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Some effects of DM on baryons @ galactic scales

Galactic rotation curves probe the gravitational potential Φ

One of the most direct evidences of existence of DM halo

The presence of a ‘dynamical medium’ has many other effects on baryons:   
e.g. tidal disruption, dynamical friction, dynamical heating…

They depend on the nature of DM!!

A systematic study is still missing (e.g. extend results in Benito’s talk)

Particle-like Wave-like



This talk: two extremes

Galactic rotation curves to test ultra-light bosonic DM

Dynamical friction to test ultra-light fermionic DM

* for ultra-light fermionic DM e.g.
Alvey, Sabti, DB, Escudero et al 2010.03572



The mass landscape
Can we bound the mass of DM? (in a more or less model indep. way)
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The mass landscape
Can we bound the mass of DM? (in a more or less model indep. way)
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Bosons: they need to fit in the  
smallest galaxies (behaviour 
as waves, with large wavelength)

Fermions: they  
need to be bounded 
in shallow galaxies 
(Fermi surface)



This talk: two extremes

Galactic rotation curves to test ultra-light bosonic DM

Dynamical friction to test ultra-light fermionic DM
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ULDM behaves like CDM at large-scales
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ULDM does not behaves like CDM at small-scales
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Description as a particle, as a classical field or as DF?
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ULDM does not behaves like CDM at small-scales
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Virialized configuration: collection of waves 
with distribution determined by properties from the galaxy
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ULDM does not behaves like CDM at small-scales
L =

1

2

h
(@µ�)

2 �m2�2
i

+ gravity

Virialized configuration: collection of waves 
with distribution determined by properties from the galaxy
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ULDM does not behaves like CDM at small-scales
From simulations 

ULDM in the halo

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-

Schive, Chiueh, Boardhurst,  
arXiv:1407.7762
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that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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DM in the center of the halo 
relaxes to solitons (“boson stars”)
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Properties of the soliton

spherically symmetric stationary, non-relativistic solution:

4

with kinetic (potential) energy Ek (Ep). For the ansatz
(5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (20)

Note that spherical symmetry is not needed for Eq. (20)
to hold.

Considering the �� solitons, we find Ep,� = �2Ek,� =
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This leads to a relation for an isolated soliton [4, 5],
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Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|

M�

⇡ 0.23 �
2
, (24)

which can also be written as
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V
2
circ,�(r) = r@r��(r). (26)

The circular velocity rises as Vcirc,� / r at small r and

decreases as Vcirc,� / r
� 1

2 at large r, see Fig. 1. The
peak of Vcirc is obtained at
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and the peak velocity is
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simula-
tions of three di↵erent groups, Refs. [6, 7], Ref. [13], and
Refs. [10, 11].

The first point to note is that soliton configurations,
in a form close to the idealised form discussed in Sec. II,
actually occur dynamically in the central region of the

halo in the numerical simulations4. In Fig. 2 we col-
lect representative density profiles from Ref. [6] (blue),
Ref. [13] (orange), and Ref. [10] (green). We refer to
those papers for more details on the specific set-ups in
each simulation. To make Fig. 2, in each case, we find
the � parameter that takes the numerical result into the
�1 soliton, rescale the numerical result accordingly and
present it in comparison with the analytic �

2
1(r) profile.

r

�
2(r)
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FIG. 2. Review of results from numerical simulations by
di↵erent groups. Markers show density profiles of simulated
halos from Schive et al. [6] (blue circles), Mocz et al. [13]
(orange squares), and Schwabe et al. [10] (green triangles).
The central regions of the halos are described by the soliton
(solid line).

While di↵erent groups agree that solitons form in the
centers of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [6, 7] and Ref. [13] reported scaling relations
between the central soliton and the host halo. As we show
below, the scaling relations found by both groups are con-
nected to properties of a single, isolated, self-gravitating
soliton (part of these observations were made in [10, 11]).

A. Soliton vs. host halo: the simulations of
Ref. [6, 7]

At cosmological redshift z = 0, the numerical simula-
tions of [6, 7] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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◆� 1
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4
The first simulations of cosmological ULDM galaxies [33] did not

have su�cient resolution to resolve the central core.
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e.g. Bar, DB, Blum, Sibiryakov 18
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with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  

satisfies the Schroedinger-Poisson (SP) equations [32]

i@t = �
1

2m
r

2
 + m� , (3)

r
2� = 4⇡G| |

2
. (4)

We look for a quasi-stationary phase-coherent solution,
described by the ansatz3

 (x, t) =

✓
mMpl
p
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◆
e
�i�mt
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The ULDM mass density is

⇢ =
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The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@
2
r

(r�) = 2r (� � �)�, (7)
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r

(r�) = r�
2
. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�1(r), with �1. A numerical calculation gives [4, 5, 8]

�1 ⇡ �0.69, (9)

and the solution is plotted in Fig. 1. The mass of the �1
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Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
�1(r), �1(r) by a scale transformation. That is, the func-
tions ��(r), ��(r), together with the eigenvalue ��, given
by

��(r) = �
2
�1(�r), (12)

��(r) = �
2�1(�r), (13)

�� = �
2
�1, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M1, (15)
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A mnemonic for the numerical value of � is given by
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The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27 ⇥ 108
⇣
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10�22 eV
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kpc M�. (18)

Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
|��| = �

2
|�1| ⌧ 1, consistent with the non-relativistic

approximation.
The energy in an arbitrary non-relativistic ULDM con-

figuration is
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.
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unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.
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with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  

satisfies the Schroedinger-Poisson (SP) equations [32]
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The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by
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(r�) = r�
2
. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�1(r), with �1. A numerical calculation gives [4, 5, 8]

�1 ⇡ �0.69, (9)

and the solution is plotted in Fig. 1. The mass of the �1

soliton is
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
�1(r), �1(r) by a scale transformation. That is, the func-
tions ��(r), ��(r), together with the eigenvalue ��, given
by
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��(r) = �
2�1(�r), (13)

�� = �
2
�1, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are
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Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
|��| = �

2
|�1| ⌧ 1, consistent with the non-relativistic

approximation.
The energy in an arbitrary non-relativistic ULDM con-
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solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).
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with complex field  that varies slowly in space and time,
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The parameter � is proportional to the ULDM energy
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Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
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It is convenient to first solve Eqs. (7-8) with the initial
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�1(r), with �1. A numerical calculation gives [4, 5, 8]
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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II. SOLITON PROPERTIES:
ANALYTIC CONSIDERATIONS

In this section, we review the relevant properties of the
soliton that help to understand results from numerical
simulations.
We consider a real, massive, free2 scalar field ϕ,

satisfying the Klein-Gordon equation of motion and min-
imally coupled to gravity. In the nonrelativistic regime, it is
convenient to decompose ϕ as

ϕðx; tÞ ¼ 1ffiffiffi
2

p
m
e−imtψðx; tÞ þ c:c:; ð2Þ

with complex field ψ that varies slowly in space and time,
such that j∇ψ j ≪ mjψ j and j _ψ j ≪ mjψ j. The field ψ
satisfies the Schroedinger-Poisson (SP) equations [32]

i∂tψ ¼ −
1

2m
∇2ψ þmΦψ ; ð3Þ

∇2Φ ¼ 4πGjψ j2: ð4Þ

We look for a quasi-stationary phase-coherent solution,
described by the ansatz3

ψðx; tÞ ¼
"
mMplffiffiffiffiffiffi

4π
p

#
e−iγmtχðxÞ: ð5Þ

The ULDM mass density is

ρ ¼
ðmMplÞ2

4π
χ2

≈ 4.1 × 1014
"

m
10−22 eV

#
2

χ2 M⊙=pc3: ð6Þ

The parameter γ is proportional to the ULDM energy per
unit mass. Validity of the nonrelativistic regime requires
jγj ≪ 1. Since we are looking for gravitationally bound
configurations, γ < 0.
Assuming spherical symmetry and defining r ¼ mx, the

SP equations for χ and Φ are given by

∂2
rðrχÞ ¼ 2rðΦ − γÞχ; ð7Þ

∂2
rðrΦÞ ¼ rχ2: ð8Þ

Finding the ground state solution amounts to solving
Eqs. (7)–(8) subject to χðr → 0Þ ¼ const, χðr → ∞Þ ¼ 0,
with no nodes. Given the boundary value of χ at r → 0, the
solution is found for a unique value of γ.

It is convenient to first solve Eqs. (7)–(8) with the
boundary condition χð0Þ ¼ 1. Let us call this auxiliary
solution χ1ðrÞ, with γ1. A numerical calculation gives [4,5,8]

γ1 ≈ −0.69; ð9Þ

and the solution is plotted in Fig. 1. The mass of the χ1
soliton is

M1 ¼
M2

pl

m

Z
∞

0
drr2χ21ðrÞ

≈ 2.79 × 1012
"

m
10−22 eV

#−1
M⊙: ð10Þ

Its core radius, defined as the radius where the mass density
drops by a factor of 2 from its value at the origin, is

xc1 ≈ 0.082
"

m
10−22 eV

#−1
pc: ð11Þ

Other solutions of Eqs. (7)–(8) can be obtained from
χ1ðrÞ, Φ1ðrÞ by a scale transformation. That is, the
functions χλðrÞ, ΦλðrÞ, together with the eigenvalue γλ,
given by

χλðrÞ ¼ λ2χ1ðλrÞ; ð12Þ

ΦλðrÞ ¼ λ2Φ1ðλrÞ; ð13Þ

γλ ¼ λ2γ1; ð14Þ

also satisfy Eqs. (7)–(8) with correct boundary conditions
for any λ > 0. The soliton mass and core radius for χλ are

Mλ ¼ λM1; ð15Þ

xcλ ¼ λ−1xc1: ð16Þ

A mnemonic for the numerical value of λ is given by

FIG. 1. Profile of the “standard” χ1 soliton with λ ¼ 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle
(dotted green).

2Analyses of interacting fields can be found in, e.g.,
[4,5,30,31].
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M#. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M# are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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host halo mass. Testing the reversibility of the system,
Ref. [29] adiabatically “turned o↵” the stars after the
initial system virialised. When eliminating the stars, the
soliton+halo system did not relax back to Eq. (35). In-
stead, the excess ULDM mass that was contained in the
soliton in the presence of stars remained captured in the
soliton, and did not return to the host halo. The final
state of the system was not described by Eq. (35): the
soliton ended up containing larger (negative) E/M than
the halo, and larger mass compared with Eq. (31).

IV. SOLITON-HOST HALO RELATION AND
GALACTIC ROTATION CURVES

As we have seen, the soliton–host halo relation found in
the simulations of [6, 7] can be summarised by Eq. (35),
equating the energy per unit mass of the virialised host
halo to that in the soliton component. For a virialised
system, the energy per unit mass maps to kinetic energy
density: in particular, the characteristic circular velocity
(or, up to an O(1) geometrical factor, the velocity dis-
persion) of test particles in the halo and in the soliton
should match. The peak circular velocity of the soli-
ton, given by Eqs. (27-28), occurs deep in the inner part,
x < 1 kpc, of the galaxy; while the peak circular velocity
of an NFW-like halo occurs far out at x ⇠ 2 Rs, with
Rs the NFW characteristic radius, of order 10 kpc for a
MW-like galaxy. Thus, if the scaling derived from the
simulations of [6, 7] is correct, ULDM predicts that the
peak rotation velocity in the outskirts of a halo should
approximately repeat itself in the deep inner region. We
now discuss this result quantitatively.

Consider a halo with an NFW density profile

⇢NFW (x) =
⇢c�c

x

Rs

⇣
1 + x

Rs

⌘2 , (37)

where

⇢c(z) =
3H

2(z)

8⇡G
, �c =

200

3

c
3

ln(1 + c) �
c

1+c

. (38)

The profile has two parameters: the radius Rs and the
concentration parameter c = R200/Rs, where R200 is the
radius where the average density of the halo equals 200
times the cosmological critical density, roughly indicating
the virial radius of the halo. The gravitational potential
of the halo is
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4⇡G⇢c�cR

3
s

x
ln

✓
1 +

x

Rs

◆
. (39)

Near the origin, x ⌧ Rs, �NFW is approximately con-
stant, �NFW (x ⌧ Rs) ⇡ �h, and is related to the mass
of the halo, M200 = 200⇢c
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We can estimate the energy per unit mass of the viri-
alised halo by
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This gives
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where

c̃ =
c � ln(1 + c)
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. (43)

Typical values of the concentration parameter are in the
range c ⇠ 5 ÷ 30 [35]. In this range, c̃ varies between
c̃ ⇠ 0.55 ÷ 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10 ÷ 20 [36].)

Plugging Eq. (42) into the soliton–host halo relation
Eq. (35), the scaling parameter � is fixed as
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 ÷ 1.1 for c = 5 ÷ 30. It agrees parametrically with
the simulation result, Eq. (31) (including the redshift de-
pendence, which we have suppressed in Eq. (31)). It also
agrees quantitatively to about 20%; to see this, we need
to account for the slightly di↵erent definition of the halo
mass Mh, used in [7], and our M200. We do this compar-
ison in App. A.

Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by

V
2
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present-day Hubble constant.
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host halo mass. Testing the reversibility of the system,
Ref. [29] adiabatically “turned o↵” the stars after the
initial system virialised. When eliminating the stars, the
soliton+halo system did not relax back to Eq. (35). In-
stead, the excess ULDM mass that was contained in the
soliton in the presence of stars remained captured in the
soliton, and did not return to the host halo. The final
state of the system was not described by Eq. (35): the
soliton ended up containing larger (negative) E/M than
the halo, and larger mass compared with Eq. (31).

IV. SOLITON-HOST HALO RELATION AND
GALACTIC ROTATION CURVES
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the simulations of [6, 7] can be summarised by Eq. (35),
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Rs the NFW characteristic radius, of order 10 kpc for a
MW-like galaxy. Thus, if the scaling derived from the
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now discuss this result quantitatively.
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 ÷ 1.1 for c = 5 ÷ 30. It agrees parametrically with
the simulation result, Eq. (31) (including the redshift de-
pendence, which we have suppressed in Eq. (31)). It also
agrees quantitatively to about 20%; to see this, we need
to account for the slightly di↵erent definition of the halo
mass Mh, used in [7], and our M200. We do this compar-
ison in App. A.

Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by
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This halo rotation curve peaks at x ⇡ 2.16 Rs with a
peak value

maxVcirc,h ⇡ 1.37 ⇥ 105(��h)
1
2 km/s. (47)

On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of
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2 km/s, (48)

where we used Eq. (44) to fix � and Eq. (28) to relate it
to maxVcirc,�.

As anticipated in the beginning of this section, Eq. (35)
predicts approximately equal peak circular velocities for
the inner soliton component and for the host halo,

maxVcirc,�

maxVcirc,h
⇡ 1.1
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◆ 1
2

, (49)

independent of the particle mass m, independent of the
halo mass M200, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)

1
2 . Eq. (49) is plot-

ted in Fig. 3 as function of the concentration parameter.
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FIG. 3. Ratio between halo and soliton peak circular veloci-
ties as a function of the halo concentration.

While maxVcirc,� and the approximate equality
Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,

xpeak,� ⇡ 191

✓
10�22 eV

m

◆✓
maxVcirc,�

200 km/s

◆�1

pc. (50)

Fig. 4 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to Vcirc due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M200 = 1012 M� and 5 ⇥ 1010 M� on the top and

bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.
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FIG. 4. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo re-
lation Eq. (35) with m = 10�22 eV. Solid black, dot-dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5 ⇥ 1010 M� on the upper and
lower panels, respectively.

In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find Vcirc(x) =

p
G M(x)/x. This prescription for

matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x

� 5
3 , steeper than the usual inner NFW

form ⇢ ⇠ x
�1. This would a↵ect the detailed shape of

the rotation curve in the intermediate region between the
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halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to Vcirc due to the total system, the soliton only, and
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and only roughly consistent with the simulations of [6, 7].
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soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by Mgal ⇠ RV

2
/G,

where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with Mgal >

109
�
m/10�22 eV

��3/2
M�. We do this in order to limit

ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the Mgal cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.
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Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxVcirc,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV

��1
kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1
kpc

are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV

��1
kpc halo criterion. This criterion

is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at

& 1
�
m/10�22 eV

��1
kpc guarantees that such confusion

is avoided.
Our first pass on the data includes only galaxies for

which the predicted soliton is resolved, namely, xpeak,�

from Eq. (50), with maxVcirc,� = maxVcirc,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

Vcirc, obs(xpeak,�)

maxVcirc,h
. (51)

Here, Vcirc, obs(xpeak,�) is the measured velocity at the
expected soliton peak position.

The results of this first pass on the data are shown in
Fig. 11. A total of 46 galaxies pass the resolved soliton
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by Mgal ⇠ RV

2
/G,

where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with Mgal >

109
�
m/10�22 eV

��3/2
M�. We do this in order to limit

ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the Mgal cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.
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Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxVcirc,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV

��1
kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1
kpc

are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV

��1
kpc halo criterion. This criterion

is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at

& 1
�
m/10�22 eV

��1
kpc guarantees that such confusion

is avoided.
Our first pass on the data includes only galaxies for

which the predicted soliton is resolved, namely, xpeak,�

from Eq. (50), with maxVcirc,� = maxVcirc,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

Vcirc, obs(xpeak,�)

maxVcirc,h
. (51)

Here, Vcirc, obs(xpeak,�) is the measured velocity at the
expected soliton peak position.

The results of this first pass on the data are shown in
Fig. 11. A total of 46 galaxies pass the resolved soliton
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on a small set of galaxies for which high-resolution
kinematical and photometric data are available. For this
small set of galaxies, we present detailed rotation curve
data and compare them to the ULDM prediction. We find
clear tension between the data and the ULDM prediction.
Next, in Sec. IV B 2, we extend the analysis to include a
large sample of galaxies, confirming and reinforcing the
tension between the ULDM prediction and the rotation
curve data.

1. A few specific examples

In our first analysis of the data, we study a set of four
representative rotation curves from Ref. [27] (see Ref. [28]
for a recent rendering of these and many other rotation
curves), for which high-resolution kinematical data are
available. Our goal is to check if the ULDM prediction, that
we demonstrated in the previous section using simulated
galaxies, actually holds in real observed galaxies. The key
prediction we check is summarized by Eq. (49), and was
demonstrated for simulated galaxies in Figs. 5 and 6: this
prediction states that given a measurement of the large-
radius halo rotation curve, ULDM prescribes a soliton-
induced peak in the inner part of the halo, with height
specified by Eq. (49), at a location specified by Eq. (50).
The four measured rotation curves are shown in

Figs. 7–10, as blue markers. For each of these rotation
curves, we use the measured circular velocity at the farthest
radius, to serve as an input for maxVcirc;h in Eq. (49). In
turn, Eq. (49) gives as output the predicted soliton-induced
peak rotation velocity, maxVcirc;λ. Given the soliton-
induced peak rotation velocity, the soliton λ parameter is
fixed by Eq. (28) and with it, the full soliton-induced
rotation curve. The result is plotted as dashed line in
Figs. 7–10; the upper panels show the result for m ¼
10−22 eV and the lower panels show it for m ¼ 10−21 eV.
We find that the ULDM soliton–host halo relation

significantly overestimates the rotation velocity in the inner
part of all of the galaxies in Figs. 7–10. This puts the
predictions of ULDM in the mass range m ∼ ð10−22 ÷
10−21Þ eV in tension with the data.
We emphasize that in using Eq. (49) to predict the

soliton, we set the RHS of that equation to unity, and thus
we ignore any details of the shape of the host halo. We also
neglect corrections due to baryons. On the one hand, as we
have learned from the NFW analysis, this prescription for
deriving the soliton profile would suffer Oð10%Þ correc-
tions from the detailed halo shape. The baryonic (stellar and
gas) contribution to the gravitational potential affects the
halo velocity at a similar level: in Ref. [28], the baryonic
contribution to the halo peak rotation velocity of UGC
1281, UGC 4325, and NGC 100 was estimated from
photometric data to be well below the DM contribution,6

VðbarÞ
circ;h=V

ðobsÞ
circ;h < 0.5. This means that the observed velocity

VðobsÞ
circ;h is equal to the DM-induced velocity VðDMÞ

circ;h to better
than 15%. On the other hand, this simple procedure relieves
us from the need to fit for the virial mass or other details of
the host halo. All that is needed is the peak halo rotation
velocity, a directly observable quantity.7 For completeness,
we will return to the issue of baryonic effects and deal with
it more systematically in the second part of this section,
considering SPARC data [28].
Equation (49) (represented by the dashed line in

Figs. 7–10) corresponds to the central value of the sol-
iton–host halo relation. Reference [6,7] showed a scatter of
about a factor of two around Eq. (34) between simulated
halos. This translates to a factor of two scatter in the soliton λ
parameter (we have illustrated this scatter for a sub-sample of
simulated halos in Fig. 6). In Figs. 7–10, we represent this

FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–host
halo relation. The ULDM mass is m ¼ 10−22 eV (upper panel)
and m ¼ 10−21 eV (lower panel). The shaded band accounts for
the intrinsic scatter of the soliton–host halo relation.

6For this estimate, we use 3.6 μm mass-to-light ratio ϒ$ ¼
0.5 M⊙=L⊙.

7The rotation curves in Figs. 7–10 do not show a clear
peak within the range of the measurement; this means that
our soliton bump, derived from the maximal velocity seen in the
data, underestimates the true predicted soliton and is thus
conservative.
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i) Baryons:
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effect. 
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Analyzing SPARC data
175 high resolution rotation curves
cuts:
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with fbar2DM < 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for fbar2DM < 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with fbar2DM <

1, 0.5, and none for fbar2DM < 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range
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FIG. 11. Distribution of SPARC galaxies [28] with respect
to the ratio of observed circular velocity at the soliton peak
to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
soliton-host halo relation and the shaded region accounts for
the intrinsic scatter in this relation. The ULDM mass is m =
10�22 eV (upper panel) and m = 10�21 eV (lower panel).
Red, blue, green histograms correspond to the cuts fbar2DM <
1, 0.5, 0.33, respectively. Only rotation curves with resolved
solitons are included (see the main text for details).

m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22

÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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FIG. 12. Same as Fig. 11, including galaxies with unresolved
solitons (see the main text).
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with fbar2DM < 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for fbar2DM < 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with fbar2DM <

1, 0.5, and none for fbar2DM < 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range
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FIG. 11. Distribution of SPARC galaxies [28] with respect
to the ratio of observed circular velocity at the soliton peak
to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
soliton-host halo relation and the shaded region accounts for
the intrinsic scatter in this relation. The ULDM mass is m =
10�22 eV (upper panel) and m = 10�21 eV (lower panel).
Red, blue, green histograms correspond to the cuts fbar2DM <
1, 0.5, 0.33, respectively. Only rotation curves with resolved
solitons are included (see the main text for details).

m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22

÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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FIG. 12. Same as Fig. 11, including galaxies with unresolved
solitons (see the main text).
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Analyzing SPARC data cntd.
if soliton peak inside the innermost point
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this simple procedure relieves us from the need to fit for
the virial mass or other details of the host halo. All that
is needed is the peak halo rotation velocity, a directly
observable quantity7.

Eq. (49) (represented by the dashed line in Figs. 7-10)
corresponds to the central value of the soliton–host halo
relation. Ref. [6, 7] showed a scatter of about a factor
of two around Eq. (34) between simulated halos. This
translates to a factor of two scatter in the soliton � pa-
rameter (we have illustrated this scatter for a sub-sample
of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
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FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–
host halo relation. The ULDM mass is m = 10�22 eV (upper
panel) and m = 10�21 eV (lower panel). The shaded band
accounts for the intrinsic scatter of the soliton–host halo re-
lation.

7
The rotation curves in Figs. 7-10 do not show a clear peak within

the range of the measurement; this means that our soliton bump,

derived from the maximal velocity seen in the data, underesti-

mates the true predicted soliton and is thus conservative.

galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample in-
cludes, in particular, the galaxies UGC 1281, UGC 4325,
and NGC 100, shown in Figs. 7-10.

Our SPARC analysis is as follows. For each galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by Mgal ⇠ RV

2
/G,

where R is the radial distance of the last data point
in the rotation curve, and V the corresponding veloc-
ity. We keep only galaxies with 5 ⇥ 1011 M� > Mgal >

5 ⇥ 108
�
m/10�22 eV

��3/2
M�. We do this in order to

limit ourselves to galaxy masses that are comfortably
above the minimal halo mass (33), and not above the
range simulated in [6, 7]. Our results are not sensitive to
the details of this mass cut.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxVcirc,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak veloc-
ity, we search for the halo peak velocity restricting to ra-

dial distance x > 3
�
m/10�22 eV

��1
kpc. Galaxies with

no data above x = 3
�
m/10�22 eV

��1
kpc are discarded.

Our results are not sensitive to this criterion; defining the

halo cut anywhere at & 1
�
m/10�22 eV

��1
kpc guaran-

tees that such confusion is avoided.
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FIG. 8. Same as Fig. 7 for UGC 4325.
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SPARC galaxies come with photometric data, allow-
ing to model the baryonic contribution to the gravita-
tional potential [28]. We use this information to limit
baryonic e↵ects on our analysis, and to explore the sen-
sitivity of our results to baryonic corrections. For each
galaxy, we estimate the baryonic contribution to the ob-
served rotation velocity using the mass models of [28]
with 3.6µm mass-to-light ratio ⌥⇤ = 0.5 M�/L�. Set-

ting V
(bar),2
circ,h + V

(DM),2
circ,h = V

(obs),2
circ,h , we calculate the ratio

fbar2DM = V
(bar)
circ,h/V

(DM)
circ,h . We present results when cut-

ting on di↵erent values of fbar2DM < 1, 0.5, 0.33.
Our first pass on the data includes only galaxies for

which the predicted soliton is resolved, namely, xpeak,�

from Eq. (50), with maxVcirc,� = maxV
(DM)
circ,h , lies within

the rotation curve data. For these galaxies, we compute
from data the ratio

Vcirc, obs(xpeak,�)

maxV
(DM)
circ,h

. (51)

Here, Vcirc, obs(xpeak,�) is the measured velocity at the
expected soliton peak position.

The results of this first pass on the data are shown in
Fig. 11. Red, blue, and green histograms show the result
when imposing fbar2DM < 1, 0.5, 0.33, respectively. For
m = 10�22 eV, we find 45, 26, and 5 galaxies that pass
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FIG. 9. Same as Fig. 7 for NGC 1560.

the resolved soliton cut for fbar2DM < 1, 0.5, 0.33. For
m = 10�21 eV, only 4 galaxies pass the resolved soliton
cut for fbar2DM < 1, and none for fbar2DM < 0.5, 0.33.

Including only galaxies with a resolved soliton causes
us to loose many rotation curves with discriminatory
power. For example, UGC 4325 drops out of the anal-
ysis for m = 10�21 eV, though it clearly constrains the
model, as seen from the lower panel of Fig. 8. To over-
come this without complicating the analysis, we perform
a second pass on the data. Here, we allow galaxies with
unresolved soliton, as long as the innermost data point is
located not farther than 3 ⇥ xpeak,�. We need to correct
for the fact that the soliton peak velocity is outside of
the measurement resolution. To do this, we modify our
observable as

Vcirc, obs(xpeak,�)

maxV
(DM)
circ,h

!
Vcirc, obs(xmin,data)

maxV
(DM)
circ,h

⇥

r
xmin,data

xpeak,�

,

(52)

where xmin,data is the radius of the first data point. This
correction is conservative, because it takes the fall-o↵ of
the soliton gravitational porential at at x > xpeak,� to
be the same as for a point mass. In reality, the potential
decays slower and the soliton-induced velocity decreases
slower. Keeping this caveat in mind, Fig. 12 presents our
results including unresolved solitons. For m = 10�22 eV,
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FIG. 10. Same as Fig. 7 for NGC 100.
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with fbar2DM < 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for fbar2DM < 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with fbar2DM <

1, 0.5, and none for fbar2DM < 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range
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FIG. 11. Distribution of SPARC galaxies [28] with respect
to the ratio of observed circular velocity at the soliton peak
to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
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the intrinsic scatter in this relation. The ULDM mass is m =
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Red, blue, green histograms correspond to the cuts fbar2DM <
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m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22

÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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FIG. 12. Same as Fig. 11, including galaxies with unresolved
solitons (see the main text).
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range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
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the MW has a ‘bump’ in mass…most likely baryonic

de Martino et al. 1807.08153

Smaller masses: center of the Milky Way

TBD!



These models incorporate new ingredients

Soliton at the center of galaxies fixed by halo properties
modifies the velocity curves: tension for masses

m ⇠ 10�22 ÷ 10�21 eV

study of the MW center may constrain larger masses

Conclusions I

Galactic rotation curves to test ultra-light Bosonic DM



This talk: two extremes

Galactic rotation curves to test ultra-light Bosonic DM

Dynamical friction to test ultra-light Fermionic DM

* for ultra-light Fermionic DM e.g.
Alvey, Sabti, DB, Escudero et al 2010.03572



Dynamical friction - general intuition
As mass M moves in a medium of particles with mass m 


weak gravitational scatterings create over-density (wake) and a  
net force F opposite to velocity’s direction: friction (~ v)

if M orbiting: lost of K makes 

it fall to the center

Particle-like Wave-like
Lancaster et al 1909.06381

F
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Dynamical friction - ULDM

Several studies: friction reduced 

(wake bounces back at ), 

but careful with other effects such as heating.

λdb

Wave-like
Lancaster et al 1909.06381

Lancaster et al 1909.06381
Hui et al 1610.08297
Bar-Or et al 1809.07673
Vicente et al 2201.08854
Wang et al 2110.03428…
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May find applications in the Fornax “problem”
• Very luminous nearby (  kpc away) dwarf satellite


• ~  stellar mass on  kpc scale


• Dark matter dominated, possibly also in the center


• 5-6 Globular clusters (GCs) with mass ~ 


• 2 innermost GCs predicted to fall  
quickly in CDM due to friction with DM 

• GCs age: 


• Seems tuned. How tuned? An explanation?

∼ 147

4 × 107 M⊙ ∼ 1

105 M⊙

≳ 10 Gyr

• Other models may predict less friction?  
SIDM, Fermi gas (DDM) or ‘Bose’ gas (ULDM)


•

Bar et al 2102.11522
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Dynamical friction derived from Fokker-Planck
Fokker-Planck: dynamical friction as diffusion in momentum space. 


From Boltzmann equation with collision term between perturbers 
(GCs) and DM


                                         ,                                    


     


df1
dt

= C[ f1] |ℳ |

C[ f1] =
(2π)4

2Ep ∫ dΠk,p′ ,k′ 
δ(4)(p + k − p′ − k′ ) |ℳ |2 [f1(p′ )f2(k′ )(1 ± f1(p))(1 ± f2(k)) − f1(p)f2(k)(1 ± f1(p′ ))(1 ± f2(k′ ))]

GC

GC

DM

DM



Dynamical friction derived from Fokker-Planck
Fokker-Planck: dynamical friction as diffusion in momentum space. 


From Boltzmann equation with collision term between perturbers 
(GCs) and DM


                                         ,                                    


     


df1
dt

= C[ f1] |ℳ |

C[ f1] =
(2π)4

2Ep ∫ dΠk,p′ ,k′ 
δ(4)(p + k − p′ − k′ ) |ℳ |2 [f1(p′ )f2(k′ )(1 ± f1(p))(1 ± f2(k)) − f1(p)f2(k)(1 ± f1(p′ ))(1 ± f2(k′ ))]

GC

GC

DM

DM

Microphysics: Bose enhancement or Fermi-blocking



Dynamical friction derived from Fokker-Planck
Fokker-Planck: dynamical friction as diffusion in momentum space. 


From Boltzmann equation with collision term between perturbers 
(GCs) and DM


                                         ,                                    


     


df1
dt

= C[ f1] |ℳ |

C[ f1] =
(2π)4

2Ep ∫ dΠk,p′ ,k′ 
δ(4)(p + k − p′ − k′ ) |ℳ |2 [f1(p′ )f2(k′ )(1 ± f1(p))(1 ± f2(k)) − f1(p)f2(k)(1 ± f1(p′ ))(1 ± f2(k′ ))]

GC

GC

DM

DM

Microphysics: Bose enhancement or Fermi-blocking
for Bose (ULDM) see Hui et al. 2016, Lancaster et al. 2018 and Ban-Or et al 2018 



Dynamical friction derived from Fokker-Planck
Fokker-Planck: dynamical friction as diffusion in momentum space. 


From Boltzmann equation with collision term between perturbers 
(GCs) and DM


                                         ,                                    


     


df1
dt

= C[ f1] |ℳ |

C[ f1] =
(2π)4

2Ep ∫ dΠk,p′ ,k′ 
δ(4)(p + k − p′ − k′ ) |ℳ |2 [f1(p′ )f2(k′ )(1 ± f1(p))(1 ± f2(k)) − f1(p)f2(k)(1 ± f1(p′ ))(1 ± f2(k′ ))]

GC

GC

DM

DM

Microphysics: Bose enhancement or Fermi-blocking
for Bose (ULDM) see Hui et al. 2016, Lancaster et al. 2018 and Ban-Or et al 2018 

mDM ≲ 10−22 eV may work , but in tension with other constraints

(other coherent effects appear in ULDM)
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For classical Maxwellian 
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How to change ,  or microphysics? ρ σ

x

e.g. Milky way DM halo ⇠ 2⇥ 10�3c 100 kpcii) sizei) escape velocity 

i)

ii) 
Np =

MMW

Nsm
⇠ 103

✓
eV

m

◆4

�x�p & ~ Ns ⇠ 1075
⇣ m

eV

⌘3

particles per state

m & keVWhen done for dSph
Alvey, Sabti, DB, Escudero et al 2010.03572

“extreme masses”

Fermionic DM necessarily  Np ≲ 1

Close to the limit: degenerate fermions P ∼ ρ5/3m−8/3
f

core+Fermi blocking! (like a huge DM white dwarf)



Models of dark matter with different microphysics predict 
different densities and dispersions
• Vanilla CDM - NFW profile

• CDM - isothermal (ISO) profile

• DDM - degenerate fermionic dark matter

• SIDM - self-interacting dark matter: thermalised core

• CDM with baryonic feedback (coreNFW)

Cusp

Mid-way core

} Large core 
(~1 kpc)

rc ⇠ 681

✓
⇢0

107 M�/kpc3

◆� 1
6
✓

g m4

2⇥ (120 eV)4

◆� 1
3

pc• DDM

• SIDM rc ⇠
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⇢�
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108M�/kpc
3

⇢

1 cm2/gr

�/m
kpc

Ly-a?



All these models fit the kinematic data
Kinematic data: line-of-sight velocities of ~2500 stars. No proper 
motion. Many models fit OK; “velocity anisotropy degeneracy”.
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Fornax: data (2018)
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All these models fit the kinematic data
Kinematic data: line-of-sight velocities of ~2500 stars. No proper 
motion. Many models fit OK; “velocity anisotropy degeneracy”.
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Fornax: data (2018) and models, β=const.
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All these models fit the kinematic data
Kinematic data: line-of-sight velocities of ~2500 stars. No proper 
motion. Many models fit OK; “velocity anisotropy degeneracy”.
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Fornax: data (2018) and models, β=const.
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Dynamical friction time demonstrates core stalling

M = 3*105 Msolar

M19 NFW M19 ISO DDM

SIDM CoreNFW
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τ
[G
yr
]

M19=Meadows+(2019)

Read+(2018)

Agreement

on halo outskirts

~1 kpc cores

lengthen time!


(problem for DDM

from Ly-a constraints)

Smaller core

stalls inner GC 


to few Gyr

Cusp predicts rapid

infall of inner GCs



Did we solve anything? Initial cond.
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Quantifying distribution of GCs

When starting from a ‘natural distribution’ of GCs, today we expect
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Confronted with data, a cusp is mildly tuned

For a cusp, 

The sparse data (  applicable GCs)

favors a shallower profile, 
but certainly allow a cusp:

We find a Poisson probability .

τ(r) ∝ r1.85

3

∼ 25 % M = 3*105 Msolar
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Inner 3 GCs fall at r < rcr



Summary

• Different DM models predict different DF: Fornax problem?

• A small core due to baryonic feedback may alleviate some 

tension.

• A large core (SIDM, DDM) predicts little dynamical friction: GC 

distribution depends strongly on initial conditions. (It requires 
some tuning for observed radial velocity of GC4).


• Can we apply the analytical cusp prediction to more extensive 
data? 

Dynamical friction to test ultra-light Fermionic DM



Conclusions

Galactic dynamics is modified for “extreme” DM  (e.g. ULDM  or DDM)

ULDM:  for  occupation number of DM states in MW m ≲ eV O(1)

wavy halo: coherent oscillating patches (modified heating, DF, grav scattering)

soliton: extra features at galactic centres.  Can be probed with dynamics
Degenerate DM:  for  occupation number of DM states in dSph 

. Fermionic DM will be close to degeneracy
m ≲ keV

O(1)
degeneracy pressure: presence of core.

many “classical aspects” modified (not fully explored!)

filled Fermi surface: gravitational scattering modified (DF, heating…)



Backups

42



Conclusions and outlook on DM cusp in Fornax

DM cusp predicts a power-law CDF of GCs in the center of the 
halo, with little dependence on initial conditions.

Fornax requires a mild tuning to agree with this.

Dynamical friction:  of GCs to fall to the center of Fornax. 
 
To do:

Surface brightness modelling does not seem to predict enough 
light in the center of Fornax to account for fallen & disrupted GCs.

Proper prediction of GCs in the center of Fornax would require N-
body simulation.


∼ 25 %
𝒪(40%)



Quantifying distribution of GCs
First, we find that the time it takes a GC on circular orbit to inspiral from  to  is





Can easily be evaluated for const. or power law .  
Then, given initial distribution , one can find final distribution


r0 rf

Δt(ri; rf) = ∫
r0

rf

dr
2r (1 +

dlnM
dlnr ) τ(r, vcirc(r))

τ
nGC(r, t = 0)
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First, we find that the time it takes a GC on circular orbit to inspiral from  to  is





Can easily be evaluated for const. or power law .  
Then, given initial distribution , one can find final distribution


r0 rf
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Depends on poorly known initial conditions, 


can we do better?
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Is this enough? Where are the GCs that fell to the center?
In taking an initial distribution that roughly reproduces 
the GC distribution in Fornax, some of 
GCs should fall to the center by today’s time.


30% − 50 %

45



Is this enough? Where are the GCs that fell to the center?
In taking an initial distribution that roughly reproduces 
the GC distribution in Fornax, some of 
GCs should fall to the center by today’s time.


30% − 50 %

GC4

GC6

GC3

GC2

GC5

GC1NFW

500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

r⟂ [pc]

C
D
F

NGC( < r)

NGC( < r⊥)

45



Is this enough? Where are the GCs that fell to the center?
In taking an initial distribution that roughly reproduces 
the GC distribution in Fornax, some of 
GCs should fall to the center by today’s time.


30% − 50 %

GC4

GC6

GC3

GC2

GC5

GC1NFW

500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

r⟂ [pc]

C
D
F

NGC( < r)

NGC( < r⊥)

45



Is this enough? Where are the GCs that fell to the center?
In taking an initial distribution that roughly reproduces 
the GC distribution in Fornax, some of 
GCs should fall to the center by today’s time.


30% − 50 %

GC4

GC6

GC3

GC2

GC5

GC1NFW

500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

r⟂ [pc]

C
D
F

NGC( < r)

NGC( < r⊥)

45



Is this enough? Where are the GCs that fell to the center?
In taking an initial distribution that roughly reproduces 
the GC distribution in Fornax, some of 
GCs should fall to the center by today’s time.


30% − 50 %

GC4

GC6

GC3

GC2

GC5

GC1NFW

500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

r⟂ [pc]

C
D
F

NGC( < r)

NGC( < r⊥)

45



Is this enough? Where are the GCs that fell to the center?
In taking an initial distribution that roughly reproduces 
the GC distribution in Fornax, some of 
GCs should fall to the center by today’s time.


30% − 50 %

GC4

GC6

GC3

GC2

GC5

GC1NFW

500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

r⟂ [pc]

C
D
F

NGC( < r)

NGC( < r⊥)

45

τ(r) ∝ r1.85



Conclusions and outlook on DM cusp in Fornax

DM cusp predicts a power-law CDF of GCs in the center of the 
halo, with little dependence on initial conditions.

Fornax requires a mild tuning to agree with this.

Dynamical friction:  of GCs to fall to the center of Fornax. 
 
To do:

Surface brightness modelling does not seem to predict enough 
light in the center of Fornax to account for fallen & disrupted GCs.

Proper prediction of GCs in the center of Fornax would require N-
body simulation.


∼ 25 %
𝒪(40%)
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Analytical treatment can roughly reproduce N-body simulations

Semi-analytic integration:





Coulomb logarithm 

needs to be calibrated. 


dV
dt

= −
GM(r)

r2
̂r −

V
τ(r, V)
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Simulation
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Meadows+(2019)
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di

us
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Why conclusions more mild than previous studies?

• Center of galaxy shifted a little.

• New kinematic data favors a more massive halo with less 

dynamical friction.

• Mass estimates of GCs were updated.

• A more accurate treatment of dynamical friction in realistic halos.

• A prediction of GC distribution for a cusp gave something 

concrete to test on.
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Can globular cluster distribution hint to cusp vs. core?
Vanilla CDM-only simulations predict “cusp” — 1/r density.

Some indicators may hint otherwise
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GCs are unlikely to be ejected from center by N-body interactions

The velocity scale is on the edge of the GC is





Ejecting an object from a cusp is not that easy:





V ∼
GMGC

rh
= 12

MGC

105 M⊙

3 pc
rh

km
s

.

reject =
v2

in

4πGρ0rs
∼ 100 ( vin

12 km/s )
2

pc .

Few tens of pc

vin
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Mass of the center of Fornax consistent with stars of no more 
than  GCs∼ 2 − 3

Mass scale of GC .


Fornax mass inside  or so uncertain because of

(i) Surface brightness modeling (Plummer, Sersic, etc.)

(ii) Stellar mass uncertainty.


As a very crude estimate,  inside 

105 M⊙

100 pc

0.3 − 3 × 105 M⊙ < 100 pc
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Very dilute GCs may be tidally disrupted in the center





where  is the distance of the GC to the halo’s center.

These are very large radii, much larger than other of other GCs in 
Fornax.


rt ∼ 40 ( RG

100 pc )
1/3

( MGC

105 M⊙ )
1/3

pc

RG
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Ly-a bounds

• Instantaneous DM free streaming is given by  


• A small core due to baryonic feedback may alleviate some 
tension.


• A large core predicts little dynamical friction, therefore GC 
distribution depends strongly on initial conditions. 
Large core also requires some tuning because of the observed 
radial velocity of GC4.


• Can we apply the analytical cusp prediction to more extensive 
data? Looking into that.

kFS ≃
3
2

ℋ(z)
σ(z)
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Cusp predicts 30-50% GCs fall to center —  
where are they?

Stellar mass in central  is fairly uncertain: assuming factor of 
two uncertainty of total mass around  and different 
density profiles, Plummer/Sersic, we find





GC masses, on the other hand, is about .

100 pc
4.3 × 107 M⊙

0.3 − 3 × 105 M⊙

105 M⊙
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Mass budget of the center of Fornax consistent with stars of no 
more than  GCs∼ 2 − 3

Luminosity of a GC about 

At* , 


Surface brightness modeling predicts

of luminosity within inner 


Roughly the amount of two GCs.

Mass modelling roughly agrees.


∼ 104.7 = 5 × 104 L⊙
MV = − 14.3 ± 0.3 LFornax ∼ 4.5 × 107 L⊙

0.24 ± 0.1 % 100 pc ∼ 105 L⊙

Mackey & Gilmore (2003)

* Wang+(2018,DES)
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GC details in the paper
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Orbital deceleration (Chandrasekhar’s formula)



dV
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D
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For classical Maxwellian 
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Analytic insight into GC distribution in a cusp
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Analytic insight into GC distribution in a cusp
• For , where , GCs must fall 

to the galactic center. Then, it turns out that  has an 
analytic approximation 

, where  is a normalization factor.

r < rcr Δt(ri = rcr; rf = 0) = tGC−age
NGC( < r)

NGC( < r; Δt) ≈ A
τ(r)
Δt

A
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Analytic insight into GC distribution in a cusp
• For , where , GCs must fall 

to the galactic center. Then, it turns out that  has an 
analytic approximation 

, where  is a normalization factor.

r < rcr Δt(ri = rcr; rf = 0) = tGC−age
NGC( < r)

NGC( < r; Δt) ≈ A
τ(r)
Δt

A

• Projection effects correct this, but roughly keep the dependence 

 

New analytic prediction.

NGC( < r⊥, Δt) ≈ Ã
τ(r⊥)
Δt
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Self-gravitating systems using Jeans equations
• In spherical symmetry,  and equilibrium equation is 

, where 


• When : , highly radial orbits


• When : , highly circular orbits


• : isotropic system.

v̄2
θ = v̄2

ϕ
1
ν

d
dr

(νv̄2
r ) + 2

βv̄2
r

r
= −

GM
r2

β = 1 − v̄2
θ /v̄2

r

β → 1 v̄2
θ = v̄2

ϕ = 0

β → − ∞ v̄2
r = 0

β = 0
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New data used
• New estimate of galactic center, based on DES photometry.


• Revised GC mass estimates.


• Existence of GC6.


• New radial velocity measurements.
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Properties of other dSph


Read+2018 arXiv: 1808.06634


Much more stellar mass than the rest — 

over abundance of GCs not unexpected
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Mass profiles
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DF in MOND - general
• Addressed in previous works: Ciotti & Binney 2004, Sanchez-Salcedo+2006, Angus & 

Diaferio 2009. We did not revisit it.


• Generally said to have quick orbital decay.


• Plummer star mass profile  with  and 

 roughly agrees with MOND ( ).


• The acceleration in Fornax is : indeed Mondian


• Note that , hinting that essentially everywhere, 

stars scatter on GCs in the deep Mondian regime.

M(r) =
M0r3

(r2 + a2)3/2
M0 = 4.3 × 107 M⊙

a = 0.85 kpc vcirc ≈ (GMa0)1/4 ∼ 15 km/s

agal =
v2

circ

r
≈ 0.1a0

v2
circ

(15 km/s)2

0.6 kpc
r

aGC =
GMGC

r2
≈ a0

MGC

105 M⊙ ( 11 pc
r )

2
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Orbital characteristics of Fornax

Depends on MW potential. . Similarly .(1.6) = 1.6 × 1012M⊙ (0.8)
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Distance, mass to Fornax, GCs
RR Lyrae stars 1510.05642

Tip of red giant see refs in 1510.05642

Inside GCs: Mackey & Gilmore 2003 (also metallicity there)


Mass of GCs: updated in 1510.05642, using CMD and metallicity


Total mass Fornax 1510.05642
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Equipartition of energy
See Binney & Tremaine (2008), Eq. 7.90 for balance of dynamical friction 
and dynamical heating when energy equipartition is satisfied.
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Coulomb logarithm calibration
In NFW case


, .


In Core case





Roughly agreeing with earlier definitions, but not exactly. To avoid small 
logarithm problems, we replace


lnΛNFW = ln
bmaxσ2

GM
bmax = 0.5 kpc

lnΛISO = ln
2rV2

GM

lnΛ →
1
2

ln(1 + Λ2)
67



the time of formation of solitons is not known for 
the higher masses

(minor?) Caveats

a SMBH may absorb the soliton  
(not relevant for our constraints)

self-interaction may change the picture 
(though there are natural choices that don’t)

m & 10�21 eV



Any connection to core vs cusp?
Oh et al. 1502.01281 

14 Oh et al.

Fig. 5.— Upper-left panel: The (DM only) rotation curves (small dots) of the 21 LITTLE THINGS (including 3 THINGS galaxies)
for which Spitzer 3.6µm image is available. These are all scaled with respect to the rotation velocity V0.3 at R0.3 where the logarithmic
slope of the rotation curve is dlogV/dlogR = 0.3 as described in Hayashi & Navarro (2006). The ‘⇥’ symbol represents the median values of
the rotation curves in each 0.1R/R0.3 bin. The error bars show the 1� scatter. Lower-left panel: The scaled rotation curves of the seven
THINGS, and the two simulated dwarf galaxies (DG1 and DG2 in Governato et al. 2010) which are overplotted to the median values of
the LITTLE THINGS rotation curves. The grey solid and black solid lines with small dots indicate the CDM NFW dark matter rotation
curves with V200 which is > 90 km s�1 and < 90 km s�1, respectively. Right panels: The corresponding dark matter density profiles
derived using the scaled rotation curves in the left panels. The grey (V200 > 90 km s�1) and black solid lines with small dots (V200 < 90
km s�1) represent the CDM NFW models with the inner density slope ↵⇠�1.0. See Section 4 for more details.

profiles. This is much like the THINGS dwarf galaxies,
and the simulated dwarfs (DG1 and DG2) with baryonic
feedback processes as shown in the lower-right panel of
Fig. 5.
We also measure the inner density slopes ↵ of the DM

density profiles to quantify the cuspiness of the central
DM distribution. This yields a more quantitative com-
parison between the observations and simulations. As
shown in the figures in the Appendix (e.g., panel (f) of

Fig. A.3), we perform a least squares fit (dotted lines) to
the inner data points (grey dots) within a ‘break radius’.
As described in de Blok & Bosma (2002; see also Oh
et al. 2011b), we determine a break radius of a DM den-
sity profile where the slope changes most rapidly in the
inner region of the profile. Following de Blok & Bosma
(2002), we adopt the mean di↵erence between the slopes
which are measured including the first data point out-
side the break-radius and excluding the data point at the

14 Oh et al.
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profiles. This is much like the THINGS dwarf galaxies,
and the simulated dwarfs (DG1 and DG2) with baryonic
feedback processes as shown in the lower-right panel of
Fig. 5.
We also measure the inner density slopes ↵ of the DM

density profiles to quantify the cuspiness of the central
DM distribution. This yields a more quantitative com-
parison between the observations and simulations. As
shown in the figures in the Appendix (e.g., panel (f) of

Fig. A.3), we perform a least squares fit (dotted lines) to
the inner data points (grey dots) within a ‘break radius’.
As described in de Blok & Bosma (2002; see also Oh
et al. 2011b), we determine a break radius of a DM den-
sity profile where the slope changes most rapidly in the
inner region of the profile. Following de Blok & Bosma
(2002), we adopt the mean di↵erence between the slopes
which are measured including the first data point out-
side the break-radius and excluding the data point at the

from Oh et al., arXiv:1502.01281

Solution to “cusp-core problem” 

Observed density profiles 
at the centers of dwarf 
galaxies are flatter than 
NFW

centers of dwarf galaxies 
flatter than CDM only

Deng et al. 1804.05921 

…probably not 2

size ⇠ kpc. Note that in this regime, the particle’s occu-
pancy number must be huge in order for this type of dark
matter to be most of the galactic mass. So the theory
is well described by classical field theory. (See Ref. [7]
for a rigorous explanation of why classical field theory
provides an accurate description of the dynamics in this
regime, despite claims to the contrary in Ref. [8].) Other
interesting consequences of this proposal are studied in
Ref. [6].

In this work we critically examine this proposal. Our
primary motivation is the following: if indeed the large
de Broglie wavelength of these ultra-light bosons is re-
sponsible for the presence of the core of a galaxy, then
it should self consistently explain the core of many other
(if not all) galaxies. While one can always fix param-
eters, say the mass of the dark matter, so that the re-
lationship between core density ⇢c and core radius Rc

works for one galaxy, it needs to then correctly predict
this relationship for other galaxies; some data is given in
Fig. 1. Here we show that if the bosons organize into a
type of Bose-Einstein condensate, and consequently oc-
cupy their ground state configuration near the center of
a galaxy, then we can compute this relationship for all
galaxies. We find that the resulting relationship between
⇢c and Rc does not match the data for a large family of
scalar dark matter models, including “fuzzy dark matter”
in which self-interactions are assumed negligible and for
more general scalar field models in which self-interactions
are important. We extend these results to scalar dark
matter that has not gone into the ground state, but has
virialized in a more conventional sense. Finally, we ex-
tend our results to even more general scalar field models,
degenerate fermions, superfluids, and general polytropes.

Our paper is organized as follows: In Section II we
present some galactic data which indicates ⇢c / 1/Rc.
In Section III we present the family of scalar dark mat-
ter models that we analyze. In Section IV we outline the
form of ground state solutions that we are interested in.
In Section V we present the numerical solution to these
models for a range of parameters. In Section VI we de-
scribe a simple variational technique to capture the quali-
tative behavior of the solutions. In Section VII we discuss
the possibility of non ground state behavior. In Section
VIII we discuss various other scalar field and fermionic
models. Finally, in Section IX we summarize our results
and mention future directions.

II. GALACTIC DATA

The halos of galaxies are dominated by dark matter,
which organize into the famous NFW profile [1], in which
the density falls o↵ as ⇠ 1/r3 at large radii and rises as
⇠ 1/r at small radii. While this matches data quite well
for radii much bigger than ⇠ kpc, it appears to fail on
scales r . kpc. In particular, typical galaxies appear to
exhibit a core where the density approaches a constant
as r ! 0. In the vicinity of the core, a convenient density
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FIG. 1. Core density ⇢c versus core radius Rc for a range of
galaxies. Black dots are data taken from Ref. [10]. Orange
dashed curve is the best fit power law curve ⇢c / 1/R�

c with
� = 1.3 for this data set, while we find � ⇡ 1 more generally.

profile is the following functional form [9]

⇢(r) =
⇢c

1 + r2/R2
c

, (1)

where the core density ⇢c is taken to be the central
density and the core radius Rc is taken to be the ra-
dius at which the density has dropped to half its central
value. In Fig. 1 we plot core density ⇢c versus core ra-
dius Rc for a range of di↵erent galaxies from Ref. [10].
(In fact this reference used the so-called Burkert profile
⇢(r) = ⇢c/(1 + r/RB)(1 + r2/R2

B) in which the core ra-
dius RB is when the density has dropped to a quarter
of its central value; so we have re-scaled by a factor of
Rc ⇡ 0.54RB accordingly.) Their data {Rc, ⇢c} comes
from measuring rotation curves. Although there is signif-
icant scatter in the data, an overall trend can be clearly
seen. By parameterizing the relationship between core
density and core radius as a power law

⇢c /
1

R�
c

, (2)

we find that the best fit value for the exponent for this
particular data set is � = 1.3. We have also examined
other data sets, including faint galaxies [9], finding � =
0.9, etc. In general we find that � ⇡ 1. We note that this
roughly holds for both small (dwarf) and large galaxies,
including galaxies that are dominated by dark matter.
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Fig. 5.— Upper-left panel: The (DM only) rotation curves (small dots) of the 21 LITTLE THINGS (including 3 THINGS galaxies)
for which Spitzer 3.6µm image is available. These are all scaled with respect to the rotation velocity V0.3 at R0.3 where the logarithmic
slope of the rotation curve is dlogV/dlogR = 0.3 as described in Hayashi & Navarro (2006). The ‘⇥’ symbol represents the median values of
the rotation curves in each 0.1R/R0.3 bin. The error bars show the 1� scatter. Lower-left panel: The scaled rotation curves of the seven
THINGS, and the two simulated dwarf galaxies (DG1 and DG2 in Governato et al. 2010) which are overplotted to the median values of
the LITTLE THINGS rotation curves. The grey solid and black solid lines with small dots indicate the CDM NFW dark matter rotation
curves with V200 which is > 90 km s�1 and < 90 km s�1, respectively. Right panels: The corresponding dark matter density profiles
derived using the scaled rotation curves in the left panels. The grey (V200 > 90 km s�1) and black solid lines with small dots (V200 < 90
km s�1) represent the CDM NFW models with the inner density slope ↵⇠�1.0. See Section 4 for more details.

profiles. This is much like the THINGS dwarf galaxies,
and the simulated dwarfs (DG1 and DG2) with baryonic
feedback processes as shown in the lower-right panel of
Fig. 5.
We also measure the inner density slopes ↵ of the DM

density profiles to quantify the cuspiness of the central
DM distribution. This yields a more quantitative com-
parison between the observations and simulations. As
shown in the figures in the Appendix (e.g., panel (f) of

Fig. A.3), we perform a least squares fit (dotted lines) to
the inner data points (grey dots) within a ‘break radius’.
As described in de Blok & Bosma (2002; see also Oh
et al. 2011b), we determine a break radius of a DM den-
sity profile where the slope changes most rapidly in the
inner region of the profile. Following de Blok & Bosma
(2002), we adopt the mean di↵erence between the slopes
which are measured including the first data point out-
side the break-radius and excluding the data point at the
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size ⇠ kpc. Note that in this regime, the particle’s occu-
pancy number must be huge in order for this type of dark
matter to be most of the galactic mass. So the theory
is well described by classical field theory. (See Ref. [7]
for a rigorous explanation of why classical field theory
provides an accurate description of the dynamics in this
regime, despite claims to the contrary in Ref. [8].) Other
interesting consequences of this proposal are studied in
Ref. [6].

In this work we critically examine this proposal. Our
primary motivation is the following: if indeed the large
de Broglie wavelength of these ultra-light bosons is re-
sponsible for the presence of the core of a galaxy, then
it should self consistently explain the core of many other
(if not all) galaxies. While one can always fix param-
eters, say the mass of the dark matter, so that the re-
lationship between core density ⇢c and core radius Rc

works for one galaxy, it needs to then correctly predict
this relationship for other galaxies; some data is given in
Fig. 1. Here we show that if the bosons organize into a
type of Bose-Einstein condensate, and consequently oc-
cupy their ground state configuration near the center of
a galaxy, then we can compute this relationship for all
galaxies. We find that the resulting relationship between
⇢c and Rc does not match the data for a large family of
scalar dark matter models, including “fuzzy dark matter”
in which self-interactions are assumed negligible and for
more general scalar field models in which self-interactions
are important. We extend these results to scalar dark
matter that has not gone into the ground state, but has
virialized in a more conventional sense. Finally, we ex-
tend our results to even more general scalar field models,
degenerate fermions, superfluids, and general polytropes.

Our paper is organized as follows: In Section II we
present some galactic data which indicates ⇢c / 1/Rc.
In Section III we present the family of scalar dark mat-
ter models that we analyze. In Section IV we outline the
form of ground state solutions that we are interested in.
In Section V we present the numerical solution to these
models for a range of parameters. In Section VI we de-
scribe a simple variational technique to capture the quali-
tative behavior of the solutions. In Section VII we discuss
the possibility of non ground state behavior. In Section
VIII we discuss various other scalar field and fermionic
models. Finally, in Section IX we summarize our results
and mention future directions.

II. GALACTIC DATA

The halos of galaxies are dominated by dark matter,
which organize into the famous NFW profile [1], in which
the density falls o↵ as ⇠ 1/r3 at large radii and rises as
⇠ 1/r at small radii. While this matches data quite well
for radii much bigger than ⇠ kpc, it appears to fail on
scales r . kpc. In particular, typical galaxies appear to
exhibit a core where the density approaches a constant
as r ! 0. In the vicinity of the core, a convenient density
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FIG. 1. Core density ⇢c versus core radius Rc for a range of
galaxies. Black dots are data taken from Ref. [10]. Orange
dashed curve is the best fit power law curve ⇢c / 1/R�

c with
� = 1.3 for this data set, while we find � ⇡ 1 more generally.

profile is the following functional form [9]

⇢(r) =
⇢c

1 + r2/R2
c

, (1)

where the core density ⇢c is taken to be the central
density and the core radius Rc is taken to be the ra-
dius at which the density has dropped to half its central
value. In Fig. 1 we plot core density ⇢c versus core ra-
dius Rc for a range of di↵erent galaxies from Ref. [10].
(In fact this reference used the so-called Burkert profile
⇢(r) = ⇢c/(1 + r/RB)(1 + r2/R2

B) in which the core ra-
dius RB is when the density has dropped to a quarter
of its central value; so we have re-scaled by a factor of
Rc ⇡ 0.54RB accordingly.) Their data {Rc, ⇢c} comes
from measuring rotation curves. Although there is signif-
icant scatter in the data, an overall trend can be clearly
seen. By parameterizing the relationship between core
density and core radius as a power law

⇢c /
1

R�
c

, (2)

we find that the best fit value for the exponent for this
particular data set is � = 1.3. We have also examined
other data sets, including faint galaxies [9], finding � =
0.9, etc. In general we find that � ⇡ 1. We note that this
roughly holds for both small (dwarf) and large galaxies,
including galaxies that are dominated by dark matter.
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Fig. 5.— Upper-left panel: The (DM only) rotation curves (small dots) of the 21 LITTLE THINGS (including 3 THINGS galaxies)
for which Spitzer 3.6µm image is available. These are all scaled with respect to the rotation velocity V0.3 at R0.3 where the logarithmic
slope of the rotation curve is dlogV/dlogR = 0.3 as described in Hayashi & Navarro (2006). The ‘⇥’ symbol represents the median values of
the rotation curves in each 0.1R/R0.3 bin. The error bars show the 1� scatter. Lower-left panel: The scaled rotation curves of the seven
THINGS, and the two simulated dwarf galaxies (DG1 and DG2 in Governato et al. 2010) which are overplotted to the median values of
the LITTLE THINGS rotation curves. The grey solid and black solid lines with small dots indicate the CDM NFW dark matter rotation
curves with V200 which is > 90 km s�1 and < 90 km s�1, respectively. Right panels: The corresponding dark matter density profiles
derived using the scaled rotation curves in the left panels. The grey (V200 > 90 km s�1) and black solid lines with small dots (V200 < 90
km s�1) represent the CDM NFW models with the inner density slope ↵⇠�1.0. See Section 4 for more details.

profiles. This is much like the THINGS dwarf galaxies,
and the simulated dwarfs (DG1 and DG2) with baryonic
feedback processes as shown in the lower-right panel of
Fig. 5.
We also measure the inner density slopes ↵ of the DM

density profiles to quantify the cuspiness of the central
DM distribution. This yields a more quantitative com-
parison between the observations and simulations. As
shown in the figures in the Appendix (e.g., panel (f) of

Fig. A.3), we perform a least squares fit (dotted lines) to
the inner data points (grey dots) within a ‘break radius’.
As described in de Blok & Bosma (2002; see also Oh
et al. 2011b), we determine a break radius of a DM den-
sity profile where the slope changes most rapidly in the
inner region of the profile. Following de Blok & Bosma
(2002), we adopt the mean di↵erence between the slopes
which are measured including the first data point out-
side the break-radius and excluding the data point at the
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size ⇠ kpc. Note that in this regime, the particle’s occu-
pancy number must be huge in order for this type of dark
matter to be most of the galactic mass. So the theory
is well described by classical field theory. (See Ref. [7]
for a rigorous explanation of why classical field theory
provides an accurate description of the dynamics in this
regime, despite claims to the contrary in Ref. [8].) Other
interesting consequences of this proposal are studied in
Ref. [6].

In this work we critically examine this proposal. Our
primary motivation is the following: if indeed the large
de Broglie wavelength of these ultra-light bosons is re-
sponsible for the presence of the core of a galaxy, then
it should self consistently explain the core of many other
(if not all) galaxies. While one can always fix param-
eters, say the mass of the dark matter, so that the re-
lationship between core density ⇢c and core radius Rc

works for one galaxy, it needs to then correctly predict
this relationship for other galaxies; some data is given in
Fig. 1. Here we show that if the bosons organize into a
type of Bose-Einstein condensate, and consequently oc-
cupy their ground state configuration near the center of
a galaxy, then we can compute this relationship for all
galaxies. We find that the resulting relationship between
⇢c and Rc does not match the data for a large family of
scalar dark matter models, including “fuzzy dark matter”
in which self-interactions are assumed negligible and for
more general scalar field models in which self-interactions
are important. We extend these results to scalar dark
matter that has not gone into the ground state, but has
virialized in a more conventional sense. Finally, we ex-
tend our results to even more general scalar field models,
degenerate fermions, superfluids, and general polytropes.

Our paper is organized as follows: In Section II we
present some galactic data which indicates ⇢c / 1/Rc.
In Section III we present the family of scalar dark mat-
ter models that we analyze. In Section IV we outline the
form of ground state solutions that we are interested in.
In Section V we present the numerical solution to these
models for a range of parameters. In Section VI we de-
scribe a simple variational technique to capture the quali-
tative behavior of the solutions. In Section VII we discuss
the possibility of non ground state behavior. In Section
VIII we discuss various other scalar field and fermionic
models. Finally, in Section IX we summarize our results
and mention future directions.

II. GALACTIC DATA

The halos of galaxies are dominated by dark matter,
which organize into the famous NFW profile [1], in which
the density falls o↵ as ⇠ 1/r3 at large radii and rises as
⇠ 1/r at small radii. While this matches data quite well
for radii much bigger than ⇠ kpc, it appears to fail on
scales r . kpc. In particular, typical galaxies appear to
exhibit a core where the density approaches a constant
as r ! 0. In the vicinity of the core, a convenient density
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FIG. 1. Core density ⇢c versus core radius Rc for a range of
galaxies. Black dots are data taken from Ref. [10]. Orange
dashed curve is the best fit power law curve ⇢c / 1/R�

c with
� = 1.3 for this data set, while we find � ⇡ 1 more generally.

profile is the following functional form [9]

⇢(r) =
⇢c

1 + r2/R2
c

, (1)

where the core density ⇢c is taken to be the central
density and the core radius Rc is taken to be the ra-
dius at which the density has dropped to half its central
value. In Fig. 1 we plot core density ⇢c versus core ra-
dius Rc for a range of di↵erent galaxies from Ref. [10].
(In fact this reference used the so-called Burkert profile
⇢(r) = ⇢c/(1 + r/RB)(1 + r2/R2

B) in which the core ra-
dius RB is when the density has dropped to a quarter
of its central value; so we have re-scaled by a factor of
Rc ⇡ 0.54RB accordingly.) Their data {Rc, ⇢c} comes
from measuring rotation curves. Although there is signif-
icant scatter in the data, an overall trend can be clearly
seen. By parameterizing the relationship between core
density and core radius as a power law

⇢c /
1

R�
c

, (2)

we find that the best fit value for the exponent for this
particular data set is � = 1.3. We have also examined
other data sets, including faint galaxies [9], finding � =
0.9, etc. In general we find that � ⇡ 1. We note that this
roughly holds for both small (dwarf) and large galaxies,
including galaxies that are dominated by dark matter.
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