration Method

Matsumoto (1998) 

Matsumoto (1998) 

Mizera (2019) 

Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019)

Caron-Huot, Pokraka (2021) 

Wienzierl (2020) 

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020)

Matsubara-Heo (2019)

Prepared for submission to JHEP

Intersection Numbers from Higher-order Partial

Di↵erential Equations
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Abstract: We propose a new method for the evaluation of intersection numbers for twisted mero-
morphic n-forms, through Stokes’ theorem in n dimensions. It is based on the solution of an n-th
order partial di↵erential equation and on the evaluation of multivariate residues. We also present an
algebraic expression for the contribution from each multivariate residue. We illustrate our approach
with a number of simple examples from mathematics and physics.
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Abstract: We elaborate on the connection between Gel’fand-Kapranov-Zelevinsky systems,
de Rham theory for twisted cohomology groups, and Pfaffian equations for Feynman Integrals.
We propose a novel, more efficient algorithm to compute Macaulay matrices, which are
used to derive Pfaffian systems of differential equations. The Pfaffian matrices are then
employed to obtain linear relations for A-hypergeometric (Euler) integrals and Feynman
integrals, through recurrence relations and through projections by intersection numbers.
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Two-Loop amplitude with massless and massive particles
Computation of 2-loop virtual amplitude for electron-muon scattering, relevant for the MUonE experiment
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Figure 1: Two-loop four-point topologies for µe scattering.

2 The non-planar four-point topology

In this paper, we consider the µe scattering process

µ
+(p1) + e

�(p2) ! e
�(p3) + µ

+(p4) , (2.1)

in the approximation of vanishing electron mass, me = 0, i.e. with kinematics specified by

p
2
1 = p

2
4 = m

2
, p

2
2 = p

2
3 = 0 ,

s = (p1 + p2)
2
, t = (p2 � p3)

2
, u = (p1 � p3)

2 = 2m2
� t � s , (2.2)

where m is the muon mass. Representative Feynman diagrams of the 10 relevant two-

loop four-point topologies Ti that contribute to the process are depicted in figure 1. The

computation of the MIs belonging to the topologies T1,2,3,4,5,7,8,9,10 has been discussed

in [1]. In this paper, we complete the evaluation of all MIs required for the two-loop

virtual amplitude due to photonic corrections, by determining the analytic expression of

the MIs that belong to the non-planar topology T6.

– 4 –
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We present the first fully analytic evaluation of the transition amplitude for the scattering of a massless
into a massive pair of fermions at the two-loop level in quantum electrodynamics. Our result is an essential
ingredient for the determination of the electromagnetic coupling within scattering reactions, beyond the
currently known accuracy, which has a crucial impact on the evaluation of the anomalous magnetic moment
of the muon. It will allow, in particular, for a precise determination of the leading hadronic contribution to
the ðg − 2Þμ in the MUonE experiment at CERN, and therefore can be used to shed light on the current
discrepancy between the standard model prediction and the experimental measurement for this important
physical observable.

DOI: 10.1103/PhysRevLett.128.022002

Introduction.—The Muon g − 2 Collaboration at
Fermilab has recently confirmed [1] that the observed
magnetic activity of the muon is compatible with the
earlier findings obtained at Brookhaven National Lab
[2–4]. The anomalous magnetic moment of the muon,
ðg − 2Þμ, shows a 4.2σ deviation from the prediction of the
standard model of elementary particles (SM) [5]. However,
the theoretical determination of this quantity, obtained via
dispersive techniques, might be affected by the improper
estimation of the hadronic corrections to the muon-photon
interaction, which could be responsible of such a discrep-
ancy. Alternative results obtained through lattice QCD
calculations point towards a possible mitigation of the
tension between theory and experiments [6].
Recently, a novel experiment, MUonE, has been pro-

posed at CERN, with the goal of measuring the running of
the effective electromagnetic coupling at low momentum

transfer in the spacelike region [7]. As proposed in Ref. [8],
this measurement would provide an independent determi-
nation of the leading hadronic contribution to the ðg − 2Þμ.
Such a measurement relies on the precise determination of
the angles of the outgoing particles emerging from the
elastic muon-electron scattering [7,9–11]. To extract the
running of the effective electromagnetic coupling from
the experimental data, the pure perturbative electromag-
netic contribution to the electron-muon cross section must
be controlled at least up to the second order in the fine-
structure constant [12].
The scattering of a muon μ off an electron e in quantum

electrodynamics (QED) is the simplest reaction among
fundamental leptons of different flavors, and represents a
paradigmatic case of charged particles interaction mediated
by a neutral gauge boson. The leading order (LO) process
has been known since the mid 1950s [13], while the next-
to-leading order (NLO) radiative corrections were com-
puted in Refs. [14–20], and more recently studied in
Ref. [21]. The two-loop diagrams contributing to the
next-to-next-to-leading order (NNLO) virtual corrections
were evaluated in Ref. [22] assuming purely massless
fermions. At the energies of the MUonE experiment, the
muon mass plays an important role for the description of
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Two-loop scattering amplitude for heavy-quark pair
production through light-quark annihilation in QCD
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Abstract: We present the first full analytic evaluation of the scattering amplitude for the
process qq̄ → QQ̄ up-to two loops in Quantum Chromodynamics, for a massless (q) and a
massive (Q) quark flavour. The interference terms of the one- and two-loop amplitudes with
the Born amplitude, decomposed in terms of gauge invariant form factors depending on the
colour and flavour structure, are analytically calculated by keeping complete dependence on
the squared center-of-mass energy, the squared momentum transfer, and the heavy-quark
mass. The results are expressed as Laurent series around four space-time dimensions,
with coefficients given in terms of generalised polylogarithms and transcendental constants
up-to weight four. Our results validate the known, purely numerical calculations of the
squared amplitude, and extend the analytic knowledge, previously limited to a subset of
form factors, to their whole set, coming from both planar and non-planar diagrams, up-to
the second order corrections in the strong coupling constant.
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NNLO Prediction for Muon-Electron Scattering
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Successful collaboration with the group at PSI

First complete and fully differential NNLO calculation of a 2 → 2 process with 
two different non-vanishing masses on the external lines 
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Solving two-body problem in GR
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•Effective-one-body (EOB) approach  
combines results from all analytic 
methods, and can be made highly 
accurate via numerical relativity.

•GR is non-linear theory.  
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Figure 2. Four-loop 2-point topologies corresponding to the diagrams in fig.1.

3 Amplitudes and Feynman Integrals

In general, within the EFT approach, since the sources (black lines) are static and do not
propagate, any gravity-amplitude of order G`

N
can be mapped into an (`� 1)-loop 2-point

function with massless internal lines and external momentum p, where p2 ⌘ s 6= 0,

= . (3.1)

Accordingly, the 50 diagrams in fig.1 can be mapped onto the 29 topologies of fig.2, where
the sets T1 = {1, 2, 3, 4, 5, 6}, T2 = {7, 8, 10, 11, 14, 16, 17, 20, 21, 25}, T3 = {9, 12, 13, 22},
T4 = {15, 18, 19, 23, 24}, collect the diagrams that share the same topology. For instance,
the diagrams 1 to 6 of fig.1 correspond to integrals which have the same five denominators
of the graph indicated by T1 in fig.2, but different numerators, due to the different terms
associated to 1,2,3 or 4 � emission or absorption from the massive particle.

The representation of the gravity-amplitudes as 4-loop 2-point integrals yields the pos-
sibility of evaluating the latter by means of by-now standard multi-loop techniques based
on integration-by-parts identities (IBPs) [27, 28].

Accordingly, we collect the 50 amplitudes of fig.1 in two sets, AI = {1 : 28, 31, 32, 35 :

37, 39, 41, 45 : 47} and AII = {29, 30, 33, 34, 38, 40, 42, 43, 44, 48, 49, 50}, and address their
computation separately.
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Key Observation

1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant

G(qi, pj) =

��������

q21 . . . (q1 · pe�1)

...
. . .

...

(pe�1 · q1) . . . p2e�1

��������
(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
[d] ⌘

0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)

1.6

r? << r << �GW (1.20)

– 3 –

Hierarchy of scales

Tower of EFTs

Foffa, Sturani, Sturm,  Mastrolia (2016) 
Goldberger, Rothstein
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Computational Algorithm
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Abstract: We present the result of the spin-orbit interaction Hamiltonian for binary systems of
rotating compact objects with generic spins, up to N3LO corrections within the post-Newtonian ex-
pansion. The calculation is performed by employing the e↵ective field theory diagrammatic approach,
and it involves Feynman integrals up to three loops, evaluated within the dimensional regularization
scheme. We apply canonical transformations to eliminate the non-physical divergences and spurious
logarithmic behaviours of the Hamiltonian, and use the latter to derive the gauge-invariant binding
energy and the scattering angle, in special kinematic regimes.
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Abstract: We present the result of the quadratic-in-spin interaction Hamiltonian for binary systems
of rotating compact objects with generic spins, up to N3LO corrections within the post-Newtonian ex-
pansion. The calculation is performed by employing the e↵ective field theory diagrammatic approach,
and it involves Feynman integrals up to three loops, evaluated within the dimensional regularization
scheme. The gauge-invariant binding energy and the scattering angle, in special kinematic regimes
and spin configurations, are explicitly derived. The results extend our earlier study on the spin-orbit
interaction e↵ects.
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Topologies

Feynman rules

Feynman
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Integrands

Tensor
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to Master
integrals

Master integrals

Tensor Fourier
integrals

E↵ective
Lagrangian

Laurent expansion around d = 3

Figure 2: Flowchart of the computational algorithm

The computation of the e↵ective potential starting from the generation of the required Feynman
diagrams, expressing them in multi-loop integrands, performing IBP reduction, and then applying
the Fourier transformations have been automated through an in-house code, elaborating on some of
the ideas implemented in EFTofPNG [123], and using xTensor [121] for tensor algebra manipulations
as well as successful interface to LiteRed [122], Reduze [126], KIRA [127] for the IBP reduction. A
flow chart for the complete computational algorithm for the e↵ective potential as implemented in our
in-house code is shown in Fig. 2.

4 Processing the e↵ective Lagrangian

The e↵ective potential obtained in this way usually contains higher-order time derivatives of the
position (a(a), ȧ(a), ä(a),· · · ) and the spin (Ṡ(a), S̈(a),· · · ). In our computation of the N3LO spin-orbit
potential, we have 6th order time derivative of position and 3rd order of time derivative in spin. We
need to eliminate these higher-order time derivatives from the potential to facilitate the computation of
the Hamiltonian, to obtain gauge-invariant quantities as well as to pave the way for the implementation
within the e↵ective one-body formalism. Additionally, the potential in the non-spinning sector at 3PN
and the N3LO spin-orbit potential contains poles in the dimensional regularization parameter ✏ and

– 9 –

Automated in-house codes

v

Aim to publish the code in future

2022

2022
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Status of Higher Order PN Corrections

PN order 1,5 2,5 3,5 4,5 5,5 6,5

0 1 2 3 4 5 6

N 1PN 2PN 3PN 4PN 5PN 6PN

LO SO NLO SO NNLO SO N3LO SO N4LO SO NLO SO

LO S2 NLO S2 NNLO S2 N3LO S2 N4LO S2

LO S3 NLO S3 N2LO S3 N3LO S3

LO S4 NLO S4 N2LO S4

LO S5 NLO S5

LO S6

MKM, Mastrolia, Patil, Steinhoff (2022)
Kim, Levi, Yin (2022) 

Levi, Yin (2022) 
MKM, Mastrolia, Patil, Steinhoff (2022)
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Secondment at UCLA
Currently, I am having my secondment at UCLA with Prof. Zvi Bern

Calculating supergravity divergences at high loop order

B. Construction of N = 5 supergravity amplitudes

In this paper we construct the three- and four-loop four-point N = 5 supergravity inte-
grands using the procedure presented above. We do so by starting with an N = 1 super-
Yang-Mills integrand and then replacing the color factors with the BCJ forms of kinematic
numerators of N = 4 super-Yang-Mills theory given in Refs. [13, 39]. Similar constructions
of less-than-maximal supergravity amplitudes are found in Refs. [2, 3, 24, 27, 42]. We express

(N = 5 sugra) : (N = 4 sYM)⊗ (N = 1 sYM) , (2.5)

where “sugra” and “sYM” are shorthands for, respectively, supergravity and super-Yang-
Mills theory. We further decompose the N = 5 amplitudes into a direct sum,

(N = 5 sugra) : (N = 4 sYM)⊗ (N = 0 sYM)

⊕ (N = 4 sYM)⊗
(

(N = 1 sYM) # (N = 0 sYM)
)

, (2.6)

where “N = 0 sYM” refers to ordinary pure nonsupersymmetric Yang-Mills theory. The
first term in the direct sum is the pure N = 4 supergravity amplitude, while the second
term is the difference between the N = 5 and N = 4 supergravity amplitudes. The second
term comes from taking the diagrams of pure N = 1 super-Yang-Mills, subtracting out the
pure-gluon part, and then replacing the color factors with the BCJ numerators of N = 4
super-Yang-Mills theory. On the N = 1 super-Yang-Mills side, this amounts to separating
the pure gluon contributions from the contributions including also gluinos.

Following Refs. [2, 3, 27], we use ordinary Feynman diagrams for the N = 0 and N = 1
super-Yang-Mills integrands. While this might seem to be a poor starting point given the
complexity of such diagrams, the BCJ construction (2.4) ensures that only a small fraction
of diagrams actually contribute. Whenever an N = 4 super-Yang-Mills diagram vanishes,
we do not need to evaluate corresponding diagrams in N = 0 or N = 1 super-Yang-Mills
theory. At one, two, three and four loops, the BCJ-satisfying representations of the four-
point amplitudes of N = 4 super-Yang-Mills theory have only, respectively, 1, 2, 12 and 85
nonvanishing diagrams (up to permutations of external legs). This is already a remarkable
simplification, allowing the calculation to proceed.

The decomposition in Eq. (2.6) results in an integrand where the N = 4 supersymmetry
cancellations are manifest, but theN = 1 ones are not. While we do not do so here, one could
simplify the N = 5 supergravity integrand to make cancellations from all supersymmetries
manifest. This could be accomplished by using the unitarity method to systematically move
terms between diagrams, subject to maintaining the unitarity cuts. However, as we shall see
below, no covariant local representation exists either in N = 4 or N = 5 supergravity that
makes manifest the complete set of ultraviolet cancellations that we find. Because of this,
there is no obvious way to avoid direct integration to see the cancellations. We consequently
call such cancellations enhanced.

C. Extraction of ultraviolet divergences

Once we have an integrand, the next step is to extract the ultraviolet divergences. The
procedure that we use has been described in some detail in Ref. [27], so here we only
briefly summarize it. To deal with potential ultraviolet divergences we use dimensional

6

Color Kinematics Duality

Generalized double copy

Building integrands using maximal cuts
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Conclusion
Novel Algebraic Property Unveiled

The algebra of Feynman Integrals is controlled by intersection numbers

Intersection Numbers : Scalar Product/Projection between Feynman Integrals

Useful for both Physics and Mathematics

Applications to GW and Collider phenomenology

muon-electron scattering at NNLO has been obtained

top-pair production from quark annihilation has been computed analytically

progress in understanding spin effects in the compact binaries

A number of observables e.g binding energy, scattering angle has been computed to high prececision 

Future and ongoing works

Progress towards computing intersection number using relative twisted co-homology
computation of tidal effects to higher PN order in case of compact binaries
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