Photon to axion conversion during Big Bang Nucleosynthesis

Manuel Masip University of Granada

- An Axion-Like Majoron (ALM) model
- Cosmological evolution: *H*₀
- BBN: deuterium, helium, lithium

[1] A.J. Cuesta, M.E. Gómez, J.I. Illana, M. Masip, JCAP 04 (2022) 009
[2] A.J. Cuesta, J.I. Illana, M. Masip, 2305.16838

COSMIC WISPers, Bari, September 5-8, 2023

ALM model

ΛCDM works extremely well, which underlines some *tensions*...
 CMB observables favor

$$H_0 = 67.71 \pm 0.44 \ \frac{\text{km}}{\text{s Mpc}}$$
 $\eta_{10} \equiv 10^{10} \frac{n_b}{n_\gamma} = 6.14 \pm 0.04$,

but type-Ia supernovae and the abundance of primordial deuterium indicate

$$H_0 = 73.01 \pm 0.99 \ \frac{\text{km}}{\text{s Mpc}} \qquad \eta_{10} = 5.98 \pm 0.07$$

while the observed lithium abundance suggests $\eta_{10} = 3.28 \pm 0.29$.

• Our understanding of the ν sector is still work in progress: Dirac particles with EW masses or is their mass revealing a new scale in particle physics?

SM + y_{ν} HL ν^{c} Why is y_{ν} so small? What protects ν^{c} ?

SM + $\frac{1}{\Lambda_{\nu}}$ HHLL Seesaw with $M_X \approx 10^{10}$ GeV or $M_X \approx$ TeV + approx. sym.?

• Extension of the SM with 3 fermion singlets N, N^c , n and several scalar singlets s_i , valid below a cutoff scale $\Lambda \approx 10$ TeV, invariant (up to grav. effects) under a global $U(1)_X$ symmetry broken by a VEV $\langle s \rangle \approx$ TeV

$$s = \frac{1}{\sqrt{2}} (v_X + \rho) e^{i\frac{\phi}{v_X}} = \frac{1}{\sqrt{2}} (v_X + \rho + i\phi + ...)$$

$$s = s_3 + \epsilon s_4 \implies \langle s_4 \rangle = \epsilon \langle s_3 \rangle; \quad \phi = \phi_3 + \epsilon \phi_4; \quad (\epsilon \ll 1)$$

	$(\nu \ e)$	e ^c	N	N^c	п	$(h^{+} h^{0})$	$s_1, s_2, s_3, s_4 \dots$
Q_X	+1	-1	-2	-1	0	0	1, 2, 3, 4,
Z_3	α	α*	α	α*	1	1	α, α*, 1, α,

Neutrino masses + ALM ϕ

$$-\mathcal{L} \supset i \lambda_{\nu_i} \phi \,\overline{\nu_i} \gamma_5 \nu_i + \frac{1}{4} \frac{g_{\phi\gamma\gamma}}{g_{\phi\gamma\gamma}} \phi \,\widetilde{F}_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \, m_{\phi}^2 \, \phi^2$$

$$\begin{split} m_{\phi} &= 0.5 \text{ eV}; \quad v_X = 900 \text{ GeV}; \quad g_{\phi\gamma\gamma} = 1.46 \times 10^{-11} \text{ GeV}^{-1}; \quad \lambda_{\nu_3} = 6.8 \times 10^{-14} \\ \tau_{\phi} &= 3.5 \times 10^{12} \text{ s}; \quad \text{BR}(\phi \to \nu_3 \bar{\nu}_3) = 0.96; \quad \text{BR}(\phi \to \gamma \gamma) = 10^{-15} \end{split}$$

Cosmological evolution: H_0

- At (1 TeV > T > 1 MeV) ϕ is decoupled, it's abundance negligible ($\Delta N_{\text{eff}} \approx 0.026$)
- At $T \approx 26$ keV a fraction of CMB photons converts into majorons (!)

(*i*) Photons in a medium get a mass that can be expressed in terms of the index of refraction $n \equiv k/\omega$. In the cosmic plasma the main contribution to this mass comes from their interaction with free (not bounded in atoms) electrons

$$m_e(T) \approx 4 \left(\frac{m_e T}{2\pi}\right)^{3/2} \exp\left(-\frac{m_e}{T}\right) + 0.88 \eta_B n_\gamma(T),$$

(*ii*) The presence of a background magnetic field mixes the photon with the axion-like particle ($m_{\phi\gamma} = g_{\phi\gamma\gamma}B_T/2$); this separates mass and interaction eigenstates and produces oscillations that become resonant when the two masses coincide

Primordial $B_0 = 3 \text{ nG}$ $\begin{bmatrix} B \approx B_0 (T/T_0)^2, \lambda_0 \ge 1 \text{ Mpc} \end{bmatrix}$

Raffelt, Stodolsky (1988): Stationary (quadratic) wave equation $\rightarrow \vec{B}$ changes on larger scales than the photon/axion wavelength & $\omega + k \approx 2\omega \rightarrow$ linearized wave equation

$$\begin{pmatrix} (\omega + i\partial_{\mathbf{x}}) I + \begin{pmatrix} m_{+} & 0 & 0 \\ 0 & m_{\times} & m_{\phi\gamma} \\ 0 & m_{\phi\gamma} & m_{a} \end{pmatrix} \end{pmatrix} \begin{pmatrix} A_{+} \\ A_{\times} \\ \phi \end{pmatrix} = 0,$$

$$\omega = x T$$

× : photon polarization parallel to \vec{B}

 $m_{\times} = \omega (n-1)_{\times}$ $n_{\text{pla}} = 1 - \frac{2\pi n_e}{\omega^2 m_e}$ $m_a = -m_{\phi}^2 / \omega$ $\overline{T} = 26 \text{ keV}$ (indep. from x)

Ejlli, Dolgov (2014): If $\rho_{\phi} \ll \rho_{\gamma} \approx \rho_{\gamma}^{eq}$ and the ALM interaction rate is $\Gamma_{\phi} \approx 0$

$$P_{\phi}(x,T) \equiv \frac{\Delta n_{\phi}}{n_{\gamma}^{\text{eq}}} \approx -\left(\frac{2\pi}{3H}\right) \left.\frac{m_{\phi\gamma}^2}{m_a + m_{\text{QED}}}\right|_{T=\overline{T}}$$

Photons of different energy ω convert at the same \overline{T} , but $P_{\phi}(x, T) \propto \omega = xT$.

• 4.4% of the CMB photons carrying a 6.3% of ρ_{γ} convert into majorons at $T \approx \overline{T} = 26$ keV. Sudden 1.6% drop in $T_{\gamma} \implies N_{\text{eff}} \approx 3.6$ (majorons + less photons but same ν 's) and 4.7% increase in the baryon to photon ratio (less photons but same baryons) After that all photons rethermalize and the spectral distortion is completely erased

• Escudero (2020): Final stage of the ALM evolution: from 10 eV to past recombination at $T_{\gamma} \approx 0.26$ eV (all majorons decayed). Neutrinos and majorons enter in thermal contact at $T \approx m_{\phi}$ through $\nu \bar{\nu} \leftrightarrow \phi$, which reduces their free streaming

Effect (relative to that of Λ CDM) on the TT power spectrum produced by (*i*) the increase in N_{eff} ; (*ii*) the damping of the ν free streaming; and (*iii*) the total effect after redefining the cosmological parameters in the ALM model (CLASS + MontePython)

Parameter	ΛCDM	ALM
$100 \Omega_b h^2$	2.242 ± 0.015	2.295 ± 0.014
$\Omega_{ m cdm} h^2$	0.119 ± 0.001	0.129 ± 0.001
$100 \theta_s$	1.0420 ± 0.0003	1.0407 ± 0.0003
$\ln\left(10^{10}A_s ight)$	3.046 ± 0.015	3.062 ± 0.016
n_s	0.967 ± 0.004	0.991 ± 0.004
$ au_{ m reio}$	0.055 ± 0.008	0.056 ± 0.008
$H_0 [\mathrm{km/s/Mpc}]$	67.71 ± 0.44	71.4 ± 0.5

• We obtain $100 \Omega_b h^2 = 2.295 \pm 0.014$ in the ALM model versus 2.242 ± 0.015 in Λ CDM (a 2.6σ difference).

What are the ALM predictions for the primordial abundance of deuterium, helium and lithium?

BBN: deuterium, helium, lithium

• ALM model (modified PRIMAT): at the resonant temperature $\overline{T} = 26$ keV, 6.3% of the CMB energy oscillates into axions, cooling the universe and increasing the baryon to photon ratio from $\eta_{10} = 5.89$ to $\eta_{10} = 6.28$ (the value during decoupling).

• We consider the Li abundance in generalized scenarios with a higher \overline{T} and a larger fraction of energy r_{γ} transferred to axions (modified PRIMAT).

higher $\overline{T} \leftrightarrow$ higher m_{ϕ} (but similar lifetime to reduce the free streaming at $T \approx 1$ eV) $r_{\gamma} = 1/3$ (multiple oscillations); $r_{\gamma} = 0.9$ (several axions?)

- Large value of η_{10} , BBN starts earlier than in Λ CDM
- Excess of heavier nuclei (³He, ⁴He) relative to the lighter ones (D, ³H)
- No more ⁷Li+⁷Be is sinthesized after the sudden cooling at \overline{T}

Conclusions

• The smallness of neutrino masses may be explained by a large scale or by an approximate symmetry. In this second case one may expect a light ALM

• In the early universe a primordial magnetic field may induce the conversion of CMB photons into axions, implying a larger N_{eff} and a larger baryon to photon ratio after BBN than in Λ CDM. The ALM decays into neutrinos near recombination.

• This is a variation of the Λ CDM model that *solves* the H_0 tension, provides a similar fit to CMB observables and implies the *right* deuterium abundance.

• A sudden cooling of the universe at $T \approx 55$ keV in a generalized model could also imply a lithium abundance consistent with the observations.