Searching for new light particles with PADME (and fixed target experiments)

Venelin Kozhuharov for the PADME collaboration

Faculty of Physics, Sofia University and Laboratori Nazionali di Frascati, INFN

1st General Meeting of COST Action COSMIC WISPers (CA21106)

5 – 8 September 2023 Centro Polifunzionale Studenti, Bari (Italy).

CA21106 COSMIC WISPers

Outline

• Fixed target probes

- X17
- PADME @ LNF
- Present status
- Conclusions

4.2σ Experiment Average $\Omega_{\rm DM} = 0.1198 \pm 0.0015$ Coupling to SM 19.0 19.5 20.0 20.5 21.0 21.5 18.0 17.5 18.5 $a_{\mu} \times 10^9 - 1165900$ Production at accelerators arXiv:1011.3519 [hep-ph] H. Fleurbaey et al. 1S-3S, 2018 A. Beyer et al. 2S-4P, 2017 **CODATA 2014** Various H world data 2014 **High energy** µH 2013 techniques Lab 2011 µH 2010 Mainz 2010 0.89 0.90 0.83 0.84 0.85 0.86 0.87 0.88 proton charge radius [fm] Phys. Rev. D 102, 072004 Possible @ High energy low energy & intensity **High intensity** Energy [GeV] -Background B ¹ Phys. Rev. Lett, 122 (2019) 101101. ♣ SR1 data (Xenon1T) E [keV]PRL 116 (2016) 042501

All numbers and estimates are preliminary.

Mass

PRL 126 (2021) 14, 141801

BNL g-2

FNAL g-2

Standard Model

Theory: $a_{\mu} = 116 591 810 (43) \times 10^{-11}$

Experiment: $a_{\mu} = 116 592 059 (22) \times 10^{-11}$

Take with care, recent issues with the theoretical calculations

Is the Standard Model the final answer to the present particle physics obserbables?

- Are more particles necessary?
 - Different phenomena seem not to be explained well within the Standard Model of particle physics
 - Related to Astrophysics and Cosmology: matter-antimatter asymmetry, Dark matter, Dark energy...
- There could exist a completely new sector of particles

- All their interactions with us are through a limited number of mediators portals to the hidden (dark) sector
- Questions:
 - what could be the masses/properties of these particles?
 - Is it possible to observe some of them, or at least the mediator?

Techniques

Fixed target

- Direct production (usually Xstrahlung)
- Search for decays through event reconstruction (tracking)
- Production of secondary beam
 - Usually in a thick target
 - Searching for new particles in meson decays
 - M_x limited by the meson mass, coupling sensitivity – by statistics

Beam dump

- Production: A'/a/h/?-strahlung, shower, absorption of secondaries
- Detection: everything is signal vs kinematics of the final state

E

 The new particle has to survive the passage through the dump

e⁺e⁻ colliders

- Associate production of new states
- Sensitivity depends on the resolution on invariant/missing mass of the final state

 M_{X}

• Also searches also through meson production and constrained initial state

LNF, INFN

where colliders were born ...

DAΦNE complex

RF SOURCE 2856 MHz

Physics case of PADME

- Quasi symmetric in gamma angles for $E_{\gamma} > 50$ MeV

 e^+

beam

е

• 3 photon annihilation

M²_{mine} cuts

- Symmetry is lost decrease in the vetoing capabilities
- Radiative Bhabha scattering
 - Topology close to bremsstrahlung

Positron Annihilation into Dark Matter Experiment

Calorimeters

ECAL: The heart of PADME

- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint
 - additional optical isolation: 50 100 µm black tedlar foils

- Calibration at several stages:
 - BGO + PMT equalization with ²²Na source before construction
 - Cosmic rays calibration using the MPV of the spectrum
 - Temperature monitoring

Small Angle Calorimeter (SAC)

- 25 crystals 5 x 5 matrix, Cherenkov PbF₂
- Dimensions of each crystal: 3 × 3 × 14 cm³
- 50 cm behind ECal
- PMT readout: Hamamatsu R13478UV with custom dividers
- Angular acceptance: [0,19] mrad

Recorded bunch

Charged particle detectors

- Three sets of detectors detect the charged particles from the PADME target (at E_{beam} = 550 MeV):
 - **PVeto**: positrons with 50 MeV < p_{e+} < 450 MeV
 - **HEPVeto**: positrons with 450 MeV < p_{e^+} < 500 MeV
 - **EVeto**: electrons with 50 MeV < p_{e^+} < 450 MeV
- 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution

Custom SiPM electronics, Hamamatsu S13360 3 mm, 25µm pixel SiPM Differential signals to the controllers, HV, thermal and current monitoring

- Online time resolution: ~ 2 ns
- Offline time resolution after fine T_0 calculation better than 1 ns

Data taking

- PADME commissioning and Run-1 started in Autumn 2018 and ended on February 25th
 - \sim ~7 x 10¹² positrons on target recorded with secondary beam
 - PADME DAQ, Detector, beam, collaboration commissioning
 - Data quality and detector calibration
- PADME test beam data
 - July 2019, few days of valuable data
 - Certification of the primary beam
 - Detector performance/calibration checks
 - Primary beam with E_{beam} = 490 MeV

2020 era – RUN 2: primary beam

- July 2020
 - New environment/detector parameter monitoring and control system
 - Remote operation confirmation
- Autumn 2020:
 - A long data taking period with $O(5x10^{12}) e^+$ on target
 - E_{beam} = 430 MeV

SM: Two photon events

e⁺e⁻ → yy cross section

- Below 0.6 GeV known only with 20% accuracy
- Can be sensitive to sub-GeV new physics (e.g. ALP's)
- Using 10% of Run II sample
- Tag-and-probe method on two back-toback clusters
- Exploit energy-angle correlation

SM: $e^+e^- \rightarrow yy$ cross section

Prospects: ML for double particle separation in ECal

PADME ECAL

Two photon showers in the ECAL

- Al to identify the number of pulses in a waveform
- Simple output up to five pulses
- Trained on 100 000 events Efficiency based on time difference

X17 @ PADME strategy

PADME strategy: $e^+e^- \rightarrow X17 \rightarrow e^+e^-$

e

 $p_{3_{S_3}}$

 $p_{4\epsilon_4}$

Bhabha scattering dominates the event rate in the background contribution for high P_{e^+}

$$\begin{split} \mathcal{N}_{X_{17}}^{\text{Vect.}} \simeq 1.8 \cdot 10^{-7} & \times \left(\frac{g_{ve}}{2 \cdot 10^{-4}}\right)^2 \left(\frac{1 \text{ MeV}}{\sigma_E}\right) \\ \mathcal{N}_{X_{17}}^{\text{ALP}} \simeq 5.8 \cdot 10^{-7} & \times \left(\frac{g_{ae}}{\text{GeV}^{-1}}\right)^2 \left(\frac{1 \text{ MeV}}{\sigma_E}\right) \\ \sigma_{\text{E}} & \text{- beam energy spread} \end{split}$$

Production of O(10³) X17 events with 10¹⁰ positrons on target

Change in $\sigma_{tot}(e^+e^- \rightarrow e^+e^-)$

Dedicated X17 run: PADME RUN III

Rate variation from point to point:

 \rightarrow precise beam control

Energy selector dipole

Beam position monitoring

- Matrix of 2 x 6 Timepix3 detectors (each 256x256 pixels)
- Operated in 2 modes:
 - $\circ\,$ image mode, integrating
 - streaming mode, feeding ToT and ToA for each fired pixel

Dedicated X17 run: PADME RUN III

- Be inventive measure charged particles without a magnet
 - Less systematic uncertainty in momentum determination
 - Disentangle between positrons and photons with an extra detector
 - Energy based kinematics reconstruction, relying on BGO ECal
- Lessons from PADME RUNI & RUNII
 - \circ Lower intensity \rightarrow lower pile up \rightarrow easier reconstruction
 - Need various observables to control beam rate, energy spread, quaility
 - Need great support from the lab beam department to obtain the best possible conditions
- "Signal" event rate as a function of beam energy

Modified experimental setup

- HODOSCOPE for particle identification, attached to ECal
- A wall of plastic scintillator slabs, instrumented with SiPM cards

0

- 16 scintillators BC408 (600x45x5 mm³)
- Hamamatsu S13360 SiPMs (4 per slab)

port

ETag illumination

Data taking

- Resonance scanning
 - $\circ~47$ points in the range 263 MeV-299~MeV
 - $\circ\,$ Spacing between the points: ΔE = 0.75 MeV
 - $\circ~Naive~precision~on~M_{X17} \sim 20~KeV$
- Off resonance data sets:
 - Above Resonance: 402 MeV: ∼ 1.2E10 POT
 - Below Resonance: 205-211 MeV, 5 different energies, ~ 5E10 POT
- First selection aimed at N(2cl)/N_{PoT} studies:
 - Provides information about the stability of the detector operation and acceptance during the data taking
 - $\circ~2$ in time clusters in the $\Delta t < 5 ns$ in ECal
 - Energy and radius cuts, CoG consistency
 - Cluster energy vs angle correlation compatible with a 2 body final state.

Data quality checks

- + 0.7 % RMS of the ratio $N_{\text{2cl}}/N_{\text{PoT}}$
 - Compatible with statistical fluctuations
 - $\circ~$ Systematics seems under control for $M_{ee} >~M_{\rm X17}$

- Scales linearly with energy
 - Fluctuations compatible with statistics
 - $\circ~$ Systematics under control for $M_{ee} < M_{\rm X17}$

Expected sensitivity

L. Darmé, M. Mancini, E. Nardi, M.R. Darmé et al. Phys. Rev. D 106,115036

 10^{-3} KLOE, 2015 KLOE, 2015 PADME-X17 10⁰ PADME-X17 www. *g_{ae}* [GeV⁻¹] nnin NA64, 2021 ≥ 10⁻⁴ NA64, 2019 X_{17} target E141 X₁₇ target E141 ORSAY ORSAY, KEK Lepton couplings only 10-5 Lepton couplings only 10⁻²↓ 20 16 17 18 19 15 18 20 19 16 17 15 M_X [MeV] M_X [MeV]

Vector X17

Pseudo scalar X17

Summary: NP @ PADME

Conclusions

- PADME has collected about 5x10¹² PoT with primary positron beam
- Detectors performed as expected (and sometimes better)
- SM processes being looked at and used for experiment validation
 - Reconstruction/detector efficiency
 - $e^+e^- \rightarrow \gamma\gamma$ cross section at E_{e^+} = 430 MeV measured with ~5% uncertainty
- A' analysis is on the way
- Quest for X17: PADME RUN III completed
 - Mass range: $16.35 \text{ MeV} < M_{e^+e^-} < 17.5 \text{ MeV}$
 - 47 points
 - Systematics seem to be under control

Near term prospects

- PADME approach is general for a positron-in-flight annihilation experiments
 - And PADME was the first one to put the technique in operation
- Several suggestions for upgrades, extending the accessible mass range
 - MMAPS (higher energy)
 - PADME @ Jlab (higher energy)
 - Dark photon searches at VEPP3 (luminosity)
 - Unfortunately no much progress
- Currently a proposal to repurpose the UVX storage ring in Brazil and use it as positron beam facility
 - 1 3 GeV positron energy depending on configuration
 - NLP associated production (with photons)

(a) Electron mediated channel.

(b) Photon mediated channel.

2305.13384 [hep-ph]

L. Angel, P. Arias, C. O. Dib, A. S. de Jesus, S. Kuleshov, VK, L. Lin, M. Lindner, F. S. Queiroz, R. C. Silva, Y. Villamizar

$$\begin{aligned} \sigma_{a\gamma} &= \alpha_{em} g_{a\gamma\gamma}^2 \frac{(s+2m_e^2)(s-m_a^2)^3}{24\beta s^4}, \\ \sigma_{ae} &= \alpha_{em} g_{aee}^2 m_e^2 \frac{-2m_a^2\beta s + (s^2+m_a^4-4m_a^2m_e^2)\log\frac{1+\beta}{1-\beta}}{2(s-m_a^2)s^2\beta^2}, \\ \sigma_{int} &= \alpha_{em} g_{a\gamma\gamma} g_{aee} m_e^2 \frac{(s-m_a^2)^2}{2\beta^2 s^3}\log\frac{1+\beta}{1-\beta}, \end{aligned}$$

SeDS @ UVX

Disentangle between electron or photon mediated process through variation of the beam energy

Conclusions II

- PADME paved the path to positron-on-target annihilation experiments
- Currently the biggest question is the nature of X17 and its possibility to be produced and studied in e+e- interaction
 - Reversed to IPC in light even-even nuclei
- Most of the experiments sensitive to any new light physics states, independent on the mode, even to more exotic (tensor) interactions:

Nucl.Phys.B 986 (2023) 116044
$$-ie_4\overline{\Psi}\frac{q^{\mu}}{|q|}\sigma_{\mu\nu}A_4^{\nu}\Psi + e_5\overline{\Psi}\frac{q^{\mu}}{|q|}\sigma_{\mu\nu}\gamma^5A_5^{\mu}\Psi$$

- But the accessible parameter space depends on the particular model
- PADME results expected soon
 - It took 4 months to publish the idea
 - It took ~4 years (after having built the detector) to get through the detector commissioning,
 MC simulation and understanding of the experiment, calibration, etc. to the first results

Precision of the Standard Model

Standard Model of Elementary Particles

Every particle has an antiparticle

- In 4D space the spin **S** is internal characteristic of every existing particle
 - Related to the space properties i.e. fundamental property
- Magnetic moments **M** are calculable using the Quantum Field Theory

$$\vec{M} = g \frac{e}{2m} \vec{S}$$
 Theory: $g_e = 2.0023193043632$ (15)
experiment: $g_e = 2.0023193043615$ (6)

12 coinciding digits!

Does (g-2)_e really match perfectly?

X17 @ PADME RUN | & ||

10-4

E_. = 550MeV

- Searching for X17 in production
- Limited parameter space
 - Depending on the nature of X17
- Nominal PADME technique accounts for both decaying and invisible new particles
 - With non-zero background contribution, detector performance verification and control regions
 - Expecting reach with RUNI and RUNII dataset: $\epsilon^2 \sim X*10^{-6}$
 - Covering partially the vector case