

Study on Digital-Constant Fraction Disriminator

Bong-Hwi Lim

Universita di Torino

December 19, 2022

Digital Constant Fraction Discriminator (CFD)

Figure 1: Top: S_i' CFD Trace, Bottom: S_i Sampled Data

Digital CFD

- ▶ Reference: [1], CAEN AN3251
- ► CFD Trace computation:

 - ▶ S_i : Sampled data point, S'_i : CFD Trace
 - ▶ L: Length of the running average, d: Delay, k: Fraction
 - 1. Set a threshold to arm the search of the zero crossing
 - 2. Find the zero crossing identifying the two consecutive samples across it.
 - 3. Compute a linear interpolation using the two points and find the intersection with the zero axis.
 - 4. k, d, L values can be chosen based on the time resolution obtained.

► Benefits:

- ▶ No signal amplitude dependence on a computation.
- ▶ Therefore, no baseline / underline dependence.
- Used in many applications.

Digital Constant Fraction Discriminator (CFD)

Δt distribution from DCFD

- Stable Δt distribution obtained on combination with:
 - ▶ Delay d: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] ns
 - ▶ Fraction k : [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
 - ▶ Length *L* : [1, 2, 3, 4, 5] points
- ▶ Fitting spectra
 - $\blacktriangleright~$ Obtained Δt distributions are fitted with a Gaussian function.
 - QA plots of fitting parameters (μ, σ) , P and number of entry (N) are shown in the next slides.

Figure 2: Δt distribution (d = 0.4ns, k = 0.3, L = 2)

Examples of Δt distribution from DCFD

 σ of Δ t distribution

QA plots from fit result of Δt distribution #1

 μ of Δ t distribution

 $\blacktriangleright\,$ Left: μ of the Gaussian fit, Right: σ of the Gaussian fit

QA plots from fit result of Δt distribution #2

Digital Constant Fraction Discriminator (CFD) 000000●

QA plots from fit result of Δt distribution #3

Total entry of Δ t distribution ($|\Delta$ t| < $\mu \pm 3 \sigma$)

► Total number of entries in the Δt distribution with in the range of $\mu \pm 3\sigma$.

CFD Trace with different running averages (*L*)

CFD Trace with different running averages

- From left to right: L = 1, 2, 3, 4, 5 bins
- ▶ Note that the trace becomes smoother as the running average increases

 σ of Δ t distribution

QA plots from fit result of Δt distribution #1 (L = 2)

 μ of Δ t distribution

 $\blacktriangleright\,$ Left: μ of the Gaussian fit, Right: σ of the Gaussian fit

CED Trace with different running averages (L)

QA plots from fit result of Δt distribution #2 (L = 2)

 \blacktriangleright μ (dashed line) and σ (solid line) of the Gaussian fit

QA plots from fit result of Δt distribution #3 (L = 2)

Total entry of Δ t distribution ($|\Delta$ t| < $\mu \pm 3 \sigma$)

► Total number of entries in the Δt distribution with in the range of $\mu \pm 3\sigma$.

 σ of Δ t distribution

QA plots from fit result of Δt distribution #1 (L =3)

 μ of Δ t distribution

 $\blacktriangleright\,$ Left: μ of the Gaussian fit, Right: σ of the Gaussian fit

QA plots from fit result of Δt distribution #2 (L=3)

 $\blacktriangleright \ \mu$ (dashed line) and σ (solid line) of the Gaussian fit

CFD Trace with different running averages (L)

QA plots from fit result of Δt distribution #3 (L =3)

Total entry of Δ t distribution ($|\Delta t| < \mu \pm 3 \sigma$)

► Total number of entries in the Δt distribution with in the range of $\mu \pm 3\sigma$.

 σ of Δ t distribution

QA plots from fit result of Δt distribution #1 (L =4)

 μ of Δ t distribution

 $\blacktriangleright\,$ Left: μ of the Gaussian fit, Right: σ of the Gaussian fit

QA plots from fit result of Δt distribution #2 (L =4)

Digital Constant Fraction Discriminator (CFD)

CFD Trace with different running averages (L)

QA plots from fit result of Δt distribution #3 (L =4)

Total entry of Δ t distribution ($|\Delta$ t| < $\mu \pm 3 \sigma$)

► Total number of entries in the Δt distribution with in the range of $\mu \pm 3\sigma$.

 σ of Δ t distribution

QA plots from fit result of Δt distribution #1 (L =5)

 μ of Δ t distribution

 $\blacktriangleright\,$ Left: μ of the Gaussian fit, Right: σ of the Gaussian fit

CED Trace with different running averages (L)

QA plots from fit result of Δt distribution #2 (L = 5)

 \blacktriangleright μ (dashed line) and σ (solid line) of the Gaussian fit

CFD Trace with different running averages (L)

QA plots from fit result of Δt distribution #3 (L =5)

Total entry of Δ t distribution ($|\Delta t| < \mu \pm 3 \sigma$)

► Total number of entries in the Δt distribution with in the range of $\mu \pm 3\sigma$.

CFD Trace with different running averages (L) 000000000000 \bullet

Summary of the update

► DCFD method

- ▶ Very promising approach.
- ▶ Tested with several different combinations of the parameters.
- Suitable result from k = 0.4, d = 0.3ns
- ▶ running average method did not affect the result significantly.
- ► Outlook:
 - Apply this method to the TB data from November
 - Correlate with the output from the Corryvreckan

Backup

References

Backup

References I

[1] A. Fallu-Labruyere et al. "Time resolution studies using digital constant fraction discrimination". In:

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectro 579.1 (2007). Proceedings of the 11th Symposium on Radiation Measurements and Applications, pp. 247–251. ISSN: 0168-9002. DOI:

https://doi.org/10.1016/j.nima.2007.04.048.URL:https:

//www.sciencedirect.com/science/article/pii/S0168900207006213.