Motivations 00 000

Me 00

lethodology

Conclusion: 0 Backup 0000

Natural Ultraviolet Complete Extensions of the Standard Model

Luca Zambelli

FELLINI WORKSHOP, Rome

February 14, 2023

H2020 MSCA COFUND G.A. 754496

Istituto Nazionale di Fisica Nucleare Sezione di Bologna

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
•0	00	000	000	00	0	0000

Motivations

New Physics Beyond the Standard Model (SM)?

No new particles so far... but several theoretical issues:

• naturalness

gauge hierarchy, flavor hierarchy, strong CP, cosmological constant ...

• effectiveness

locating the scale of new physics, assessing compositeness, questioning locality and symmetries

Enhancing the Predictivity of Quantum Field Theories

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
0•	00	000	000	00	0	0000

Motivations

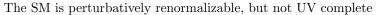
New Physics Beyond the Standard Model (SM)?

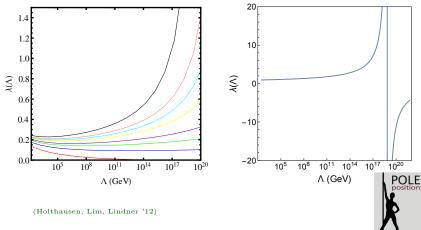
No new particles so far... but several theoretical issues:

• naturalness

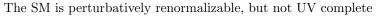
gauge hierarchy, flavor hierarchy, strong CP, cosmological constant \ldots

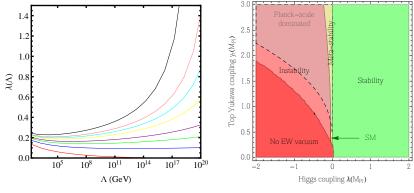
 \bullet effectiveness


locating the scale of new physics, assessing compositeness, questioning locality and symmetries


Enhancing the Predictivity of Quantum Field Theories

Extrapolating the Standard Model

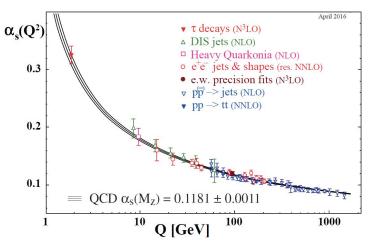




Landau pole

Extrapolating the Standard Model

(Buttazzo, Degrassi, Giardino,

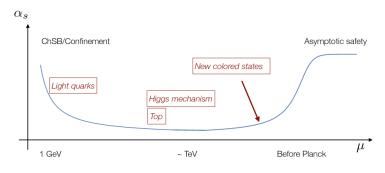

Giudice, Sala, Salvio, Strumia '13)

Light Higgs = almost vanishing self-interaction to high scales

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	●00	000	00	0	0000

Examples of UV Complete Theories

Asymptotic Freedom of the Strong coupling α_s in the SM

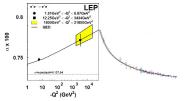


(Particle Data Group '16)

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	00	0	0000

Examples of UV Complete Theories

Asymptotic Safety of α_s beyond the SM?



(Litim Sannino '15)

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	00	0	0000

Objectives of the Project

• Constructing Asymptotically Free/Safe Extensions of the SM

• Exploring the Hierarchy of Masses and Approximate Scale Invariance in these Theories

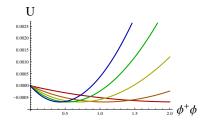
baryon

glueball?

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	●OO	00	0	0000

Asymptotic Freedom Beyond the SM

Beyond the SM, is Total Asymptotic Freedom possible?


• within perturbative renormalizability: it is rare needs many new particles

(Giudice, Isidori, Salvio, Strumia '15) (Holdom, Ren, Zhang '15)

• beyond perturbative renormalizability: it is common

 $\checkmark\,$ non-Abelian Higgs-Yukawa models (e.g. GUT)

(Gies, \mathbf{LZ} '15 & '16) (Gies, Sondenheimer, Ugolotti, \mathbf{LZ} '18 & '19)

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	00	0	0000

Asymptotic Freedom Beyond the SM

Beyond the SM, is **Total Asymptotic Freedom** possible?

• within perturbative renormalizability: it is rare needs many new particles

(Giudice, Isidori, Salvio, Strumia '15) (Holdom, Ren, Zhang '15)

- beyond perturbative renormalizability: it is common
 - non-Abelian Higgs-Yukawa models (e.g. GUT)
 (Gies, LZ '15 & '16) (Gies, Sondenheimer, Ugolotti, LZ '18 & '19)
 - ?? SM-like Higgs-Yukawa models (with $U(1)_Y$):

work in progress: SM + higher-dimensional operators (Gies, Vacca, LZ) work in progress: $SM + hidden \ sector$ (Litim, Vacca, LZ)

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	00	0	0000

Asymptotic Safety Beyond the SM

Beyond the SM, is Asymptotic Safety possible?

Several scenarios have been proposed:

- with Quantum Gravity (Reuter et al.) (Percacci et al.) ...
- Large N_f & N_c (Litim, Sannino '14)

but U(1) $_Y$ needs a cure (Dondi, Dunne, Reichert, Sannino '20) work in progress: (Litim, Vacca, LZ)

• in Nonlinear Sigma Models (Percacci, Codello '09)

(Percacci, Fabbrichesi et al. '10 & '11)

in preparation: (Vacca, LZ)

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	•0	0	0000

Methodology

In UV complete theories one can give a rigorous definition of:

- Exact/Approximate Scale Invariance
- Hierarchies of Scales

but, studying these aspects remains **hard!** (nonperturbative)

Methodological Innovations are needed.

We use:

- Functional methods
- Exact RG Equations
- Effective Field Theory
- Conformal Field Theory

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	0●	0	0000

Methodology

New methods to address these questions have been developed for:

1. SM and BSM gauge hierarchy problem

to appear soon: (Gies, Schmieden, LZ)

2. SM and BSM flavor hierarchy problem

in preparation: (Vacca, LZ)

3. dynamical mass generation in non-Abelian gauge theories (Gies, Gkiatas, LZ '22)

to appear soon: (Asnafi, Gies, Gkiatas, LZ)

4. critical nonlinear sigma models

(Baldazzi, Percacci, LZ '21)

in preparation: (Vacca, LZ)

Motivations	SM	UVC	BSM	Methodology	Conclusions \bullet	Backup		
00	00	000	000	00		0000		
Conclusions								

Conclusions

Perspective summary, by the end of the fellowship:

• New totally asymptotically free extensions of the SM?

?

?

X

- New asymptotically safe extensions of the SM?
- Methodological advances in the study of hierarchies?
- Study of gauge hierarchy problem vs approximate scale invariance
- Phenomenological viability study?

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	00	0	0000

Asymptotically Free U(1)?

The mechanism that cures λ might cure α ?

- Couple the trivial sector to an asymptotically free sector $U(1)_Y \times SU(2)_L \times SU(3)_c$
- Add higher dimensional operators that change the β SMEFT, HEFT, ...
- Allow for large masses in the UV no asymptotic symmetry: $\kappa > 0$ \checkmark

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	00	0	0000

Asymptotically Free U(1)?

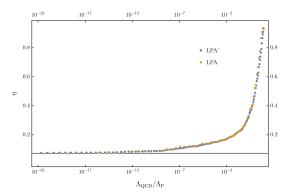
In QED higher dimensional operators, e.g. Pauli-Fierz, can change the running of α (Djukanovic, Gegelia, Meißner '17)

Even induce asymptotic safety (Gies, Ziebell '20 & '22)

Asymptotic freedom: a proof of concept: quarks+photons+gluons

$$S_{\rm cl} = \int d^4x \Big[\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} G_{I\mu\nu} G_I^{\mu\nu} + \bar{\psi}^A i D\!\!\!/^{AB} \psi^B + in \, \bar{\psi}^A \sigma_{\mu\nu} F^{\mu\nu} \psi^A \Big]$$

Treating the coupling n as a free parameter supports fixed-point solutions


$$\hat{\alpha}_* = \frac{\alpha}{g_{\rm s}^{2S}} > 0, \qquad 0 < S \le 1$$

Functional analysis is needed for a fully consistent picture.

Gauge Hiererchy Problem VS Strongly Coupled Gauge Sectors

How much is the Higgs mass fine tuned? $\Theta = 2 - \eta$

Motivations	SM	UVC	BSM	Methodology	Conclusions	Backup
00	00	000	000	00	0	0000

Mass and Nonlinear Gauge Fixing

Yang-Mills theory with a nonlinear gauge fixing

$$\mathsf{F}^{a}[A] = A^{b\mu} \mathsf{Q}^{abc}_{\mu\nu} A^{c\nu} + \mathsf{L}^{ab}_{\mu} A^{a\mu}$$

where

$$\begin{split} \mathsf{Q}^{abc}_{\mu\nu} &= \frac{v^a}{2|v|^2} \left(\bar{m}^2 \delta_{\mu\nu} - \frac{1}{\xi} \partial_{\mu} \partial_{\nu} \right) \delta^{bc} \\ \mathsf{L}^{ab}_{\mu} &= \left(1 + \frac{\bar{m}^2_{\mathrm{gh}}}{-\partial^2} \right) \partial_{\mu} \delta^{ab} \end{split}$$

Lorentz gauge plus gluon and ghost mass parameters

$$S_{\rm gf} = \frac{1}{2}\bar{m}^2 A^a_{\mu} A^{a\mu} + \frac{1}{2\xi} \left(\partial^{\mu} A^a_{\mu}\right)^2 + v^a \left(1 + \frac{\bar{m}^2_{\rm gh}}{-\partial^2}\right) \partial^{\mu} A^a_{\mu}$$
$$S_{\rm gh} = -\bar{c}^a \left(1 + \frac{\bar{m}^2_{\rm gh}}{-\partial^2}\right) \partial^{\mu} \left(D_{\mu}c\right)^a - \frac{v^a}{|v|^2} \bar{c}^a \left(\bar{m}^2 A^{b\mu} + \frac{1}{\xi} \left(\partial^{\nu} A^b_{\nu}\right) \partial^{\mu}\right) \left(D_{\mu}c\right)^b$$