

Axion-Like Particle (ALP) searches at the LHC

Michele Gallinaro

LIP Lisbon September 6, 2023

Resonant and non-resonant searches
 Higgs and beyond
 Associated production
 Heavy lon collisions

Looking forward: Photon-photon collisions

e a Tecnologia

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

ALPs at the LHC

- Axions postulated by Peccei-Quinn (1977) as a solution to the strong CP problem
- While axions are expected to be very light (sub-eV), ALPs can be heavy
- ALP is a neutral pseudo-scalar boson
 - ALPs defined as pseudo-Goldstone bosons from spontaneous breaking of BSM symmetry
- Can solve the strong CP problem, act as a DM candidate, explain the muon (g-2) discrepancy
 - access to couplings to heavy SM particles
 - access to heavy ALPs (m_a>a few GeVs)

Heavy resonances

JHEP 09(2018)101

- Search for heavy resonance to ZZ/ZW in $2\ell 2q$ final state
- Hadronic vector boson decay: merged or resolved, (un)tagged
- Optimized for low- and high-mass resonances

Non-resonant ALPs at LHC

 a^*

arXiv:1905.12953

- ALP as an off-shell mediator in s-channel
 - Higgs, EWK gauge bosons (W,Z, γ) in the final state
- Process mediated by a virtual ALP
- Enhancing cross section for $\sqrt{s} \gg m_a$
- Cross section independent of m_a

Non-resonant ALPs (cont.)

JHEP 04(2022)087

- Diboson signatures can be used to search for ALPs
 - \Rightarrow Look for deviations from SM in the tails of VV mass distribution
- 2ℓ2q final state in ZV (V=W,Z,H) processes
- ALP interaction can be parametrized in a EFT model-independent approach
- Use jet substructure variables (subjettiness, τ_{21} , etc.), merged/resolved jets

⇒ set limits on non-resonant ALP-mediated ZZ/ZH production for energy scale f_a =3TeV, m_a <100GeV

Upper limits (in fb)

Model	$\operatorname{Expected}$					Observed
	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	Observed
ALP linear ZZ	79	107	151	218	304	162
ALP chiral ZH	32	39	64	94	134	57

ALPs in VBS processes

arxiv:2205.05711, arXiv:2008.07013, PLB 809(2020)135710, arXiv:2004.10612, CMS-SMP-22-008

W/Z

W/Z

- ALPs in non-resonant VBS processes
 - ALP too light for resonant production
- WWjj:
 - EW production dominant over QCD
 - Distinct same-sign (SS) lepton final state with low bkg ("golden channel")
 - Electrons, muons, taus
 - Study polarization
- ZZjj:
 - Fully reconstructed final state provides maximal information

Absolute and normalized differential cross section measurements EW ssWW: far above 5σ EW osWW: $5.6(5.2)\sigma$ EW ZZ: far above $5.5(3.9)\sigma$

The Higgs and beyond

- Recently discovered (2012)
- Extended Higgs sectors are motivated and provide a rich phenomenology
- Minimal Supersymmetric SM (MSSM)
 - Neutral Higgs: $\phi \rightarrow \tau \tau / bb / \mu \mu$
 - Charged Higgs
- Next-to-MSSM
 - Light pseudoscalar: h→aa
 - Non-SM decays: h \rightarrow 2a \rightarrow 4 τ /4 μ
 - Heavy Higgs: $H \rightarrow h_{125}h_{125}$ or $A \rightarrow Zh_{125}$
- etc.

non-SM Higgs decay: $h \rightarrow aa \rightarrow 4\mu$

PLB796(2019)131

- Standard search for light (pseudo)- scalar Higgs with $m_a\mbox{<}m_h\mbox{/}2$
 - generic prediction of BSM theories (extended Higgs sector, NMSSM, etc.)
 - Final states go to fermions (b, $\tau,\,\mu,\,\ldots)$
 - BR depends on boson mass, model parameters
- Explore non-SM decays of a Higgs boson (h)
 - -Higgs boson (h) can be SM or not
 - include production of two new light boson (a⁰)
- - Require two dimuon pairs with consistent masses
 - Signal region: 9 event (~8±2 bkg)
 - Limits on production rates, benchmark models

Non-SM Higgs decays: bbµµ

arxiv:1812.06359, arXiv:2110.00313

- Search for Higgs exotic decays: $H \rightarrow aa \rightarrow bb\mu\mu$
 - ATLAS uses a kinematic fit, CMS a relative mass difference of b- and μ -pairs
- Search for a narrow resonance in $m_{\mu\mu}$ distribution
- Use BDT classifiers trained to select signal
- Upper limits for $m_{\mu\mu}$ ~16-62 GeV
 - Largest significance at 52 GeV with local(global) significance of $3.3(1.7)\sigma$

non-SM Higgs decay: ττττ

g

H(125)

10

JHEP01(2016)079, PLB 800(2019)135087

- Search for very light Higgs in NMSSM
 - $-H(125) \rightarrow light pseudoscalar (\phi) bosons$
 - One ϕ decays to a τ pair, the other to τ/μ pair
- Reconstruct μ-track invar. mass (m₁,m₂)
 - SS dimuon sample (removes DY)
 - bin in 2-dim distribution, fit signal and bkg
 - QCD bkg from control region

Non-SM Higgs decays: (γγ)γγ

g 7000

 $g \odot 000$

Η

arxiv:2208.01469, arXiv:2211.04172

- Search for Higgs exotic decays
 - Boosted diphoton resonance
 - Four well isolated photons
- Explore invariant masses down to 10-15 GeV
- Set upper limits for m_a~15-62 GeV

Summary: Higgs exotic decays

Associated production: $a(\rightarrow \tau \tau)bb$

arXiv:1511.03610, JHEP05(2019)210

- Low mass Higgs in the NMSSM
- Low mass pseudo-scalar (a→ττ) in association with bbar: abb→ττ bb
- Similar strategy to $H{\rightarrow}\tau\tau$
- Search for a masses below Z mass
- No evidence for signal
- Set limits: σxB~20-0.3 pb

Invisible decays: mono-X

arXiv:2008.04735, arXiv:2011.05259

- Signature occurs if ALPs live long enough to escape the detector or it decays to invisible particles
- ALPs produced in association with a "visible" particle
 - Referred to as "mono-X" signature
- Sensitive to different ALP couplings
 - $Z \rightarrow a\gamma, h \rightarrow aZ, gg \rightarrow ag$
 - Events exhibit significant MET, e.g.
 ≥200 GeV
 - Difficult to reconstruct ALP mass
- Results interpreted in EFT operators
- No excess over bkg is observed

Mono-X: Pseudoscalar mediator

arXiv:2107.13021, arXiv:2008.04735, arXiv:2107.10892

• Search for MET-based mono-X signatures for pseudoscalar model

Associated production: DM+Higgs

arXiv:1908.01713

• DM search in associated Higgs production with $H(\rightarrow bb, \gamma\gamma, \tau\tau, WW, ZZ)$

35.9 fb⁻¹ (13 TeV)

Z+jets

Syst. unc.

0.5 1 MVA discriminant

Nonprompt

ww

Higgs boson

Others

<mark>─</mark> Top ✦ Data

------ Z'-2HDM: m_{z'} = 1200, m₄ = 300 GeV

0

 $\sigma \times B = 1.75$ fb (x 500)

- ISR strongly suppressed due to small Higgs couplings to light quarks
- Z' 2HDModel

 10^{7}

10⁶

10⁵

10⁴

10³

10²

10

1.5

0.5

Data / MC

Events / bin

No significant excess

 \models Z' \rightarrow DM + h(WW)

Post-fit

CMS

h

Heavy Ions: UltraPeripheral Collisions

arXiv:2008.05355, arXiv:1810.04602

- LbyL sensitive channel to study BSM processes
- LbyL scattering in PbPb UPCs
 - HI beams at LHC excellent source of HE photons
 - Equivalent photon flux scales with Z⁴
- Exclusive diphoton final state (m_{γγ}>5 GeV)
 - Data-driven bkg estimate for DY(ee)
 - Simulated evts for ALP couplings, m_a=5-100 GeV
 - Efficiency: 20(45)% for m_a=6(12)GeV
- Set limits on ALP production

Heavy Ions: UltraPeripheral Collisions

arXiv:2008.05355, arXiv:1810.04602

- LbyL sensitive channel to study BSM processes
- LbyL scattering in PbPb UPCs
 - HI beams at LHC excellent source of HE photons
 - Equivalent photon flux scales with Z⁴
- Exclusive diphoton final state (m_{γγ}>5 GeV)
 - Data-driven bkg estimate for DY(ee)
 - Simulated evts for ALP couplings, m_a=5-100 GeV
 - Efficiency: 20(45)% for m_a=6(12)GeV
- Set limits on ALP production

Looking forward: LHC as a yy collider

- ALPs always couple to photons
 - Clean signature, no pileup
- PPS a joint CMS and TOTEM project that aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
 - Tracking and timing detectors inside the beam pipe at ~210m from IP5
 - Approved (2014), exploratory phase in 2015, data taking started in 2016, pixels from 2017, full detectors in 2018
 - Collected ~100fb⁻¹ of pp collisions in Run2

Photon-induced processes

JHEP02(2015)165

Not all exclusive processes are photon-induced (QED)

- Exclusive dilepton production a purely QED process
- Exclusive γγ is:
 - QCD-dominated at low mass
 - QED-dominated at high mass

$\gamma\gamma \rightarrow \gamma\gamma$: light-by-light scattering

- Indirect search: neutral quartic gauge couplings (forbidden in SM) in $\gamma\gamma \rightarrow \gamma\gamma$
- Expect to provide best sensitivity at LHC
- Sensitive to ALPs

Exclusive $\gamma\gamma$ production

PRL 129(2022)011801, CMS-EXO-21-007, arXiv:2304.10953

- Complementary to HI running (low-mass, xsec grows with Z⁴)
- Light-by-light scattering
 - Study $m_{\gamma\gamma}$ > 350 GeV
 - Matching mass & rapidity: pp vs γγ
 - 1 events observed (1.1 expected)

 $\sigma(pp \rightarrow p\gamma\gamma p | \xi_p \in \xi^{\rm PPS}) < 0.61 \; {\rm fb}$

- Set limits on γγ scattering
 - Direct limits on anomalous couplings (fourphoton interation):

$$\begin{split} \zeta_1 &|< 7.3(7.1) \times 10^{-14} \text{ GeV}^{-4} \quad (\zeta_2 = 0) \\ \zeta_2 &|< 1.5(1.5) \times 10^{-13} \text{ GeV}^{-4} \quad (\zeta_1 = 0) \end{split}$$

PPS @ HL-LHC

arXiv:2103.02752

- HL-LHC studies detailed in Eol
- Re-install PPS-like spectrometer for HL-LHC approved by the CMS collaboration
- 4 locations identified: near 200m (current location) and 420m (new technology)
- Expanded physics program
- Synergies with other future detector upgrades

Available on CMS info	ormation server	CMS NOTE -2020/008			
CMS	The Compact Muon Sc CMS Mailing address: CMS CERN, CH-1	Dienoid Experiment Note 211 GENEVA 23, Switzerland	CERN		
		26 November 2020 (v3, 09	December 2020)		
The CMS	S Precision Prot IL-LHC – Expres	on Spectromete ssion of Interes	er at the t		
	The CMS Col	laboration			
	Abstr	act			
The CMS Colla $pp \rightarrow pXp$, at the eter. In CEP ev- leave the beam gives access to 1 standard model, general new reserves.	boration intends to pursue the stud <u>ne High-Luminosity LHC (HL-LHC</u> rents, the state X is produced at cer pipe. The kinematics of X can be fu inal states otherwise not visible. CEI e.g. in the search for anomalous que onances.	y of central exclusive production) by means of a new near-beam pro- tral rapidities, and the scattered p lly reconstructed from that of the P allows unique sensitivity to phys rrtic gauge couplings, axion-like p	(CEP) events, oton spectrom- protons do not protons, which ics beyond the articles, and in		
CMS has been s as a joint CMS document outlin explores its feas the PPS group a	accessfully operating the Precision Pr and TOTEM project, and then evolv les the physics interest of a new near ibility and expected performance. T nd builds on their experience in the c	roton Spectrometer (PPS) since 20 red into a standard CMS subsyster r-beam proton spectrometer at the he document has been edited by th construction and operation of PPS.	16; PPS started n. The present HL-LHC, and he members of		
Discussion with installation of n both sides (in th locations at 196 presently used. locations in the beam pipes.	the machine groups has led to the tovable proton detectors: at 196, 22 is document these locations always , 220, and 234 m can be instrumen The 420 m location requires a bypa LHC) and a movable detector vess	identification of four locations s 0, 234, and 420 m from the intera imply both sides, unless otherwis ted with Roman Pot devices simi ss cryostat (which has been devel el approaching the beam from be	uitable for the ction point, on se noted). The lar to the ones oped for other tween the two		

Summary

- ALP searches very active field as they are potential DM candidates
- LHC is a versatile tool for ALP searches in a wide mass range, and different production/decay modes
- Searches covering mass range from 0.5GeV to 1+TeV
- Various production and decay modes
- Preparing for Run3 and beyond with upgraded detectors and tools

