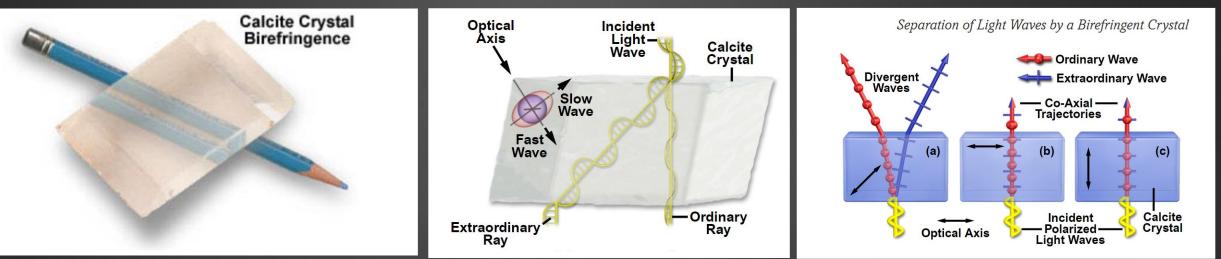


VMB@CERN 2023

ŠTĚPÁN KUNC ON BEHALF OF VMB@CERN COLLABORATION 1ST GENERAL MEETING OF COST ACTION COSMIC WISPERS (CA21106)

VMB@CERN collaboration


Collaboration to measure Vacuum Magnetic Birefringence Started in 2019

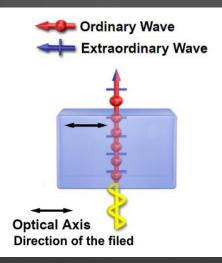
PVLAS + Q&A + OSQAR-VMB + LIGO group (Cardiff)

about 15 members from 10 Institutes from Czech Republic, France, Italy, Poland, Republic of China and Wales

Birefringence (double refraction)

- Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of the light
- First observed in islandic limestone (calcite) in 1669 by Rasmus Bartholin

- Natural birefringence Crystals, plastic, liquids,
- Used for polarizers, wave plates,


Induced Birefringence

Materials become birefringent when subjected to external forces, fields or during manufacturing processes

Mechanical force – stress-induced birefringence Electric field – Kerr effect Magnetic field – Cotton-Mouton effect

Field direction determines the optical axis of the material

What we measure is the optical path difference/ellipticity between the ordinary and extraordinary beam

http://olympus.magnet.fsu.edu

Light polarization shown on clear polystyrene cutlery between crossed polarizers

VMB - Light propagating in vacuum in an external magnetic field

Linear Birefringence - polarization dependent index of refraction

- Linear Dichroism polarization dependent index of absorption
- ► In external perpendicular magnetic field \vec{B}

 $\Delta n_{vac} = \Delta n_B + i \Delta k_B$

 $\Delta n_B \propto B^2$

Birefringence Predicted by QED, ALP processes, Millicharged particles (MCP)

Dichroism $\Delta k_B \propto B^2$ Predicted byALP processes,Millichargedparticles (MCP)

QED Vacuum Magnetic Birefringence

- ► H. Euler, B. Kockel 1935
- They wrote an effective Lagrangian describing electromagnetic interactions in the presence of the virtual electron-positron sea

$$\mathcal{L}_{EK} = \frac{1}{2\mu_0} \left(\frac{E^2}{c^2} - B^2 \right) + \frac{A_e}{\mu_0} \left[\left(\frac{E^2}{c^2} - B^2 \right)^2 + 7 \left(\frac{\vec{E}}{c} \cdot \vec{B} \right)^2 \right] + \cdots$$

$$A_e = \frac{2}{45\mu_0} \frac{\alpha^2 \lambda_e^3}{m_e c^2} = 1.32 \times 10^{-24} \text{ T}^{-2} \implies \Delta n_B = 3A_e B^2$$

No linear Dichroism is expected in the framework of QED

Ellipticity

- We can not measure directly Δn_B
- \blacktriangleright What we measure is induced ellipticity ψ
- ▶ We determine optical path difference $D_n = \Delta n_B L$

To obtain maximum signal ψ we need high magnetic field \mathcal{B} in as long as possible region \mathcal{L} Pol. and B fields at 45° degree δ

ingle pass
$$\psi_0 = \frac{\pi 3A_e B^2 L}{\lambda} \sin 2d$$

Ellipsometer parameters

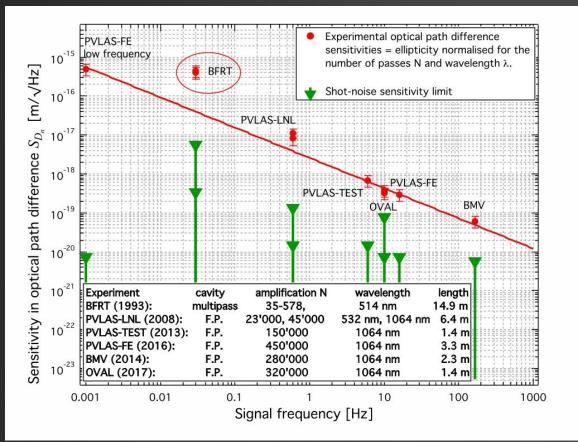
Long optical path – Fabry-Perot cavity

High amplification factor N, PVLAS F = 770000

Fabry Perot cavity
$$\psi = \frac{\pi 3A_e B^2 L}{\lambda} \frac{2F}{\pi} \sin 2\delta$$

► High magnetic field B^2

 \mathbf{N} – amplification factor


Permanent magnets – PVLAS – B = 2.5 T

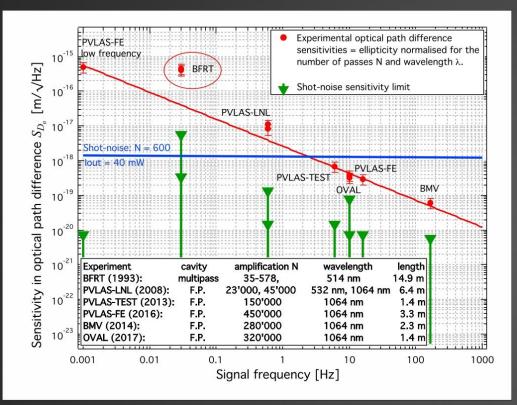
superconducting magnets - OSQAR - B = 9 T, L = 14.3 m

Time dependent effect - to achieve high sensitivity

Time dependent magnetic filed - modulation - BRFT, pulsed – BMV,OVAL Time dependent angle δ – PVLAS I-II – rotating the permanent magnets

Intrinsic mirror birefringence noise

No experimental effort has reached shotnoise sensitivity (green) with a high finesse F.P.

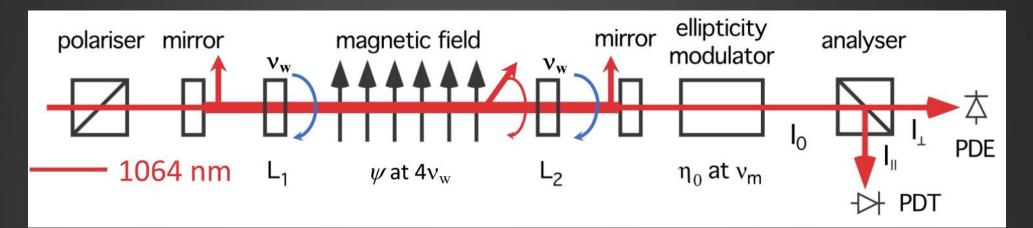

There seems to be a common problem afflicting all experiments

This noise seems to be an intrinsic property of the cavity mirrors (thermal noise in the tantala layers)

Physics Reports 871 (2020) 1–74

 $S_{ODP} \approx 2.6 \times 10^{-18} v^{-0.77} m / \sqrt{Hz}$ Intrinsic noise Sensitivity in optical path difference D_n does not depend on finesse

Intrinsic mirror birefringence noise


An LHC dipole would satisfy the requirement for v > 2 Hz and $T \approx 1$ day for SNR = 1 T = integration time and D_t = duty-cycle N = 600

$$S_{\psi} = 2 imes 10^{-9} \ 1/\sqrt{Hz}$$

$$B_{ext}^{2}\mathbf{L} > max \begin{cases} \frac{1}{3A_{e}\sqrt{TD_{t}}}\frac{\lambda}{\pi N}\sqrt{\frac{e}{I_{0}q}} & \text{Shot-noise} \\ \frac{1}{3A_{e}\sqrt{TD_{t}}}2.6 \times 10^{-18}\nu^{-0.77} & \text{Intrinsic noise} \end{cases}$$

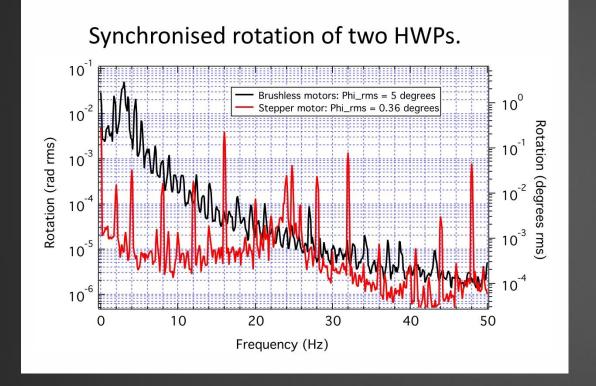
Ellipsometer for LHC magnet

Idea: Rotating polarization in static magnetic field of LHC magnet

Scheme: two co-rotating half-wave plates inside the F.P. Fix polarization on mirrors to avoid mirror birefringence signal

$$\psi(t) = N\psi_0 \sin 4\phi(t) + N \frac{\alpha_1(t)}{2} \sin 2\phi(t) + N \frac{\alpha_2(t)}{2} \sin[2\phi(t) + 2\Delta\phi(t)]$$

 $\alpha_{1,2}$ are the phase errors from π of the two HWPs and $\phi(t)$ is their rotation angle $2\Delta\phi(t)$ is relative rotation phase error – degrades extinctions


Main points to be demonstrated $\psi(t) = N\psi_0 \sin 4\phi(t) + N \frac{\alpha_1(t)}{2} \sin 2\phi(t) + N \frac{\alpha_2(t)}{2} \sin[2\phi(t) + 2\Delta\phi(t)]$

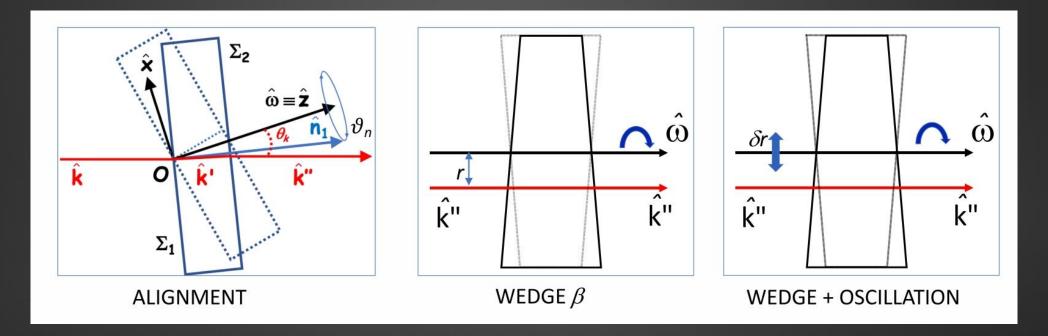
1. Synchronous rotation of the wave-plates for good extinction - $[2\phi(t) + 2\Delta\phi(t)]$

- 2. Understand systematic effects at $4v_w$ and all other harmonics $\alpha_{1,2}(t)$
- 3. Lock laser to the F.P. with the rotating HWPs inside N
- 4. Reach required sensitivity for LHC test in small lab noise without and with F.P.

Synchronous rotation of the wave-plates for good extinction - $[2\phi(t) + 2\Delta\phi(t)]$

Relative phase error: brushless vs. stepper motors (no cavity)

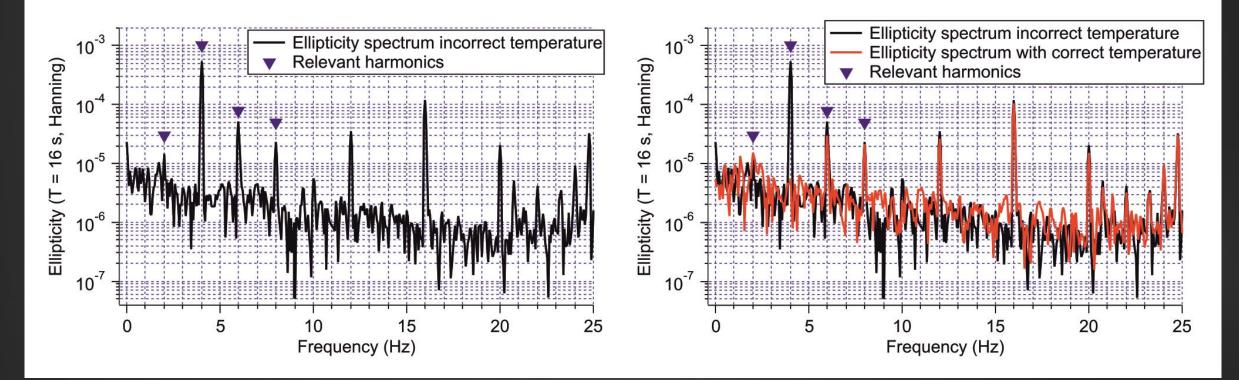
Brushless motor



Stepper motor

Extinction ratio with stepper motors (no cavity): $\sigma^2 \approx 10^{-6}$ - Good Residual rotation could be corrected with a Faraday rotator

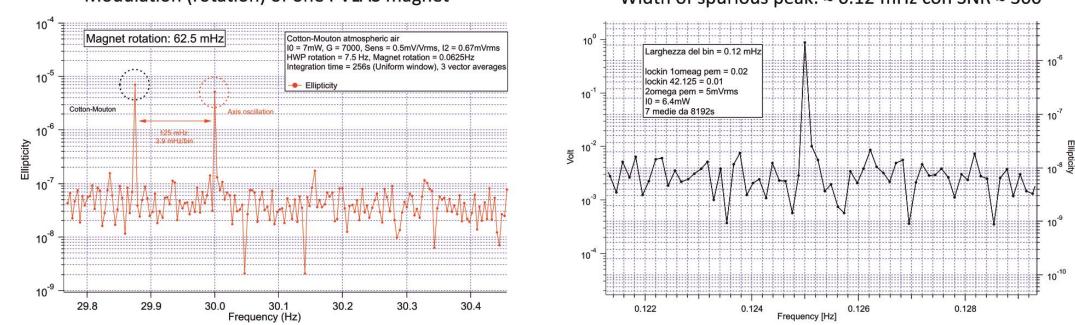
EPJC 82 (2022) 159


Understand systematic effects at $4v_w$ and all other harmonics - $\alpha_{1,2}(t)$ $\psi(t) = N\psi_0 \sin 4\phi(t) + N \frac{\alpha_1(t)}{2} \sin 2\phi(t) + N \frac{\alpha_2(t)}{2} \sin[2\phi(t) + 2\Delta\phi(t)]$ $\alpha_{1,2}(t)$ - not only HWP defects but also sensitive to temperature T and axis stability r(t) $\alpha_{1,2}(\phi, T, r) = \alpha_{1,2}^{(0)}(T) + \alpha_{1,2}^{(1)}(r(t)) \cos(\phi(t)) + \alpha_{1,2}^{(2)}\cos(2\phi(t)) + \cdots$

 $\alpha_{1,2}^{(1)}(t)$ and $\alpha_{1,2}^{(2)}(t)$ – Generate 4th harmonic signal just like magnetic birefringence

Understand systematic effects at $4v_w$ and all other harmonics - $\alpha_{1,2}(t)$

2nd harmonic dominates. For F.P. we need N $\alpha_{1,2} << 1$ HWP can be aligned separately using a frequency doubled laser @ 532 nm – reduce 1st ,3rd , 4th har Temperature control can reduce 2nd harmonic to have N $\alpha_{1,2} << 1$ with N = 1000

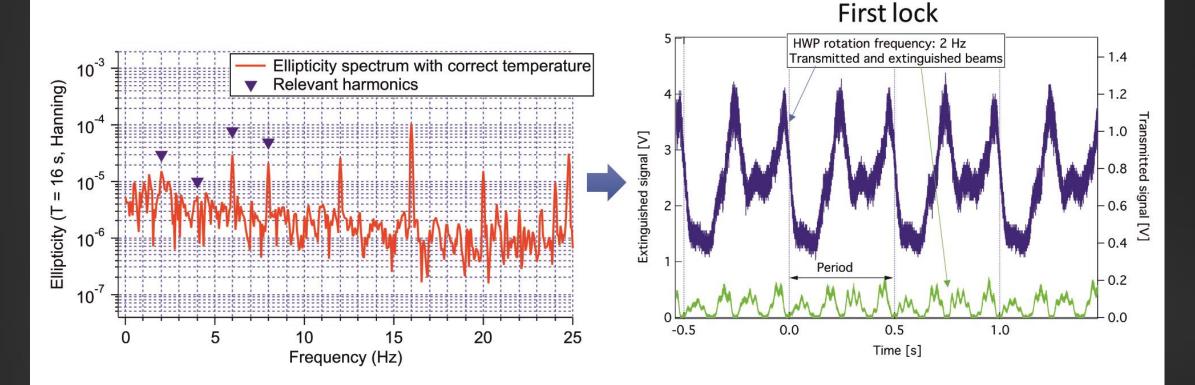


 $\alpha_{1,2}^{(1)}(t)$ and $\alpha_{1,2}^{(2)}(t)$ – Generate 4th harmonic signal just like magnetic birefringence

Understand systematic effects at $4v_w$ and all other harmonics - $\alpha_{1,2}(t)$

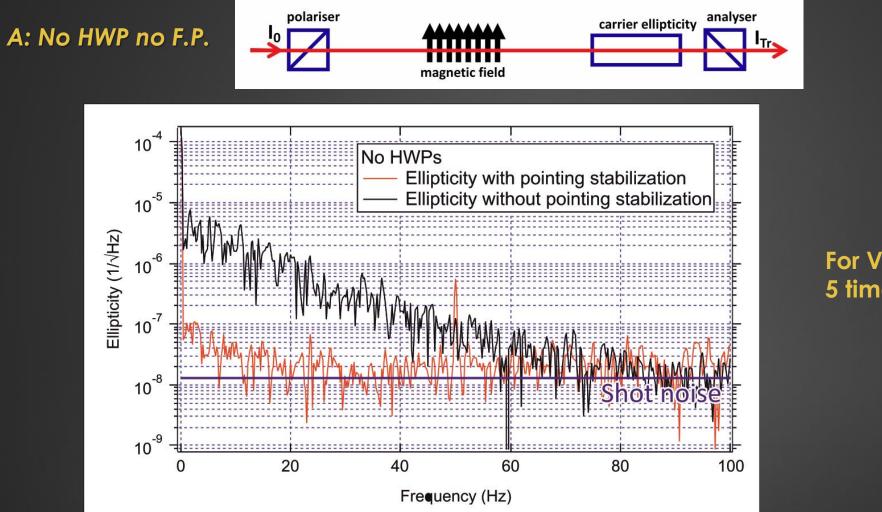
 $\alpha_{1,2}^{(1)}(t)$ and $\alpha_{1,2}^{(2)}(t)$ – Generate 4th harmonic signal just like magnetic birefringence Modulate slowly the magnetic field to separate VMB signal from HWP defects

How fast we can modulate LHC magnet? How narrow is the systematic signal at 4th har.


Modulation (rotation) of one PVLAS magnet

Width of spurious peak: ≈ 0.12 mHz con SNR ≈ 300

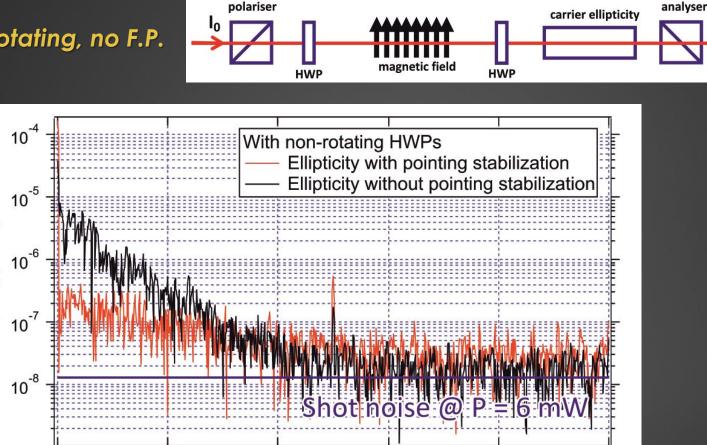
Modulating an LHC dipole magnet at a few mHz could be a solution


Lock laser to the F.P. with the rotating HWPs inside - N

Preliminary adjustments and temperature control can reduce N $\alpha_{1,2}$ << 1 with N ≈ 1000 Successfully locked cavity for the first time with rotating HWP

Unstable output intensity due to dust, first tests in open air system

Very stable locking - days


For VMB@CERN, 5 times better is necessary.

Beam pointing stabilization is necessary. Same results in vacuum. This task should be automatically performed by the F.P. with stable mirrors

B: HWP not rotating, no F.P.

Ellipticity (1/√Hz)

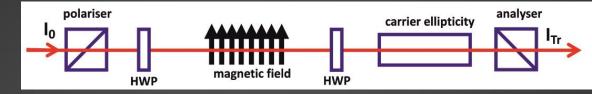
0

60

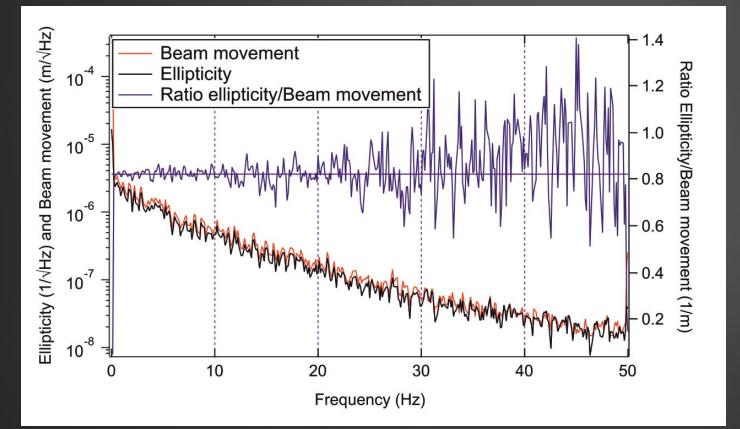
Frequency (Hz)

Beam pointing stabilization is necessary.

40


20

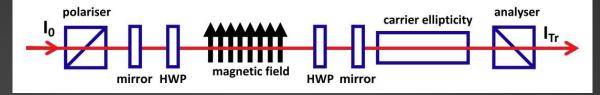
This task should be automatically performed by the F.P. with stable mirrors


80

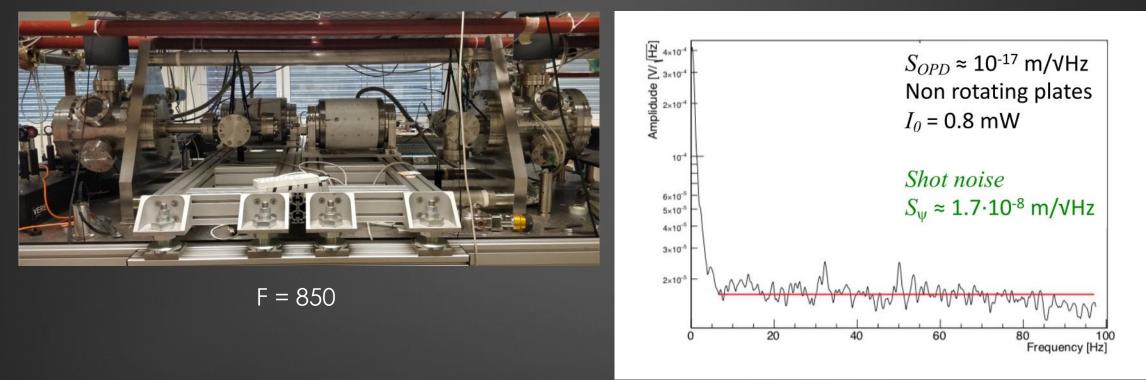
100

B: HWP not rotating, no F.P.

Beam movement at the output of the polarimeter compared to the ellipticity noise

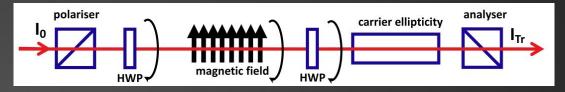


Ratio 10⁻⁶/µm

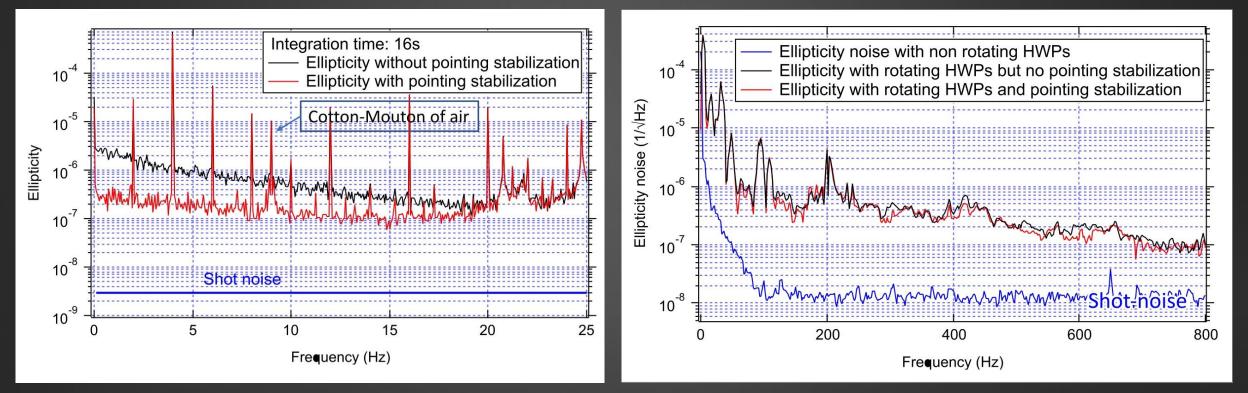

Consequence:

To reach the desired ellipticity sensitivity of $S_{\psi} \approx 2 \times 10^{-9} \text{ } 1/\text{VHz}$ one should control the beam stability down to $S_{\Delta x} \approx 10^{-9} \text{ } \text{m/VHz}$

C: HWP not rotating, F.P.

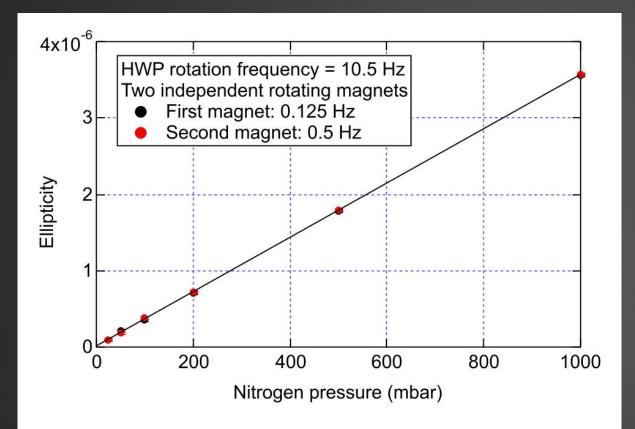


Could a static birefringence from the HPWs degrade the sensitivity?


Sensitivity did not degrade with the presence of the HWPs and was compatible with shot-noise

C: HWP rotating, no F.P., one magnet rotating

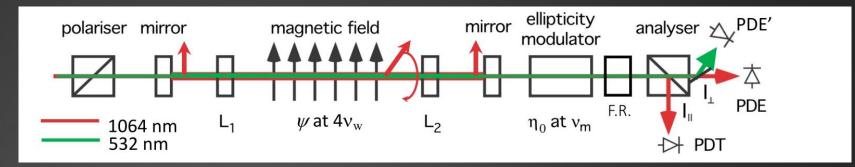
Ellipticity measurement with rotating HWPs and 1 magnet


Co-rotating HWPs at 2 Hz with stepper motors Vs. non rotating HWPs

Even with the stabilized beam, the integrated shot-noise of 3×10^{-9} is not reached. There is a wideband ellipticity noise generated by the rotation of the HWPs.

Test of the scheme with nitrogen

Polarimeter was put in vacuum and pure $\rm N_2$ gas was injected Used the two PVLAS permanent magnets


EPJC 82 (2022) 159

- Most precise measurement of the Cotton-Mouton effect in N₂ gas.
- <u>The scheme with two co-rotating</u> <u>HWPs + slowly modulated field works</u>

Cotton-Mouton unitary birefringence

$$\Delta n_{\rm u}^{(1064 \text{ nm})} = (2.380 \pm 0.007^{\rm (stat)} \pm 0.024^{\rm (sys)}) \times 10^{-13} \text{ T}^{-2} \text{atm}^{-1}$$

Conclusion

Present:

Synchronous rotation of the wave-plates for good extinction - $[2\phi(t) + 2\Delta\phi(t)]$ Understand systematic effects at $4v_w$ and all other harmonics - $\alpha_{1,2}(t)$ Lock laser to the F.P. with the rotating HWPs inside - N Reach required sensitivity for LHC test in small lab - noise without and with F.P.

Future:

Full test with rotating HWP, F.P., feedback control - 2023/2024 Possible new mirror coatings New optical scheme – rotate polarization without mechanical parts.