High energy resolution x-ray detectors for IAXO: advantages in pre- and post-discovery phases

Loredana Gastaldo

Kirchhoff Institute for Physics Heidelberg University

Outline

Helioscope

Overview IAXO Post detection

 Metallic magnetic calorimeter for IAXO Basic concepts First results

• Conclusions

Solar Axions in Helioscope

Search for an evidence for solar axions

Low background and high efficiency x-ray detectors

E. Armengaud et al., JCAP 06 (2019) 047

CAST

3rd generation: CERN Axion Solar Telescope (CAST)

- Most sensitive axion helioscope to date (10m, 9T)
- Best experimental limit on axion-photon coupling over broad axion mass range

 $g_{a\gamma} < 0.66 \times 10^{-10} \text{ GeV}^{-1}$ (95% C.L.)

More tomorrow by Serkant Cetin's talk "CAST and more than CAST; A Dark Sector Probe for 20+ Years"

CAST Collaboration Nature Phys. 13 (2017) 584

IAXO

IAXO-The International Axion Observatory

IAXO aims to improve CAST sensitivity to solar axions in 1 order of magnitude!

Super toroidal magnet

- 20 meters long
- Magnetic field up to 5.4 T
- 8 bores of 60 cm Ø

Dedicated X-ray optics

• 0.2 cm² focal spot

Tracking system

- Based on gamma ray telescopes
- 50% of Sun-tracking time

X-ray detector technologies

- Micromegas
- GridPix
- Metallic Magnetic Calorimeters (MMC)
- Transition Edge Sensors (TES)
- Silicon Drift Detectors (SDD)

Baby-IAXO

Baby-IAXO is currently under construction at DESY!

Dipole magnet

- 10 meters long
- Magnetic field $\sim 2 T$
- 2 bores of 70 cm Ø

Dedicated X-ray optics

• 0.2 cm² focal spot

Tracking system

• Based on gamma ray telescopes

X-ray detector technologies

• Micromegas (baseline)

Conceptual Design Report 10.1007/JHEP05(2021)137

IAXO & baby-IAXO: Sensitivity Perspectives

BabyIAXO will be sensitive to realistic QCD axion models!

IAXO will improve CAST sensitivity in more than a factor 10

Further physics potential of (Baby)IAXO:

- Axion-electron coupling
- Interesting ALPs parameter space
- Cold Dark Matter axions using the haloscope technique

Post-discovery investigation

Distinguishing Axion Models with IAXO

J. Jaeckel and L. J. Thormaehlen, JCAP 03 (2019) 039

Solar metallicity

J. Jaeckel and L. J. Thormaehlen, Phys. Rev. D 100, 123020 (2019)

Post-discovery investigation

Weighing the Solar Axion

T. Dafni et al., Phys. Rev. D 99, 035037 (2019)

Probing the axion–nucleon coupling with the next generation of axion helioscopes

L. Di Luzio et al., EPJC 82 (2022) 120

MMC for IAXO

Low Temperature Calorimeters

Near equilibrium detectors

Energy deposition induces increase of temperature

Low Temperature Calorimeters

Near equilibrium detectors

Energy deposition induces increase of temperature

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensors

Low Temperature Calorimeters

Near equilibrium detectors

Energy deposition induces increase of temperature

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensors

Metallic Magnetic Calorimeters

Paramagnetic temperature sensor

Dilute alloy Au:Er or Ag:Er (Er concentration: a few hundred ppm)

A.Fleischmann, C. Enss and G. M. Seidel, Topics in Applied Physics **99** (2005) 63

A.Fleischmann et al., AIP Conf. Proc. **1185** (2009) 571

Metallic Magnetic Calorimeters

Paramagnetic temperature sensor

Dilute alloy Au:Er or Ag:Er (Er concentration: a few hundred ppm)

A.Fleischmann, C. Enss and G. M. Seidel, Topics in Applied Physics **99** (2005) 63

A.Fleischmann et al., AIP Conf. Proc. **1185** (2009) 571

Metallic Magnetic Calorimeters

A.Fleischmann, C. Enss and G. M. Seidel, Topics in Applied Physics **99** (2005) 63

A.Fleischmann et al., *AIP Conf. Proc.* **1185** (2009) 571

Paramagnetic temperature sensor

Dilute alloy Au:Er or Ag:Er (Er concentration: a few hundred ppm)

Very good agreement between data and theoretical expectation for interacting spin system

Optimization of detector geometries for wished applications

Detector geometries

- planar paramagnetic sensor •
- superconducting coil ٠
- transformed coupled to a dc SQUID •

MMC readout

Two-stage dc-SQUID readout with flux-locked loop low noise

small power dissipation on detector SQUID chip (voltage bias 1st stage)

In house produced SQUID array

MMC readout

Performance

Fast risetime

→ Reduction
 un-resolved pile-up
 → coincidence study

Extremely good energy resolution

→ identification of small structures

Excellent linearity

 \rightarrow precise definition of the energy scale

Microcalorimeter arrays for X-rays spectroscopy - maXs

maXs-20/30/100:

- 8×8 pixels for photons up to 20/30/100 keV
- with $\Delta E_{FWHM} = 2/5/30 \text{ eV}$
- 32 two-stage dc-SQUIDs

8 mm

maXs-30

Absorber size: $500\times500\times30~\mu m^3$

 $E_{\rm FWHM}$ / eV A -9.7 8.2 7.8 7.8 7.3 13.5 B - 7.2 8.5 7.6 8.4 7.6 - 12.0 7.6 C - 7.4 6.5 6.3 14.2 D - 8.2 6.9 8.1 6.9 14.2 - 10.5 E - 6.7 6.9 6.9 - 9.0 F - 7.4 7.8 - 7.5 **G** - 6.2 6.6 7.3 7.0 7.0 H - 6. 6.9 7.0 6.8 - 6.0 2 3 5 6 4 8

⁵⁵Fe calibration source Stopping power @10 keV ~100%

- Homogeneous performance over the array
- Stable operation over 1 month

D. Unger et al., *JINST* **16** (2021) P06006, <u>arXiv:2010.15348</u> [physics.ins-det]

Background spectrum (one month, no special shielding, no muon veto)

⁵⁵Fe calibration source Stopping power @10 keV ~100%

- Homogeneous performance over the array
- Stable operation over 1 month

D. Unger et al., *JINST* **16** (2021) P06006, <u>arXiv:2010.15348</u> [physics.ins-det] Cut efficiency > 90% (based on calibration lines)

Background estimation: $2 \cdot 10^{-4} \frac{\text{counts}}{\text{keV cm}^2 \text{ s}}$ (from 1 to 10 keV)

Still too high → development of a cryogenic veto

From maXs-30 to maXs-100

Au absorber volume can be adjusted for the particles to be detected

Sensor volume is optimized to match the heat capacity of the absorber at the working temperature

maXs-100

MMCs in IAXO: Challenges

Detector challenges:

 \checkmark High efficiency in energy range 0 ... 10 keV \mathbf{V} High energy resolution Active area matching IAXO optics focal spot size

Setup challenges:

- \Box Extremely low background of $10^{-8} \frac{\text{counts}}{\text{keV cm}^2 \text{ s}}$
- Good mechanical stability for operating while moving/vibrating
- Good magnetic shielding

Cryostat challenges:

□ Reliable operation @ 20 mK □ Tiltable to 30°

existing technology

Conclusions

Metallic magnetic calorimeters for IAXO

- high resolution
- wide range of energies
- impressive resolving power

To demonstrate:

- suitable background
- stable operation while tracking the Sun

Achieved MMC performance motivates the efforts !

Conclusions

Metallic magnetic calorimeters for IAXO

- high resolution
- wide range of energies
- impressive resolving power

To demonstrate:

- suitable background
- stable operation while tracking the Sun

Achieved MMC performance motivates the efforts !

Thank you for the attention!

MMC fabrication

40 m² Cleanroom class 100 at Kirchhoff Institute for Physics

Wet bench Chemistry bench Maskless aligner UHV sputtering system Dry etching system

- Flexibility in design and fabrication
- Reliable processes for thin films
- Production of MMC array and superconducting electronics

Detector setup V1

- First IAXO detector setup
- Designed for and equipped with *maXs*30 detector
- Only used radiopure materials (copper and Kapton)
- Magnetic shielding (Nb shield)
- Measured and characterized within last half year

Detector setup V2

New features:

- Modularized detector and SQUID holder
 → easy repair
- Optimized for new detector maXsIAXO
- Additional inner teflon shield to reduce background

Detector setup V2

Current state:

- Copper parts are produced, ready to be assembled
- *maXs*IAXO is prepared to be produced in cleanroom

Next steps:

- *maXs*IAXO wafer production in cleanroom
- Assembling and characterization of *maXs*IAXO V2 setup
- Background measurements

detector module

Tiltable cryostat: BlueFors ASM-LH250

Kirchhoff-Institute for Physics, Heidelberg University