Axion Clouds around Pulsars

Samuel J. Witte

General Meeting of Cosmic Whispers Bari, Italy September 5, 2023

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Based On: Noordhuis, Prabhu, SJW, Cruz, Chen, Weniger (2022) Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Axion clouds around pulsars

Assumptions: There exists an axion which:

- 1) Couples to electromagnetism $\mathscr{L} \supset -g_{a\gamma\gamma}a(\vec{E} \cdot \vec{B})$
- 2) Has a mass $10^{-10} \text{ eV} \leq m_a \leq 10^{-4} \text{ eV}$

Samuel J. Witte (ICCUB / Barcelona)

Take Home : All active neutron stars (pulsars) are surrounded by dense clouds of axions

Pulsar magnetospheres

Pulsars at first order:

- $M_{\rm NS} \sim 1 2M_{\odot}, R_{\rm NS} \sim 10\,{\rm km}$
- Dipolar magnetic field $B \sim 10^9 10^{15} G$
- Rotational period $P \sim 10^{-3} 10 \,\mathrm{s}$
- Slowly spin-down on the timescale of kyr-Myr

Large \overrightarrow{B} induces strong electric field \overrightarrow{E}

$$F_{\overrightarrow{E}} \gg F_{\text{gravity}}, F_{\text{binding}}$$

Pulsar magnetospheres

Plasma Behaviour

(Near the neutron star)

1. Plasma flows along magnetic field lines Acceleration only possible if $\vec{E} \cdot \vec{B} \neq 0$

2. Plasma tries to screen electric field If $\rho_e \ge \rho_{\min}$, $\overrightarrow{E} \to 0$

Stable force-free solution?

- $|\bullet \overrightarrow{E}$ extracts ρ_{\min}
- ρ_{\min} screens electric field, $\vec{E} \cdot \vec{B} \to 0$
- No e^{\pm} being sourced, stable co-rotation

Goldreich-Julian Model

Goldreich & Julian 1969

Goldreich-Julian requires *co-rotating* plasma

Polar cap dynamics Part 1: Vacuum Phase

Unscreened $\overrightarrow{E} \cdot \overrightarrow{B}$ extracts, and accelerates, current

Neutron Star Surface

Samuel J. Witte (ICCUB / Barcelona)

Part 2: Screening Phase

Quasi-periodic on timescales $t \sim O(\mu s)$

Polar cap dynamics

Simulations curtesy of F. Cruz and A. Chen

Production of axion clouds

Samuel J. Witte (ICCUB / Barcelona)

(~ minutes)

(kyr to Myr)

Axion Clouds

Tentative assumption: axions are produced and no longer interact

Evolution of bound axions

Can axions scatter inside the neutron star? Typically, no.

Can axions self-interactions alter the evolution? Typically, no.

Can axions convert to electromagnetic radiation? Yes & no. Is $\omega_p \leq \omega_a$?

Can axions alter the electrodynamics of the polar cap?

Yes, if the coupling is large enough.

Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Energy losses: radiation

Noordhuis, Prabhu, Weniger, SJW (2023)

Evolution of bound axions

Can axions scatter inside the neutron star? Typically, no.

Can axions self-interactions alter the evolution? Typically, no.

Can axions convert to electromagnetic radiation? Yes & no. Is $\omega_p \leq \omega_a$?

Can axions alter the electrodynamics of the polar cap?

Yes, if the coupling is large enough.

Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Energy losses: the polar cap

Part 1: Vacuum Phase

Neutron Star Surface

Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Axions induce electric field:

$$\overrightarrow{E}_a \propto \sqrt{\rho_a} \ \overrightarrow{B} e^{-i\omega_a t}$$

(When axions are light, field is uniform)

Axions can dissipate energy in the current itself

 $\rho \rightarrow \rho_{\text{saturate}}$

as $\dot{E}_{inj} \sim \dot{E}_{diss}$

Axion Clouds

Samuel J. Witte (ICCUB / Barcelona)

Noordhuis, Prabhu, Weniger, SJW (2023)

Maximum density of axion clouds

To what extent does the axion density depend on $g_{a\gamma\gamma}$?

Samuel J. Witte (ICCUB / Barcelona)

Noordhuis, Prabhu, Weniger, SJW (2023)

Observable Consequences

Resonant radio emission

Sharp kinematic endpoint inevitably arises in radio spectrum

Spectral end-point (radio)

Current radio observations should have strong sensitivity to spectral line...

A more detailed look at systematics is in progress...

Noordhuis, Prabhu, Weniger, SJW (2023)

Axion back-reaction

Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Pulsar Nulling

Samuel J. Witte (ICCUB / Barcelona)

Conditions for pulsar nulling:

1.) Efficient production axion bound states
2.) Inefficient energy dissipation

Pulsar Nulling: J1119-6127

Caputo, SJW, Philippov, Jacobson (Appearing very soon)

Plot made using cajohare.github.io/AxionLimits/

Samuel J. Witte (ICCUB / Barcelona)

Non-resonant, beamed, radio emission

Part 1: Vacuum Phase

Neutron Star Surface

Caputo, **SJW**, Philippov, Jacobson (Appearing very soon)

Heavier axions are incoherent, effects tend to wash out...

But, small scale oscillations can drive electromagnetic emission

$$\vec{j}_{\text{eff,a}} \sim g_{a\gamma\gamma} \dot{a} \, \overrightarrow{B}$$

Plasma barriers confine and reflect photons along magnetic axis

 \boldsymbol{E}

Non-resonant, beamed, radio emission: B1055-52

Caputo, SJW, Philippov, Jacobson (Appearing soon)

Plot made using cajohare.github.io/AxionLimits/

Conclusions

Axions can form dense clouds around pulsars, potentially opening novel observational strategies

- Distinctive signatures (spectral lines/ end-points, transients bursts, pulsar nulling)
- •Strong discovery potential over wide range of parameter space
- Highly complementary to laboratory searches

