## Formation of Ultralight Dark Matter Solar Halos



Marco Gorghetto WEIZMANN INSTITUTE OF SCIENCE

## Dark Matter Candidates



## Dark Matter Candidates



- Occupation number $\gg 1 \Longrightarrow$ boson, $\phi$

$$
\equiv \text { number of particles per } \lambda_{\mathrm{dB}}^{3} \simeq\left(m v_{\mathrm{dm}}\right)^{-3}
$$

- Classical equations of motion
- Automatically produced as dark matter relics
coupling to photons

$$
\mathcal{L} \supset \frac{1}{4} g_{a \gamma \gamma} \phi F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

## coupling to neutrons

$$
\mathcal{L} \supset g_{a n} \frac{\partial_{\mu} \phi}{2 f_{a}} \bar{n} \gamma^{\mu} \gamma^{5} n
$$



Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{c}$

Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{c}$


In this talk:

- $\phi$ is the dark matter
- $V(\phi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}+\ldots$ $\neq 0 \quad|\lambda| \lll 1$

$$
\text { axion } \rightarrow \quad \lambda=-\frac{m^{2}}{f_{a}^{2}}
$$

$\rightarrow \quad$ misalignment fixes $f_{a}=f_{a}\left(m ; \theta_{0}\right)$
relation between $m$ and $f_{a}$ unfixed

## Outline

- ULDM distribution and bound states
- Formation of the gravitational atom
- Some implication for direct detection


## Local dark matter distribution

'Standard halo' model

- Local density $\rho_{\mathrm{dm}} \simeq 0.3 \div 0.4 \mathrm{GeV} / \mathrm{cm}^{3}$

- Dark matter velocity in the frame of the Sun:

$$
\begin{aligned}
& \text { - average } \mathbf{v}_{\mathrm{dm}}=-\mathbf{v}_{\odot} \simeq 240 \mathrm{~km} / \mathrm{s} \\
& \text { - dispersion } \sigma \simeq 160 \mathrm{~km} / \mathrm{s} \simeq v_{\mathrm{dm}} / \sqrt{2}
\end{aligned}
$$



## Local dark matter distribution

'Standard halo' model

- Local density $\rho_{\mathrm{dm}} \simeq 0.3 \div 0.4 \mathrm{GeV} / \mathrm{cm}^{3}$

- Dark matter velocity in the frame of the Sun:

$$
\begin{aligned}
& \text { - average } \mathbf{v}_{\mathrm{dm}}=-\mathbf{v}_{\odot} \simeq 240 \mathrm{~km} / \mathrm{s} \\
& \text { - dispersion } \sigma \simeq 160 \mathrm{~km} / \mathrm{s} \simeq v_{\mathrm{dm}} / \sqrt{2}
\end{aligned}
$$



Gravitational bounds from planetary and asteroid motion


Gravitational bounds from planetary and asteroid motion


orbit comparison bounds $M_{2}-M_{1}$

Gravitational bounds from planetary and asteroid motion



Gravitational bounds from planetary and asteroid motion


orbit comparison bounds $M_{2}-M_{1}$

Gravitational bounds from planetary and asteroid motion


orbit comparison bounds $M_{2}-M_{1}$

- processes inducing the capture of ULDM?

ULDM bound states

EoM: $\quad\left(g^{\mu \nu} D_{\mu} \partial_{\nu}+m^{2}\right) \phi=-\frac{1}{6} \lambda \phi^{3}+\cdots$

$$
\begin{aligned}
g_{00}=1+2 \Phi & \\
& \simeq \Phi_{\mathrm{ex}}=-\frac{G M}{r}
\end{aligned}
$$

external mass, e.g. Sun

## ULDM bound states

EoM: $\quad\left(g^{\mu \nu} D_{\mu} \partial_{\nu}+m^{2}\right) \phi=-\frac{1}{6} \lambda \phi^{3}+\cdots$

$\phi \equiv \frac{1}{\sqrt{2 m}}\left(\psi e^{-i m t}+\right.$ c.c. $)$
non-relativistic field

## ULDM bound states

EoM: $\quad\left(g^{\mu \nu} D_{\mu} \partial_{\nu}+m^{2}\right) \phi=-\frac{1}{6} \lambda \phi^{3}+\cdots$

$\phi \equiv \frac{1}{\sqrt{2 m}}\left(\psi e^{-i m t}+\right.$ c.c. $)$
non-relativistic field

Schroedinger:

$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi=g|\psi|^{2} \psi+\cdots
$$

$$
\uparrow_{-m \Phi}
$$

## ULDM bound states

EoM: $\quad\left(g^{\mu \nu} D_{\mu} \partial_{\nu}+m^{2}\right) \phi=-\frac{1}{6} \lambda \phi^{3}+\cdots$

$$
\begin{aligned}
& g_{00}=1+2 \Phi \\
& \simeq \Phi_{\mathrm{ex}}=-\frac{G M}{r}
\end{aligned}
$$

external mass, e.g. Sun

$$
\phi \equiv \frac{1}{\sqrt{2 m}}\left(\psi e^{-i m t}+\text { c.c. }\right)
$$

non-relativistic field

- gravitational coupling

$$
\alpha \equiv G M m
$$

- dimensionful self-coupling

$$
g \equiv \frac{\lambda}{8 m^{2}}=-\frac{1}{8 f_{a}^{2}}
$$

$$
\begin{gathered}
-m \Phi \\
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi=g|\psi|^{2} \psi+\cdots
\end{gathered}
$$

- hydrogen atom on the Sun

$$
\begin{array}{lll}
|\psi|^{2} & \begin{array}{c}
\text { number density (could be large) } \\
\alpha=G M m
\end{array} \longleftrightarrow & \longleftrightarrow
\end{array} \begin{aligned}
& \text { QM probability density }
\end{aligned}
$$

$$
\begin{gathered}
-m \Phi \\
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi=g|\psi|^{2} \psi+\cdots
\end{gathered}
$$

- hydrogen atom on the Sun

$$
\begin{array}{lccc}
|\psi|^{2} & \begin{array}{c}
\text { number density (could be large) } \\
\alpha=G M m
\end{array} \longleftrightarrow & \text { gravitational coupling } & \text { QM probability density } \\
\text { fine structure constant }
\end{array}
$$

density $\quad \rho \equiv m|\psi|^{2}$

$$
\left.\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi=g \right\rvert\, \psi \psi^{2} \psi+\cdots=0
$$

- hydrogen atom on the Sun

$$
\begin{array}{lcc}
|\psi|^{2} & \text { number density (could be large) } & \longleftrightarrow \\
\alpha=G M m & \text { gravitational coupling } & \text { QM probability density } \\
\text { fine structure constant }
\end{array}
$$

density $\quad \rho \equiv m|\psi|^{2} \quad \stackrel{\text { if locally }}{<} \quad \rho_{\text {crit }} \equiv \frac{m^{2} \Phi}{|g|}=\frac{8 m^{4} \Phi}{|\lambda|}$
self-interactions negligible
$\rightarrow$ free EoM
solutions:
bound
unbound

$$
\begin{gathered}
-m \Phi \\
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi=g|\psi|^{2} \psi+\cdots=0
\end{gathered}
$$

- hydrogen atom on the Sun

$$
\begin{array}{lcc}
|\psi|^{2} & \text { number density (could be large) } & \longleftrightarrow \\
\alpha=G M m & \text { gravitational coupling } & \text { QM probability density } \\
\text { fine structure constant }
\end{array}
$$

density $\quad \rho \equiv m|\psi|^{2} \quad \begin{gathered}\text { if locally } \\ <\end{gathered} \rho_{\text {crit }} \equiv \frac{m^{2} \Phi}{|g|}=\frac{8 m^{4} \Phi}{|\lambda|}$
solutions:
self-interactions negligible
$\rightarrow$ free EoM
 bound unbound

- Ground state

$$
\begin{aligned}
\psi & =\psi_{100}(\vec{x}) e^{-i \omega_{1} t} \\
& \not \downarrow^{-\frac{r}{R_{\star}}} \quad-\frac{m \alpha^{2}}{2}
\end{aligned}
$$

'gravitational' Bohr radius

$$
R_{\star}=\frac{1}{m \alpha}=1 \mathrm{AU}\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{2}\left[\frac{M_{\odot}}{M}\right]
$$

$$
\begin{aligned}
& -m \Phi \\
& \left.+\frac{\downarrow}{r}\right) \psi=g|\psi|^{2} \psi+\cdots=0
\end{aligned}
$$

- hydrogen atom on the Sun

$$
\frac{1}{R_{\star}^{2} m} \simeq \frac{\alpha}{R_{\star}}
$$

$$
\begin{array}{lccc}
|\psi|^{2} & \text { number density (could be large) } & \longleftrightarrow & \text { gravitational coupling }
\end{array} \quad \begin{aligned}
& \text { QM probability density } \\
& \alpha=G M m
\end{aligned}
$$

density $\quad \rho \equiv m|\psi|$
if locally
$\ll$
$\rho_{\text {crit }} \equiv \frac{m^{2} \Phi}{|g|}=\frac{8 m^{4} \Phi}{|\lambda|}$
self-interactions negligible
$\rightarrow$ free EoM
solutions:
bound
unbound

- Ground state

$$
\begin{gathered}
\psi=\psi_{100}(\vec{x}) e^{-i \omega_{1} t} \\
\propto e^{-\frac{r}{R_{\star}}} \quad \begin{array}{l}
-\frac{m \alpha^{2}}{2} \\
\\
\text { binding energy }
\end{array}
\end{gathered}
$$

'gravitational' Bohr radius

$$
R_{\star}=\frac{1}{m \alpha}=1 \mathrm{AU}\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{2}\left[\frac{M_{\odot}}{M}\right]
$$

$$
\psi=\sqrt{\frac{M_{\star}}{\pi R_{\star}^{3} m}} e^{-\frac{r}{R_{\star}}} e^{-i \omega_{1} t}
$$

$$
R_{\star}=1 \mathrm{AU}\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{2}\left[\frac{M_{\odot}}{M}\right]
$$

$$
\psi=\sqrt{\frac{M_{\star}}{\pi R_{\star}^{3} m}} e^{-\frac{r}{R_{\star}}} e^{-i \omega_{1} t} \quad R_{\star}=1 \mathrm{AU}\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{2}\left[\frac{M_{\odot}}{M}\right]
$$



| $m / \mathrm{eV}:$ | $2 \times 10^{-13}$ | $1.3 \times 10^{-14}$ | $3 \times 10^{-15}$ |
| :---: | :---: | :---: | :---: |
| $R_{\star}:$ | $R_{\odot}$ | AU | Saturn orbit |

$$
\psi=\sqrt{\frac{M_{\star}}{\pi R^{3} m}} e^{-\frac{r}{R_{\star}}} e^{-i \omega_{1} t} \quad R_{\star}=1 \mathrm{AU}\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{2}\left[\frac{M_{\odot}}{M}\right]
$$



| $m / \mathrm{eV}:$ | $2 \times 10^{-13}$ | $1.3 \times 10^{-14}$ | $3 \times 10^{-15}$ |
| :---: | :---: | :---: | :---: |
| $R_{\star}:$ | $R_{\odot}$ | AU | Saturn orbit |

## Formation of the gravitational atom

1) initially, DM in the continuum: $M_{\star}=0$

## Formation of the gravitational atom

1) initially, DM in the continuum: $M_{\star}=0$
2) $\frac{d M_{\star}}{d t}=($ capture $)-($ stripping $)$

3) initially, DM in the continuum: $M_{\star}=0$
4) $\frac{d M_{\star}}{d t}=$ (capture) $-($ stripping $)$

$$
=C+\Gamma_{1} M_{\star}-\Gamma_{2} M_{\star}
$$



$$
\begin{aligned}
& C=\text { direct capture } \\
& \Gamma_{1}=\text { stimulated capture } \\
& \Gamma_{2}=\text { stripping, via inverse process } \\
& \\
& \text { all }>0 \text { and } \propto g^{2} \propto \lambda^{2}
\end{aligned} \longleftrightarrow \text { Bose enhancement }
$$

1) initially, DM in the continuum: $M_{\star}=0$
2) $\frac{d M_{\star}}{d t}=$ (capture) - (stripping $)$

$$
\begin{aligned}
& =C+\Gamma_{1} M_{\star}-\Gamma_{2} M_{\star} \\
& =C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right.}_{\Gamma \gtrless 0}) M_{\star}
\end{aligned}
$$

$C=$ direct capture
$\Gamma_{1}=$ stimulated capture
$\longleftrightarrow$ Bose enhancement
$\Gamma_{2}=$ stripping, via inverse process

$$
\text { all }>0 \text { and } \propto g^{2} \propto \lambda^{2}
$$



For $g=0, \mathrm{DM}$ in the galaxy halo is

$$
\psi_{w}(t, \mathbf{x}) \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} a(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}(\mathbf{x})
$$

$$
\psi_{w}(t, \mathbf{x}) \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} a(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}(\mathbf{x})
$$

unbound solutions of the atom: 'scattering states' or 'waves', $\mathbf{k}$

$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi_{\mathbf{k}}=0
$$

$$
\psi_{w}(t, \mathbf{x}) \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} a(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}(\mathbf{x})
$$

unbound solutions of the atom: 'scattering states' or 'waves', $\mathbf{k}$

$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi_{\mathbf{k}}=0
$$

$$
\begin{aligned}
& \text { o is } \\
& \psi_{w}(t, \mathbf{x}) \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} \underset{\substack{\frac{k^{2}}{2 m} \\
\text { momentum distribution }}}{\stackrel{\uparrow}{\downarrow})} e^{-i \omega_{k} t} \psi_{\mathbf{k}}(\mathbf{x})
\end{aligned}
$$

unbound solutions of the atom: 'scattering states' or 'waves', $\mathbf{k}$

$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi_{\mathbf{k}}=0
$$

$$
\psi_{w}(t, \mathbf{x}) \equiv \iint_{\substack{d^{3} k \\(2 \pi)^{3}}}^{\underset{\text { momentum distribution }}{\downarrow(\mathbf{k})} e^{-i \omega_{k} t} \psi_{\mathbf{k}}(\mathbf{x})}
$$

- $a(\mathbf{k})$, standard halo model

$$
\left\langle a^{*}(\mathbf{k}) a\left(\mathbf{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} f(\mathbf{k}) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$



$$
f(\mathbf{k})=\frac{\rho_{\mathrm{dm}}}{\sigma^{3} m^{4}} e^{-\frac{(\mathbf{k}-m \mathbf{v d m})^{2}}{2 m^{2} \sigma^{2}}}
$$

- Scattering states $\psi_{\mathbf{k}}(\mathbf{x})$

$$
\stackrel{R_{\star}}{\longleftrightarrow}=\frac{1}{m \alpha}
$$



$$
\xi_{\mathrm{foc}}(k) \equiv \frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi}{k} \frac{1}{R_{\star}}
$$

$$
\stackrel{R_{\star}}{\longleftrightarrow}=\frac{1}{m \alpha}
$$



- Scattering states $\psi_{\mathbf{k}}(\mathbf{x})$

$$
\begin{gathered}
\xi_{\mathrm{foc}}(k) \equiv \frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi}{k} \frac{1}{R_{\star}}=\frac{2 \pi \alpha}{v} \\
m v^{\swarrow}
\end{gathered}
$$

$$
\stackrel{R_{\star}}{\longleftrightarrow}=\frac{1}{m \alpha}
$$



- Scattering states $\psi_{\mathbf{k}}(\mathbf{x})$
$\xi_{\text {foc }}(k) \equiv \frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi}{k} \frac{1}{R_{\star}}=\frac{2 \pi \alpha}{v}$
$m v^{\swarrow}>(m \alpha)^{-1}$

$$
\xi_{\text {foc }}(k) \ll 1 \leftrightarrow v \gg 2 \pi \alpha
$$

$$
\stackrel{R_{\star}}{\longleftrightarrow} \frac{1}{m \alpha}
$$



$$
\psi_{\mathbf{k}} \rightarrow e^{i \mathbf{k} \cdot \mathbf{x}}
$$

large velocity

- Scattering states $\psi_{\mathbf{k}}(\mathbf{x})$
$\xi_{\mathrm{foc}}(k) \equiv \frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi}{k} \frac{1}{R_{\star}}=\frac{2 \pi \alpha}{v}$
$m v^{\swarrow}$

$$
\xi_{\text {foc }}(k) \ll 1 \quad \leftrightarrow v \gg 2 \pi \alpha
$$

$$
\stackrel{R_{\star}}{\stackrel{2}{\longleftrightarrow}} \frac{1}{m \alpha}
$$



$$
\psi_{\mathbf{k}} \rightarrow e^{i \mathbf{k} \cdot \mathbf{x}}
$$

large velocity

small velocity

- Scattering states $\psi_{\mathbf{k}}(\mathbf{x})$

$$
\begin{array}{ll}
\xi_{\text {foc }}(k) \equiv \frac{\lambda_{\mathrm{dB}}}{R_{\star}}= & \frac{2 \pi}{k} \frac{1}{R_{\star}}=\frac{2 \pi \alpha}{v} \\
m v^{\swarrow} & \\
& \\
& \\
& \\
\xi_{\text {foc }}(k \alpha)^{-1} \gg 1 \leftrightarrow v \ll 2 \pi \alpha
\end{array}
$$

$$
\psi_{\mathbf{k}} \rightarrow e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Scattering states $\psi_{\mathbf{k}}(\mathbf{x})$

$$
\xi_{\mathrm{foc}}(k) \equiv \frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi}{k} \frac{1}{R_{\star}}=\frac{2 \pi \alpha}{v},
$$

$$
\xi_{\text {foc }}(k) \ll 1 \quad \leftrightarrow v \gg 2 \pi \alpha
$$

gravitational focusing

$\dot{M}_{\star}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}$

$$
\Gamma_{1}<\Gamma_{2}
$$

stripping dominates

- Scattering states $\psi_{\mathbf{k}}(\mathbf{x})$

$$
\begin{array}{cc}
\xi_{\mathrm{foc}}(k) \equiv \frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi}{k} \frac{1}{R_{\star}}=\frac{2 \pi \alpha}{v} & \\
m v^{\swarrow} & (m \alpha)^{-1} \\
\xi_{\text {foc }}(k) \gg 1 \leftrightarrow v \ll 2 \pi \alpha
\end{array}
$$

$$
\xi_{\mathrm{foc}}(k) \ll 1 \quad \leftrightarrow v \gg 2 \pi \alpha
$$

$$
\psi_{\mathbf{k}} \rightarrow e^{i \mathbf{k} \cdot \mathbf{x}}
$$

energy $\gg$ binding energy

$$
\frac{m v^{2}}{2} \quad-\frac{m \alpha^{2}}{2}
$$

$$
\dot{M}_{\star}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}
$$

$\Gamma_{1}<\Gamma_{2}$
stripping dominates
gravitational focusing


$$
\Gamma_{1}>\Gamma_{2}
$$

stimulated capture dominates

in the Solar System

$$
\xi_{\mathrm{foc}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \simeq\left[\frac{m}{1.7 \times 10^{-14} \mathrm{eV}}\right]\left[\frac{M}{M_{\odot}}\right]\left[\frac{240 \mathrm{~km} / \mathrm{s}}{v_{\mathrm{dm}}}\right] \gtrsim 1
$$

i.e. if $m \gtrsim 1.7 \cdot 10^{-14} \mathrm{eV}$
$R_{\star} \lesssim \mathrm{AU}!$

in the Solar System

$$
\xi_{\mathrm{foc}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \simeq\left[\frac{m}{1.7 \times 10^{-14} \mathrm{eV}}\right]\left[\frac{M}{M_{\odot}}\right]\left[\frac{240 \mathrm{~km} / \mathrm{s}}{v_{\mathrm{dm}}}\right] \gtrsim 1
$$

i.e. if $m \gtrsim 1.7 \cdot 10^{-14} \mathrm{eV}$
$R_{\star} \lesssim \mathrm{AU}!$

in the Solar System

$$
\xi_{\mathrm{foc}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \simeq\left[\frac{m}{1.7 \times 10^{-14} \mathrm{eV}}\right]\left[\frac{M}{M_{\odot}}\right]\left[\frac{240 \mathrm{~km} / \mathrm{s}}{v_{\mathrm{dm}}}\right] \gtrsim 1
$$

i.e. if $m \gtrsim 1.7 \cdot 10^{-14} \mathrm{eV}$
$R_{\star} \lesssim \mathrm{AU}!$

## Bound state formation: derivation

$$
S_{\mathrm{non}-\mathrm{rel}}=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\mathrm{ex}}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right]
$$

## Bound state formation: derivation

$$
S_{\mathrm{non}-\mathrm{rel}}=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\mathrm{ex}}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right]
$$

## Bound state formation: derivation

$$
S_{\mathrm{non}-\mathrm{rel}}=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\mathrm{ex}}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right]
$$

$$
k_{1}+k_{2} \rightarrow k_{3}+100
$$



$$
\mathcal{A}=\left\langle k_{3} n l m\right| T\left[\hat{H}_{\text {int }}\right]\left|k_{1} k_{2}\right\rangle
$$

## Bound state formation: derivation

$$
\begin{gathered}
S_{\text {non-rel }}=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\mathrm{ex}}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right] \\
\mathcal{H}_{\mathrm{int}} \\
k_{1}+k_{2} \rightarrow k_{3}+100 \\
k_{1} \\
\hat{\psi}(x) \hat{\psi}(x)\left|k_{1} k_{2}\right\rangle=2 \psi_{\mathbf{k}_{1}}(\mathbf{x}) \psi_{\mathbf{k}_{\mathbf{2}}}(\mathbf{x}) e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}\right) t}|0\rangle \\
k_{3} \quad \mathcal{A}=\left\langle k_{3} n l m\right| T\left[\hat{H}_{\text {int }}\right]\left|k_{1} k_{2}\right\rangle=2 g(2 \pi) \delta(\Delta \omega) \mathcal{M}
\end{gathered}
$$

## Bound state formation: derivation

$$
\begin{aligned}
& S_{\mathrm{non}-\mathrm{rel}}=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\mathrm{ex}}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right] \\
& k_{1}+k_{2} \rightarrow k_{3}+100 \\
& >_{k_{2}}^{k_{1}} \\
& \hat{\psi}(x) \hat{\psi}(x)\left|k_{1} k_{2}\right\rangle=2 \psi_{\mathbf{k}_{\mathbf{1}}}(\mathbf{x}) \psi_{\mathbf{k}_{\mathbf{2}}}(\mathbf{x}) e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}\right) t}|0\rangle \\
& \mathcal{A}=\left\langle k_{3} n l m\right| T\left[\hat{H}_{\text {int }}\right]\left|k_{1} k_{2}\right\rangle=2 g(2 \pi) \delta(\Delta \omega) \mathcal{M} \\
& \mathcal{M}=\int d^{3} x \psi_{100}^{*} \psi_{\mathbf{k}_{\mathbf{3}}}^{*} \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{\mathbf{2}}}
\end{aligned}
$$

## Bound state formation: derivation

$$
\begin{aligned}
& S_{\text {non-rel }}=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\text {ex }}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right] \\
& \mathcal{H}_{\text {int }}
\end{aligned} \underbrace{\begin{aligned}
\Delta \omega & \equiv \omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}-\omega_{1}
\end{aligned}}_{\hat{\psi}(x) \hat{\psi}(x)\left|k_{1} k_{2}\right\rangle=2 \psi_{\mathbf{k}_{\mathbf{1}}(\mathbf{x}) \psi_{\mathbf{k}_{\mathbf{2}}}(\mathbf{x}) e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}\right) t}|0\rangle}^{k_{1}+k_{2} \rightarrow k_{3}+100} \begin{aligned}
\mathcal{A} & =\left\langle k_{3} n l m\right| T\left[\hat{H}_{\text {int }}\right]\left|k_{1} k_{2}\right\rangle=2 g(2 \pi) \delta(\Delta \omega) \mathcal{M}
\end{aligned}} \begin{aligned}
& =\frac{k_{1}^{2}}{2 m}+\frac{k_{2}^{2}}{2 m}-\frac{k_{3}^{2}}{2 m}+\frac{m \alpha^{2}}{2}
\end{aligned}
$$

## Bound state formation: derivation

$$
\begin{aligned}
& S_{\mathrm{non}-\mathrm{rel}}=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\mathrm{ex}}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right] \\
& k_{1}+k_{2} \rightarrow k_{3}+100 \\
& >_{k_{2}}^{k_{1}} \\
& \hat{\psi}(x) \hat{\psi}(x)\left|k_{1} k_{2}\right\rangle=2 \psi_{\mathbf{k}_{\mathbf{1}}}(\mathbf{x}) \psi_{\mathbf{k}_{\mathbf{2}}}(\mathbf{x}) e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}\right) t}|0\rangle \\
& \mathcal{A}=\left\langle k_{3} n l m\right| T\left[\hat{H}_{\text {int }}\right]\left|k_{1} k_{2}\right\rangle=2 g(2 \pi) \delta(\Delta \omega) \mathcal{M} \\
& \Delta \omega \equiv \omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}-\omega_{1} \quad \mathcal{M}=\int d^{3} x \psi_{100}^{*} \psi_{\mathbf{k}_{3}}^{*} \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \\
& =\frac{k_{1}^{2}}{2 m}+\frac{k_{2}^{2}}{2 m}-\frac{k_{3}^{2}}{2 m}+\frac{m \alpha^{2}}{2}
\end{aligned}
$$

$$
P_{k_{1}+k_{2} \rightarrow k_{3}+100}=(2 \pi) \delta(\Delta \omega) 4 g^{2}|\mathcal{M}|^{2}
$$

$$
P_{k_{1}+k_{2} \rightarrow k_{3}+100}=(2 \pi) \delta(\Delta \omega) 4 g^{2}|\mathcal{M}|^{2}
$$

$$
P_{k_{1}+k_{2} \rightarrow k_{3}+100}=(2 \pi) \delta(\Delta \omega) 4 g^{2}|\mathcal{M}|^{2}
$$



subtract inverse process
=
subtract inverse process

$$
\frac{d N_{0}}{d t}=\frac{4 g^{2}}{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left[\left(f\left(\mathbf{k}_{\mathbf{3}}\right)+1\right)\left(N_{0}+1\right) f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-f\left(\mathbf{k}_{\mathbf{3}}\right) N_{0}\left(f\left(\mathbf{k}_{\mathbf{1}}\right)+1\right)\left(f\left(\mathbf{k}_{\mathbf{2}}\right)+1\right)\right](2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2}
$$


subtract inverse process

$$
\frac{d N_{0}}{d t}=\frac{4 g^{2}}{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left[\left(f\left(\mathbf{k}_{\mathbf{3}}\right)+1\right)\left(N_{0}+1\right) f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-f\left(\mathbf{k}_{\mathbf{3}}\right) N_{0}\left(f\left(\mathbf{k}_{\mathbf{1}}\right)+1\right)\left(f\left(\mathbf{k}_{\mathbf{2}}\right)+1\right)\right](2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2}
$$

 -

subtract inverse process

Bose enhancement:

$$
P_{\text {indist }}=(N+1) P_{\text {dist }}
$$

$$
\frac{d N_{0}}{d t}=\frac{4 g^{2}}{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left[\left(f\left(\mathbf{k}_{\mathbf{3}}\right)+1\right)\left(N_{0}+1\right) f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-f\left(\mathbf{k}_{\mathbf{3}}\right) N_{0}\left(f\left(\mathbf{k}_{\mathbf{1}}\right)+1\right)\left(f\left(\mathbf{k}_{\mathbf{2}}\right)+1\right)\right](2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2}
$$


subtract inverse process

$$
\begin{aligned}
& \text { Bose enhancement: } \\
& P_{\text {indist }}=(N+1) P_{\text {dist }} \\
& \frac{d N_{0}}{d t}=\frac{4 g^{2}}{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left[\left(f\left(\mathbf{k}_{\mathbf{3}}\right)+1\right)\left(N_{0}+1\right) f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-f\left(\mathbf{k}_{\mathbf{3}}\right) N_{0}\left(f\left(\mathbf{k}_{\mathbf{1}}\right)+1\right)\left(f\left(\mathbf{k}_{\mathbf{2}}\right)+1\right)\right](2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2} \\
& \text { initial state density }
\end{aligned}
$$

$$
=2 g^{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left\{f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)+N_{0}\left[f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-2 f\left(\mathbf{k}_{\mathbf{2}}\right) f\left(\mathbf{k}_{\mathbf{3}}\right)\right]\right\}(2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2}
$$


subtract inverse process

$$
\begin{gathered}
\text { Bose enhancement: } \\
\begin{array}{l}
P_{\text {indist }}=(N+1) P_{\text {dist }} \\
d t
\end{array}=\frac{4 g^{2}}{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left[\left(f\left(\mathbf{k}_{\mathbf{3}}\right)+1\right)\left(N_{0}+1\right) f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-f\left(\mathbf{k}_{\mathbf{3}}\right) N_{0}\left(f\left(\mathbf{k}_{\mathbf{1}}\right)+1\right)\left(f\left(\mathbf{k}_{\mathbf{2}}\right)+1\right)\right](2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2} \\
\text { initial state density } \\
=2 g^{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left\{f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)+N_{0}\left[f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-2 f\left(\mathbf{k}_{\mathbf{2}}\right) f\left(\mathbf{k}_{\mathbf{3}}\right)\right]\right\}(2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2} \\
M_{\star}=m N_{0} \rightarrow \rightarrow \quad \dot{M}_{\star}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}
\end{gathered}
$$


subtract inverse process

$$
\begin{gathered}
\text { Bose enhancement: } \\
\begin{array}{l}
P_{\text {indist }}=(N+1) P_{\text {dist }} \\
d t
\end{array}=\frac{4 g^{2}}{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left[\left(f\left(\mathbf{k}_{\mathbf{3}}\right)+1\right)\left(N_{0}+1\right) f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-f\left(\mathbf{k}_{\mathbf{3}}\right) N_{0}\left(f\left(\mathbf{k}_{\mathbf{1}}\right)+1\right)\left(f\left(\mathbf{k}_{\mathbf{2}}\right)+1\right)\right](2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2} \\
\text { initial state density } \\
=2 g^{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left\{f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)+N_{0}\left[f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-2 f\left(\mathbf{k}_{\mathbf{2}}\right) f\left(\mathbf{k}_{\mathbf{3}}\right)\right]\right\}(2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2} \\
M_{\star}=m N_{0} \rightarrow \rightarrow \quad \dot{M_{\star}}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}
\end{gathered}
$$

$$
\begin{gathered}
\Gamma \equiv \Gamma_{1}-\Gamma_{2}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-2 f\left(\mathbf{k}_{\mathbf{2}}\right) f\left(\mathbf{k}_{\mathbf{3}}\right)\right\} \\
k_{1} k_{2} k_{3}^{100} k_{3} k^{k_{2}} k_{1}
\end{gathered}
$$

$$
\Gamma \equiv \Gamma_{1}-\Gamma_{2}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-2 f\left(\mathbf{k}_{\mathbf{2}}\right) f\left(\mathbf{k}_{\mathbf{3}}\right)\right\}
$$




$$
\begin{aligned}
\xi_{\mathrm{foc}} & =\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gg 1 \\
m & \gtrsim 10^{-14} \mathrm{eV}
\end{aligned}
$$



$$
\begin{gathered}
\Gamma \equiv \Gamma_{1}-\Gamma_{2}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{f\left(\mathbf{k}_{\mathbf{1}}\right) f\left(\mathbf{k}_{\mathbf{2}}\right)-2 f\left(\mathbf{k}_{\mathbf{2}}\right) f\left(\mathbf{k}_{\mathbf{3}}\right)\right\} \\
k_{1} k_{2} k_{3}^{100} k_{3} k^{k_{2}} k_{1}
\end{gathered}
$$

$$
\begin{aligned}
\xi_{\mathrm{foc}} & =\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gg 1 \\
m & \gtrsim 10^{-14} \mathrm{eV}
\end{aligned}
$$



$$
\begin{aligned}
& \Gamma_{1} \simeq \text { const } \\
& \Gamma_{2} \simeq e^{-\xi_{\text {foc }}}
\end{aligned} \rightarrow \Gamma>0
$$

$$
\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}
$$

Phases of formation

$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
Phases of formation


$$
\rho_{\text {crit }} \equiv \frac{2 \Phi_{\mathrm{ex}} m^{2}}{|g|} \simeq 2 \frac{\alpha^{2} m^{2}}{|g|} \simeq 6 \cdot 10^{4} \rho_{\mathrm{dm}}\left[\frac{f_{a}}{5 \cdot 10^{7} \mathrm{GeV}}\right]^{2}\left[\frac{m}{1.7 \cdot 10^{-14} \mathrm{eV}}\right]^{4}\left[\frac{M}{M_{\odot}}\right]^{2}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]
$$

## $\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$

Phases of formation

Bosenova

$\xi_{\text {foc }} \ll 1$
$\Gamma<0$
$|\Gamma| t$

$$
\rho_{\text {crit }} \equiv \frac{2 \Phi_{\mathrm{ex}} m^{2}}{|g|} \simeq 2 \frac{\alpha^{2} m^{2}}{|g|} \simeq 6 \cdot 10^{4} \rho_{\mathrm{dm}}\left[\frac{f_{a}}{5 \cdot 10^{7} \mathrm{GeV}}\right]^{2}\left[\frac{m}{1.7 \cdot 10^{-14} \mathrm{eV}}\right]^{4}\left[\frac{M}{M_{\odot}}\right]^{2}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]
$$

## $\Gamma^{-1} \leftrightarrow$

 relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$
## $\Gamma^{-1} \leftrightarrow$

relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$


## $\Gamma^{-1} \leftrightarrow$

relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$


- the size of $\lambda$ ( or $f_{a}$ ) only enters into $\Gamma$


## Comparison with simulations




- transition around $\xi=1$
density profile after 5 Gyr

- bands have $v_{\mathrm{dm}}=50 \div 240 \mathrm{~km} / \mathrm{s}$
- $f_{a}($ or $\lambda)$ fixed in $10^{7} \div 10^{8} \mathrm{GeV}$



$$
\begin{aligned}
& \delta \equiv \rho / \bar{\rho}-1 \\
& \ddot{\delta}_{\mathbf{k}}+2 H \dot{\delta}_{\mathbf{k}}-\left[4 \pi G \rho+\frac{k^{2}}{a^{2}} \frac{\rho}{8 f_{a}^{2} m_{a}^{2}}\right] \delta_{\mathbf{k}}=0
\end{aligned}
$$



$$
\delta \equiv \rho / \bar{\rho}-1
$$

$$
\begin{aligned}
\ddot{\delta}_{\mathbf{k}}+2 H \dot{\delta}_{\mathbf{k}}-\underbrace{\left[4 \pi G \rho+\frac{k^{2}}{a^{2}} \frac{\rho}{8 f_{a}^{2} m_{a}^{2}}\right]}_{4 \pi G \rho\left[1+\left(\frac{k_{\text {today }}}{k_{\lambda}} \frac{a_{\mathrm{eq}}}{a}\right)^{2}\right]} \delta_{\mathbf{k}}=0 \\
k_{\lambda} \simeq \frac{3.8}{\mathrm{Mpc}} \frac{f_{a}}{10^{7} \mathrm{GeV}} \frac{m}{10^{-14} \mathrm{eV}}
\end{aligned}
$$


dark matter overdensity at the center (of the Sun)

effective coherence time
dark matter overdensity at the center (of the Sun)
$\tau_{\star} \gtrsim \frac{2 \pi}{m \alpha^{2}}=\left[\frac{2 \pi}{\xi_{\text {foc }}}\right]^{2} \tau_{\mathrm{dm}} \simeq 1$ year $\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{3}$



## Summary

- Small ULDM self-interactions induce the capture of the galaxy halo DM
$\rightarrow$ happens efficiently when galactic DM is gravitationally focused, i.e. if $\frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gtrsim 1$
$\rightarrow$ leads to exponential growth of gravitational atoms bound to the Sun for $m \gtrsim 10^{-14} \mathrm{eV}$
$\rightarrow$ speed of the process depends on $f_{a}$ (or $\lambda$ ) and ends with Bosenova explosions


## Summary

- Small ULDM self-interactions induce the capture of the galaxy halo DM
$\rightarrow$ happens efficiently when galactic DM is gravitationally focused, i.e. if $\frac{\lambda_{\mathrm{dB}}}{R_{\star}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gtrsim 1$
$\rightarrow$ leads to exponential growth of gravitational atoms bound to the Sun for $m \gtrsim 10^{-14} \mathrm{eV}$
$\rightarrow$ speed of the process depends on $f_{a}$ (or $\lambda$ ) and ends with Bosenova explosions


## Outlook

- direct detection on Earth, larger DM density and coherence time
- detection of Bosenova explosions
- apply to other systems, including more massive object and SMBH (smaller $m$ )


## Thanks!

Backup

## Motivated example of light particles

## Axion or ALP, $\phi$

- Approximate shift symmetry, $\phi \rightarrow \phi+c$
- Broken by $V(\phi)$, periodic of period $2 \pi f_{a}$
$\rightarrow$ mass $m \lll f_{a}$

$$
\text { e.g. } V(\phi)=-m^{2} f_{a}^{2} \cos \left(\phi / f_{a}\right)
$$



## Motivated example of light particles

## Axion or ALP, $\phi$

- Approximate shift symmetry, $\phi \rightarrow \phi+c$
- Broken by $V(\phi)$, periodic of period $2 \pi f_{a}$

$$
\rightarrow \text { mass } m \lll f_{a}
$$

$$
\text { e.g. } V(\phi)=-m^{2} f_{a}^{2} \cos \left(\phi / f_{a}\right)
$$

$$
V(\phi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}+\ldots
$$



$$
\lambda=-\frac{m^{2}}{f_{a}^{2}}<0
$$

Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{\mathrm{dm}}$

$$
\phi\left(t, \vec{x}_{\mathrm{det}}\right)=\phi_{0} \cos (\overbrace{m t+\varphi(t)}^{\omega t}
$$

Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{\mathrm{dm}}$

$$
\begin{aligned}
\phi\left(t, \vec{x}_{\mathrm{det}}\right)= & \overbrace{\phi_{0} \cos (\overbrace{m t+\varphi(t)})}^{\omega t} \\
& \propto \sqrt{\rho} \quad \backslash_{m v_{\mathrm{dm}}^{2} t / 2+\cdots}
\end{aligned}
$$

$\varphi(t)$ changes by order one at:


$$
\tau_{\mathrm{dm}} \simeq \frac{2 \pi}{m v_{\mathrm{dm}}^{2}} \simeq 1 \text { year } \frac{10^{-16} \mathrm{eV}}{m}\left[\frac{10^{-3}}{v_{\mathrm{dm}}}\right]^{2}
$$

Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{\mathrm{dm}}$

$\varphi(t)$ changes by order one at:

$$
\tau_{\mathrm{dm}} \simeq \frac{2 \pi}{m v_{\mathrm{dm}}^{2}} \simeq 1 \text { year } \frac{10^{-16} \mathrm{eV}}{m}\left[\frac{10^{-3}}{v_{\mathrm{dm}}}\right]^{2}
$$

In this talk: - $\phi$ is the dark matter

$$
\text { axion } \rightarrow \quad \lambda=-\frac{m^{2}}{f_{a}^{2}}
$$

- $\begin{array}{r}V(\phi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}+\ldots \\ \neq 0\end{array}$

Overdensities at small scales, in addition to the galaxy halo

1) Boson stars/miniclusters $\rightarrow$ low encounter rate for $m \ll 1 \mathrm{eV}$

$$
\delta(x)=\frac{\rho(x)-\bar{\rho}}{\bar{\rho}}
$$

$$
\simeq \frac{1}{10 \mathrm{yr}}\left[\frac{m}{1 \mathrm{eV}}\right]^{\frac{1}{2}}
$$



Overdensities at small scales, in addition to the galaxy halo

1) Boson stars/miniclusters $\rightarrow$ low encounter rate for $m \ll 1 \mathrm{eV}$

$$
\delta(x)=\frac{\rho(x)-\bar{\rho}}{\bar{\rho}}
$$

$$
\simeq \frac{1}{10 \mathrm{yr}}\left[\frac{m}{1 \mathrm{eV}}\right]^{\frac{1}{2}}
$$



$\Rightarrow$ 2) Dark matter bound to the Sun in a 'halo' with large overdensity

: ミミミミニミニニニニこーーー

: ミミミミニミニニニニこーーー

## $\Gamma^{-1} \leftrightarrow$

 relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$$\Gamma^{-1} \leftrightarrow$
relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$


- the size of $\lambda$ ( or $f_{a}$ ) only enters into $\Gamma$
$\Gamma^{-1} \leftrightarrow$
relaxation time $\quad \tau_{\text {rel }} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$


- the size of $\lambda\left(\right.$ or $\left.f_{a}\right)$ only enters into $\Gamma$


## $\Gamma^{-1} \leftrightarrow$

 relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$
## $\Gamma^{-1} \leftrightarrow$

relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$


## $\Gamma^{-1} \leftrightarrow$

relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$


## Large occupation numbers

Quantum mechanics with potential $V(x)$

- $\hat{x}, \hat{p}$ position and momentum operators
- $|\psi\rangle$ state
- average values defined as e.g. $\langle p\rangle \equiv\langle\psi| \hat{p}|\psi\rangle$


## Large occupation numbers

Quantum mechanics with potential $V(x)$

- $\hat{x}, \hat{p}$ position and momentum operators
- $|\psi\rangle$ state
- average values defined as e.g. $\langle p\rangle \equiv\langle\psi| \hat{p}|\psi\rangle$

Ehrenfest Th:

$$
m \frac{d}{d t}\langle x\rangle=\langle p\rangle \quad \frac{d}{d t}\langle p\rangle=-\left\langle V^{\prime}(x)\right\rangle
$$

'average values follow the classical equations of motion (Newton eq.)'

$$
\left\{\begin{array}{l}
m \dot{x}=p \\
\dot{p}=-V^{\prime}(x)
\end{array}\right.
$$

- $A(x, p)$ observable

$$
\frac{d}{d t}\langle A\rangle=\frac{1}{i \hbar}\langle[A, H]\rangle
$$

## Large occupation numbers

Quantum mechanics with potential $V(x)$

- $\hat{x}, \hat{p}$ position and momentum operators
- $|\psi\rangle$ state
- average values defined as e.g. $\langle p\rangle \equiv\langle\psi| \hat{p}|\psi\rangle$

Ehrenfest Th:

$$
m \frac{d}{d t}\langle x\rangle=\langle p\rangle \quad \frac{d}{d t}\langle p\rangle=-\left\langle V^{\prime}(x)\right\rangle
$$

'average values follow the classical equations of motion (Newton eq.)'

$$
\left\{\begin{array}{l}
m \dot{x}=p \\
\dot{p}=-V^{\prime}(x)
\end{array}\right.
$$

- $A(x, p)$ observable

$$
\frac{d}{d t}\langle A\rangle=\frac{1}{i \hbar}\langle[A, H]\rangle
$$

- Occupation number operator $\hat{N} \longrightarrow$ Occupation number in $|\psi\rangle: N \equiv\langle\hat{N}\rangle$
- Variance from the mean:

$$
\left\langle A^{2}\right\rangle-\langle A\rangle^{2} \propto \frac{1}{N^{\#>0}}
$$

'classical equations of motion are a good approximation of the full quantum evolution'

Solar halo dark matter overdensity


Overdensities at small scales, in addition to the galaxy halo

1) Boson stars/miniclusters $\rightarrow$ low encounter rate for $m \ll 1 \mathrm{eV}$

$$
\delta(x)=\frac{\rho(x)-\bar{\rho}}{\bar{\rho}}
$$

$$
\simeq \frac{1}{10 \mathrm{yr}}\left[\frac{m}{1 \mathrm{eV}}\right]^{\frac{1}{2}}
$$



Overdensities at small scales, in addition to the galaxy halo

1) Boson stars/miniclusters $\rightarrow$ low encounter rate for $m \ll 1 \mathrm{eV}$

$$
\delta(x)=\frac{\rho(x)-\bar{\rho}}{\bar{\rho}}
$$

$$
\simeq \frac{1}{10 \mathrm{yr}}\left[\frac{m}{1 \mathrm{eV}}\right]^{\frac{1}{2}}
$$



$\Rightarrow$ 2) Dark matter bound to the Sun in a 'halo' with large overdensity

Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{\mathrm{dm}}$

$$
\phi\left(t, \vec{x}_{\mathrm{det}}\right)=\phi_{0} \cos (m t+\varphi(t))
$$

Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{\mathrm{dm}}$

$$
\begin{aligned}
\phi\left(t, \vec{x}_{\mathrm{det}}\right)= & \phi_{0} \cos (m t+\varphi(t)) \\
& \propto \sqrt{\rho} \quad \backslash_{\mathrm{dm}} t / 2+\cdots
\end{aligned}
$$

phase changes of order one at:

$$
\tau_{\mathrm{dm}} \simeq \frac{2 \pi}{m v_{\mathrm{dm}}^{2}} \simeq 1 \text { year } \frac{10^{-16} \mathrm{eV}}{m}\left[\frac{10^{-3}}{v_{\mathrm{dm}}}\right]^{2}
$$



Dark matter detection prospects depend on:

- Local density $\rho$ in the neighborhood of the Sun
- Coherence time, $\tau_{\mathrm{dm}}$

$$
\begin{aligned}
\phi\left(t, \vec{x}_{\mathrm{det}}\right)= & \phi_{0} \cos (m t+\varphi(t)) \\
& \propto \sqrt{\rho} \quad \backslash_{\mathrm{dm}} t / 2+\cdots
\end{aligned}
$$

phase changes of order one at:

$$
\tau_{\mathrm{dm}} \simeq \frac{2 \pi}{m v_{\mathrm{dm}}^{2}} \simeq 1 \text { year } \frac{10^{-16} \mathrm{eV}}{m}\left[\frac{10^{-3}}{v_{\mathrm{dm}}}\right]^{2}
$$

In this talk:

- $\phi$ is the dark matter
- $\begin{array}{r}V(\phi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}+\ldots \\ \neq 0\end{array}$
axion $\rightarrow \quad \lambda=-\frac{m^{2}}{f_{a}^{2}}$
$\rightarrow \quad$ misalignment fixes $f_{a}=f_{a}\left(m ; \theta_{0}\right)$ relation between $m$ and $f_{a}$ unfixed

: ミミミミニミニニニニこーーー

: ミミミミニミニニニニこーーー

$$
\psi_{\mathbf{k}}=e^{i \mathbf{k} \cdot \mathbf{x}} \Gamma\left[1-\frac{i}{k R_{\star}}\right] e^{\frac{\pi}{2 k R_{\star}}}{ }_{1} F_{1}\left[\frac{i}{k R_{\star}}, 1, i(k r-\mathbf{k} \cdot \mathbf{x})\right]
$$

$$
\psi_{\mathbf{k}} \rightarrow e^{i \mathbf{k} \cdot \mathbf{x}}, \quad \xi_{\mathrm{foc}}(k) \ll 1
$$

$$
\psi_{\mathbf{k}} \rightarrow e^{i \varphi(k)} \sqrt{\frac{2 \pi}{k R_{\star}}} J_{0}\left[2 \sqrt{\frac{r}{R_{\star}}(1-\hat{k} \cdot \hat{x})}\right], \quad \quad \xi_{\mathrm{foc}}(k) \gg 1
$$

$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping

$$
\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}
$$

$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping
$\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}$




$$
\begin{gathered}
\xi_{\mathrm{foc}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gg 1 \\
m \gtrsim 10^{-14} \mathrm{eV}
\end{gathered}
$$


$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
$\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{\begin{array}{c}\text { capture } \\ \left.m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}\end{array}\right.$




$$
\begin{aligned}
& \xi_{\text {foc }}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gg 1 \\
& m \gtrsim 10^{-14} \mathrm{eV}
\end{aligned}
$$



$$
\begin{aligned}
& \Gamma_{1} \simeq \mathrm{const} \\
& \Gamma_{2} \simeq e^{-\xi_{\mathrm{foc}}} \quad \rightarrow \Gamma>0
\end{aligned}
$$

## Quantum scattering and Bose Enhancement

$$
S=-\int d t d^{3} x\left[\frac{i}{2}\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)+\frac{1}{2 m}|\nabla \psi|^{2}+m \Phi_{\mathrm{ex}}|\psi|^{2}+\frac{1}{2} g|\psi|^{4}\right]
$$

$$
k_{1}+k_{2} \rightarrow k_{3}+n l m
$$

$$
\mathcal{A}=\left\langle k_{3} n l m\right| T\left[\dot{H}_{\text {int }}\right]\left|k_{1} k_{2}\right\rangle=2 g(2 \pi) \delta(\Delta \omega) \mathcal{M}
$$

$$
\text { probability }=(2 \pi) \delta(\Delta \omega) 4 g^{2}|\mathcal{M}|^{2}
$$

$$
\dot{N}=\frac{4 g^{2}}{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left[\left(\rho\left(\mathbf{k}_{\mathbf{3}}\right)+1\right)\left(N_{0}+1\right) \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-\rho\left(\mathbf{k}_{\mathbf{3}}\right) N_{0}\left(\rho\left(\mathbf{k}_{\mathbf{1}}\right)+1\right)\left(\rho\left(\mathbf{k}_{\mathbf{2}}\right)+1\right)\right](2 \pi) \delta(\Delta \omega)|\mathcal{M}|^{2}
$$

$$
\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}
$$

$$
\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}
$$

$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping

$$
\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}
$$

$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping
$\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}$


$$
\begin{aligned}
\xi_{\mathrm{foc}} & =\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \ll 1 \\
m & \lesssim 10^{-14} \mathrm{eV}
\end{aligned}
$$

$\leadsto \sim \sim$
$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping
$\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}$




$$
\begin{aligned}
\xi_{\mathrm{foc}} & =\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \ll 1 \\
m & \lesssim 10^{-14} \mathrm{eV}
\end{aligned}
$$


$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping
$\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}$




$$
\begin{gathered}
\xi_{\text {foc }}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \ll 1 \\
m \lesssim 10^{-14} \mathrm{eV}
\end{gathered}
$$


$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$

$$
\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}
$$





$$
\begin{gathered}
\xi_{\mathrm{foc}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \ll 1 \\
m \lesssim 10^{-14} \mathrm{eV}
\end{gathered}
$$



$$
\begin{array}{r}
\mathcal{M}=\int d^{3} x \psi_{100}^{*} \psi_{\mathbf{k}_{3}}^{*} \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \\
e^{-\frac{r}{R_{\star}}}
\end{array} e^{i \mathbf{k} \cdot \mathbf{x}}
$$



$$
\begin{gathered}
\mathcal{M} \propto \xi_{\text {foc }}^{4} \ll 1 \\
\Gamma_{2} \simeq 2 \Gamma_{1} \quad \rightarrow \quad \Gamma<0
\end{gathered}
$$

## Bound state formation: classical perturbation theory

- for $g \neq 0, \psi_{w}(t, \mathbf{x})$ is not an exact solution

$$
\rightarrow \quad \dot{M}_{\star}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}
$$

- if $\rho<\rho_{\text {crit }}$ the self-interaction term $g|\psi|^{2} \psi$ is perturbative

$$
\psi=\psi^{(0)}+\delta \psi
$$

## Bound state formation: classical perturbation theory

- for $g \neq 0, \quad \psi_{w}(t, \mathbf{x})$ is not an exact solution

$$
\rightarrow \quad \dot{M}_{\star}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}
$$

- if $\rho<\rho_{\text {crit }}$ the self-interaction term $g|\psi|^{2} \psi$ is perturbative

$$
\psi=\psi^{(0)}+\underbrace{\delta \psi}_{\begin{array}{c}
\text { perturbation due to } \\
\text { self-interactions }
\end{array}}
$$

## Bound state formation: classical perturbation theory

- for $g \neq 0, \psi_{w}(t, \mathbf{x})$ is not an exact solution

$$
\rightarrow \quad \dot{M}_{\star}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}
$$

- if $\rho<\rho_{\text {crit }}$ the self-interaction term $g|\psi|^{2} \psi$ is perturbative

$$
\psi=\psi^{(0)}+\underbrace{\delta \psi}_{\begin{array}{c}
\text { perturbation due to } \\
\text { self-interactions }
\end{array}}
$$

$$
\mathcal{O}\left(\lambda^{0}\right): \quad\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi^{(0)}=0
$$

- for $g \neq 0, \psi_{w}(t, \mathbf{x})$ is not an exact solution

$$
\rightarrow \quad \dot{M}_{\star}=C+\left(\Gamma_{1}-\Gamma_{2}\right) M_{\star}
$$

- if $\rho<\rho_{\text {crit }}$ the self-interaction term $g|\psi|^{2} \psi$ is perturbative

$$
\psi=\psi^{(0)}+\underbrace{\delta \psi}_{\begin{array}{c}
\text { perturbation due to } \\
\text { self-interactions }
\end{array}}
$$

$$
\mathcal{O}\left(\lambda^{0}\right): \quad\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \psi^{(0)}=0
$$

$\mathcal{O}(\lambda):$
source for $\delta \psi$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$



$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \delta \psi=g\left|\psi^{(0)}\right|^{2} \psi^{(0)}
$$

$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \delta \psi=g\left|\psi^{(0)}\right|^{2} \psi^{(0)} \quad \psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \delta \psi=g\left|\psi^{(0)}\right|^{2} \psi^{(0)} \quad \psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

$$
\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i(\overbrace{\left.\omega_{i}+\omega_{j}-\omega_{k}\right)}^{\omega_{\text {ind }}} t}
$$

$$
\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \delta \psi=g\left|\psi^{(0)}\right|^{2} \psi^{(0)}
$$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

$$
\begin{array}{r}
\partial g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i \overbrace{\omega_{i}+\omega_{j}-\omega_{k}}) t} \\
\omega_{i}+\omega_{j}=\omega_{k}+\omega_{\mathrm{ind}}
\end{array}
$$


$\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}+\frac{\alpha}{r}\right) \delta \psi=g\left|\psi^{(0)}\right|^{2} \psi^{(0)}$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

$$
\begin{array}{r}
\partial g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i \overbrace{\left(\omega_{i}+\omega_{j}-\omega_{k}\right.}) t} \\
\omega_{i}+\omega_{j}=\omega_{k}+\omega_{\mathrm{ind}}
\end{array}
$$



- 3 relevant types of terms:
(a) $\psi_{i, j, k}=$ waves

$$
\supset g f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) f^{*}\left(\mathbf{k}_{3}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{\mathbf{k}_{3}}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}\right) t}
$$


capture

$$
\supset g f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) f^{*}\left(\mathbf{k}_{3}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{\mathbf{k}_{3}}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}\right) t}
$$


$\dot{M}_{\star} \sim m \frac{d}{d t} \int d^{3} x|\delta \psi|^{2} \sim$

$$
\supset g f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) f^{*}\left(\mathbf{k}_{3}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{\mathbf{k}_{3}}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}\right) t}
$$


$\dot{M}_{\star} \sim m \frac{d}{d t} \int d^{3} x|\delta \psi|^{2} \sim$
$\sim m g^{2} \int\left[d k_{1,2,3}\right] \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right)|\mathcal{M}|^{2} \delta(\Delta \omega) \quad \equiv C$
$\supset g f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) f^{*}\left(\mathbf{k}_{3}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{\mathbf{k}_{3}}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}\right) t}$

capture
$\dot{M}_{\star} \sim m \frac{d}{d t} \int d^{3} x|\delta \psi|^{2} \sim$

$$
\begin{aligned}
\sim m g^{2} \int\left[d k_{1,2,3}\right] \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right)|\mathcal{M}|^{2} \delta(\Delta \omega) & \equiv C \\
\mathcal{M}=\int d^{3} x \psi_{100}^{*} \psi_{\mathbf{k}_{3}}^{*} \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{\mathbf{2}}} \quad \Delta \omega & \equiv \omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}-\omega_{1} \\
& =\frac{k_{1}^{2}}{2 m}+\frac{k_{2}^{2}}{2 m}-\frac{k_{3}^{2}}{2 m}+\frac{m \alpha^{2}}{2}
\end{aligned}
$$

$$
\supset g f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) f^{*}\left(\mathbf{k}_{3}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{\mathbf{k}_{3}}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}\right) t}
$$


$\dot{M}_{\star} \sim m \frac{d}{d t} \int d^{3} x|\delta \psi|^{2} \sim$
Bose enhancement
$\sim m g^{2} \int\left[d k_{1,2,3}\right] \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right)|\mathcal{M}|^{2} \delta(\Delta \omega) \quad \equiv C$

$$
\begin{aligned}
\mathcal{M}=\int d^{3} x \psi_{100}^{*} \psi_{\mathbf{k}_{3}}^{*} \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \quad \Delta \omega & \equiv \omega_{k_{1}}+\omega_{k_{2}}-\omega_{k_{3}}-\omega_{1} \\
& =\frac{k_{1}^{2}}{2 m}+\frac{k_{2}^{2}}{2 m}-\frac{k_{3}^{2}}{2 m}+\frac{m \alpha^{2}}{2}
\end{aligned}
$$

$$
\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}
$$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

$g\left|\psi^{(0)}\right|^{2} \psi^{(0)}$

$$
\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}
$$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

(b) $\psi_{i, j}=$ waves, $\psi_{k}=$ bound

stimulated capture
$\supset g \sqrt{N_{\star}} f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{100}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{1}\right) t}$
$g\left|\psi^{(0)}\right|^{2} \psi^{(0)}$
$\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

(b) $\psi_{i, j}=$ waves, $\psi_{k}=$ bound

stimulated capture
$\supset g \sqrt{N_{\star}} f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{100}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{1}\right) t}$

$$
\begin{array}{r}
\dot{M}_{\star} \sim m g^{2} N_{\star} \int\left[d k_{1,2,3}\right] \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right)|\mathcal{M}|^{2} \delta(\Delta \omega) \equiv \Gamma_{1} M_{\star} \\
\downarrow \\
m N_{\star}
\end{array}
$$

$g\left|\psi^{(0)}\right|^{2} \psi^{(0)}$
$\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

(b) $\psi_{i, j}=$ waves, $\psi_{k}=$ bound

stimulated capture
$\supset g \sqrt{N_{\star}} f\left(\mathbf{k}_{1}\right) f\left(\mathbf{k}_{2}\right) \psi_{\mathbf{k}_{1}} \psi_{\mathbf{k}_{2}} \psi_{100}^{*} e^{-i\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{1}\right) t}$

$$
\begin{array}{r}
\dot{M}_{\star} \sim m g^{2} N_{\star} \int\left[d k_{1,2,3}\right] \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right)|\mathcal{M}|^{2} \delta(\Delta \omega) \equiv \Gamma_{1} M_{\star} \\
\downarrow \\
m N_{\star}
\end{array}
$$

$$
\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}
$$

$$
\psi^{(0)}=\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}+\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}
$$

$$
\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}
$$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

$g\left|\psi^{(0)}\right|^{2} \psi^{(0)}$

$$
\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}
$$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

(c) $\psi_{i, k}=$ waves, $\psi_{j}=$ bound

$\supset 2 g \sqrt{N_{\star}} f\left(\mathbf{k}_{1}\right) f^{*}\left(\mathbf{k}_{2}\right) \psi_{\mathbf{k}_{1}} \psi_{100} \psi_{\mathbf{k}_{2}}^{*} e^{-i\left(\omega_{k_{1}}-\omega_{k_{2}}+\omega_{1}\right) t}$
$g\left|\psi^{(0)}\right|^{2} \psi^{(0)}$
$\supset g \psi_{i} \psi_{j} \psi_{k}^{*} e^{-i\left(\omega_{i}+\omega_{j}-\omega_{k}\right) t}$

$$
\psi^{(0)}=\underbrace{\int[d k] f(\mathbf{k}) e^{-i \omega_{k} t} \psi_{\mathbf{k}}}_{\text {waves }}+\underbrace{\sqrt{N_{\star}} \psi_{100} e^{-i \omega_{1} t}}_{\text {bound state }}
$$

(c) $\psi_{i, k}=$ waves, $\psi_{j}=$ bound

$\supset 2 g \sqrt{N_{\star}} f\left(\mathbf{k}_{1}\right) f^{*}\left(\mathbf{k}_{2}\right) \psi_{\mathbf{k}_{1}} \psi_{100} \psi_{\mathbf{k}_{2}}^{*} e^{-i\left(\omega_{k_{1}}-\omega_{k_{2}}+\omega_{1}\right) t}$

$$
\dot{M}_{\star} \quad \sim-2 m g^{2} N_{\star} \int\left[d k_{1,2,3}\right] \rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right)|\mathcal{M}|^{2} \delta(\Delta \omega) \equiv-\Gamma_{2} M_{\star}
$$

$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping

$$
\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}
$$

$\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}$
capture stimulated capture stripping $\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}$




$$
\begin{aligned}
& \xi_{\text {foc }}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gg 1 \\
& m \gtrsim 10^{-14} \mathrm{eV}
\end{aligned}
$$

: ミミミミミミミミこここーー


$$
\dot{M}_{\star}=C+\underbrace{\left(\Gamma_{1}-\Gamma_{2}\right)}_{\Gamma} M_{\star}
$$

capture stimulated capture

$$
\left\{C, \Gamma_{1}-\Gamma_{2}\right\}=g^{2} \int\left[d k_{1,2,3}\right] \delta(\Delta \omega)|\mathcal{M}|^{2}\left\{m \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right), \quad \rho\left(\mathbf{k}_{\mathbf{1}}\right) \rho\left(\mathbf{k}_{\mathbf{2}}\right)-2 \rho\left(\mathbf{k}_{\mathbf{2}}\right) \rho\left(\mathbf{k}_{\mathbf{3}}\right)\right\}
$$





$$
\xi_{\mathrm{foc}}=\frac{2 \pi \alpha}{v_{\mathrm{dm}}} \gg 1
$$

$$
m \gtrsim 10^{-14} \mathrm{eV}
$$

: ミミミミミミミミミここここ


$$
\begin{aligned}
& \mathcal{M} \simeq \text { const } \\
& \Gamma_{1} \simeq \text { const } \\
& \Gamma_{2} \simeq e^{-\xi_{\text {foc }}} \quad \rightarrow \Gamma>0
\end{aligned}
$$

## $\Gamma^{-1} \leftrightarrow$

 relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$
## $\Gamma^{-1} \leftrightarrow$

relaxation time $\quad \tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}$


## Dilute atoms

$$
\mathcal{M}_{k_{1}+k_{2} \rightarrow k_{3}+100}=\int d^{3} x e^{i\left(\mathbf{k}_{1}+\mathbf{k}_{2}-\mathbf{k}_{3}\right) \cdot \mathbf{x}} \frac{e^{-r / R_{\star}}}{\sqrt{\pi R_{\star}^{3}}}=\frac{8 \sqrt{\pi R_{\star}^{3}}}{\left[1+\left(\Delta k R_{\star}\right)^{2}\right]^{2}}
$$

$$
\Gamma=
$$

$$
\frac{64 g^{2} \rho_{\mathrm{dm}}^{2} \alpha^{4}}{\left(\pi m v_{\mathrm{dm}}^{2}\right)^{3}} \int d p_{1} d p_{2} d \cos \theta_{1} d \cos \theta_{2} d \cos \theta_{3} d \phi_{1} d \phi_{2} \frac{p_{1}^{2} p_{2}^{2} p_{3}}{\left(1+\Delta p^{2}\right)^{4}}\left[e^{-\left(\frac{\alpha}{v_{\mathrm{dm}}} \mathbf{p}_{1}-\hat{z}\right)^{2}}-2 e^{-\left(\frac{\alpha}{v_{\mathrm{dm}}} \mathbf{p}_{3}-\hat{z}\right)^{2}}\right] e^{-\left(\frac{\alpha}{v_{\mathrm{dm}}} \mathbf{p}_{2}-\hat{z}\right)^{2}}
$$

## Dilute atoms

$$
\frac{\rho(r=0)}{\rho_{\mathrm{dm}}} \simeq \frac{0.4 \xi_{\mathrm{foc}}^{3}}{\pi^{5 / 2}} \simeq 5 \cdot 10^{-5}\left[\frac{M}{M_{\odot}} \frac{m}{2 \cdot 10^{-15} \mathrm{eV}} \frac{240 \mathrm{~km} / \mathrm{s}}{v_{\mathrm{dm}}}\right]^{3}
$$

$$
\tau_{\star} \gtrsim \frac{2 \pi}{m \alpha^{2}}=\left[\frac{2 \pi}{\xi_{\text {foc }}}\right]^{2} \tau_{\mathrm{dm}} \simeq 1 \text { year }\left[\frac{1.3 \cdot 10^{-14} \mathrm{eV}}{m}\right]^{3}
$$

## Excited states and two level system

$$
\begin{aligned}
\dot{N}_{100} & =2 g^{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left|\mathcal{M}_{k_{1}+k_{2} \rightarrow k_{3}+100}\right|^{2}(2 \pi) \delta\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{1}-\omega_{k_{3}}\right) \\
& \left\{\rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right)+N_{100}\left[\rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right)-2 \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right)\right]\right\} \\
& +4 g^{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left|\mathcal{M}_{k_{1}+100 \rightarrow k_{2}+200}\right|^{2}(2 \pi) \delta\left(\omega_{k_{1}}+\omega_{1}-\omega_{2}-\omega_{k_{2}}\right) \\
& \left\{N_{100} N_{200}\left[\rho\left(\mathbf{k}_{2}\right)-\rho\left(\mathbf{k}_{1}\right)\right]-\rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right)\left[N_{100}-N_{200}\right]\right\} \\
& +2 g^{2} \int[d k]\left|\mathcal{M}_{200+200 \rightarrow 100+k}\right|^{2}(2 \pi) \delta\left(2 \omega_{2}-\omega_{1}-\omega_{k}\right)\left\{\rho(\mathbf{k}) N_{200}^{2}+N_{100} N_{200}^{2}-2 N_{200} N_{100} \rho(\mathbf{k})\right\} .
\end{aligned}
$$

$$
\begin{aligned}
\dot{N}_{200} & =2 g^{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left[d k_{3}\right]\left|\mathcal{M}_{k_{1}+k_{2} \rightarrow k_{3}+200}\right|^{2}(2 \pi) \delta\left(\omega_{k_{1}}+\omega_{k_{2}}-\omega_{2}-\omega_{k_{3}}\right) \\
& \left\{\rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right)+N_{200}\left[\rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right)-2 \rho\left(\mathbf{k}_{2}\right) \rho\left(\mathbf{k}_{3}\right)\right]\right\} \\
& -4 g^{2} \int\left[d k_{1}\right]\left[d k_{2}\right]\left|\mathcal{M}_{k_{1}+100 \rightarrow k_{2}+200}\right|^{2}(2 \pi) \delta\left(\omega_{k_{1}}+\omega_{1}-\omega_{2}-\omega_{k_{2}}\right) \\
& \left\{N_{100} N_{200}\left[\rho\left(\mathbf{k}_{2}\right)-\rho\left(\mathbf{k}_{1}\right)\right]-\rho\left(\mathbf{k}_{1}\right) \rho\left(\mathbf{k}_{2}\right)\left[N_{100}-N_{200}\right]\right\} \\
& -4 g^{2} \int[d k]\left|\mathcal{M}_{200+200 \rightarrow 100+k}\right|^{2}(2 \pi) \delta\left(2 \omega_{2}-\omega_{1}-\omega_{k}\right)\left\{\rho(\mathbf{k}) N_{200}^{2}+N_{100} N_{200}^{2}-2 N_{200} N_{100} \rho(\mathbf{k})\right\},
\end{aligned}
$$




$$
\mathcal{M}_{k_{1}+k_{2} \rightarrow k_{3}+100}=\frac{2 \sqrt{2} \pi}{\sqrt{k_{1} k_{2} k_{3}}} \underbrace{\int d^{3} \zeta e^{-\zeta} J_{0}\left[2 \xi\left(1-\hat{k}_{1} \cdot \hat{\zeta}\right)\right] J_{0}\left[2 \zeta\left(1-\hat{k}_{2} \cdot \hat{\zeta}\right)\right] J_{0}\left[2 \zeta\left(1-\hat{k}_{3} \cdot \hat{\zeta}\right)\right]}_{F\left[\hat{k}_{i} \cdot \hat{k}_{j}\right]}
$$

$$
\Gamma=\frac{8 g^{2} \rho_{\mathrm{dm}}^{2}}{\pi^{2} m^{3} v_{\mathrm{dm}}^{2}} \int d p_{1} d p_{2} d \cos \theta_{1} d \cos \theta_{2} d \cos \theta_{3} d \phi_{1} d \phi_{2} p_{1} p_{2} F^{2}\left[\hat{p}_{i} \cdot \hat{p}_{j}\right]\left[e^{-\left(\mathbf{p}_{1}-\hat{z}\right)^{2}}-2 e^{-\left(\mathbf{p}_{3}-\hat{z}\right)^{2}}\right] e^{-\left(\mathbf{p}_{2}-\hat{z}\right)^{2}}
$$

$$
\tau_{\mathrm{rel}} \equiv \frac{m^{3} v_{\mathrm{dm}}^{2}}{g^{2} \rho_{\mathrm{dm}}^{2}} \simeq 9 \mathrm{Gyr}\left[\frac{f_{a}}{10^{8} \mathrm{GeV}}\right]^{4}\left[\frac{m}{10^{-14} \mathrm{eV}}\right]^{3}\left[\frac{0.4 \mathrm{GeV} / \mathrm{cm}^{3}}{\rho_{\mathrm{dm}}}\right]^{2}\left[\frac{v_{\mathrm{dm}}}{240 \mathrm{~km} / \mathrm{s}}\right]^{2}
$$

$$
\mathscr{L}_{\phi}=\frac{d_{\alpha}}{4 M_{\mathrm{Pl}}} \phi F^{\mu \nu} F_{\mu \nu} \quad \frac{\delta \alpha}{\alpha_{0}} \simeq \frac{d_{\alpha} \phi}{M_{\mathrm{Pl}}} \simeq 6 \times 10^{-16} d_{\alpha}\left(\frac{10^{-15} \mathrm{eV}}{m_{\phi}}\right) \sqrt{\frac{\rho_{\phi}}{\rho_{\mathrm{dm}}}}
$$

c.f. $\mathscr{L}_{\mathrm{em}}=\frac{\alpha}{4} F^{\mu \nu} F_{\mu \nu} \quad$ w/ oscillations at frequency $\omega_{\phi} \simeq m_{\phi} \simeq$ few $\mathrm{Hz}\left(\frac{m_{\phi}}{10^{-15} \mathrm{eV}}\right)$

Derevianko + Pospelov (1311.1244)

Arvanitaki, Huang, Van Tilburg (1405.2925)

Stadnik and Flambaum (1412.7801, 1503.08540)


Modern optical clocks have achieved

$$
\frac{\delta \alpha}{\alpha_{0}} \lesssim 10^{-18}
$$

Future nuclear clock expected to reach

$$
\frac{\delta \alpha}{\alpha_{0}} \lesssim 10^{-23}
$$




## Halo supported by Earth "Earth Halo"

DM Background

Bosonic Halo
Earth

$$
R_{\star} \simeq R_{E}\left(\frac{10^{-9} \mathrm{eV}}{m_{\phi}}\right)^{2}
$$

