ALPs, High-Energy Gamma-Rays and Magnetic Fields

Michael Kachelrieß

NTNU, Trondheim

Outline of the talk

- Introduction
- O Signature of ALPs
 - Optical depth of the Universe
 - Irregularities
- Magnetic field:
 - Galactic magnetic field
 - Extragalactic magnetic fields

Summary

Outline of the talk

- Introduction
- O Signature of ALPs
 - Optical depth of the Universe
 - Irregularities
- Magnetic field:
 - Galactic magnetic field
 - Extragalactic magnetic fields

Summary

Photon horizon and electromagnetic cascades

Bari 9/23 3/25

Photon horizon and electromagnetic cascades

Development of elmag. cascade

Photon horizon and electromagnetic cascades

Development of elmag. cascade from TeV blazar

→ ∃ →

History: IR crisis around 2000

- first observations of Mkn 501 up to 20 TeV by HEGRA
- observations/lower limits on IR background by DIRBE,...

History: IR crisis around 2000

- first observations of Mkn 501 up to 20 TeV by HEGRA
- observations/lower limits on IR background by DIRBE,...

History: IR crisis around 2000

- first observations of Mkn 501 up to 20 TeV by HEGRA
- observations/lower limits on IR background by DIRBE,...

- proposed solutions:
 - LIV
 - BE condensate
 - ALPs?

ALP space:

ALP space: $g_{a\gamma} \sim 10^{-11}/\text{GeV}$ and $m_a \lesssim 10^{-9} \,\text{eV}$ for HE γ -ray astronomy

ALP-photon oscillations

Oscillation due to a mass difference of two mass eigenstates

$$\Rightarrow P_{\gamma \to a} = |\langle a | \Psi(t) \rangle|^2 = \sin^2(2\vartheta) \sin\left(\frac{L}{2E} \left(m_1^2 - m_2^2\right)\right)$$

ALP-photon oscillations

Oscillation due to a mass difference of two mass eigenstates

$$\Rightarrow P_{\gamma \to a} = |\langle a | \Psi(t) \rangle|^2 = \sin^2(2\vartheta) \sin\left(\frac{L}{2E} \left(m_1^2 - m_2^2\right)\right)$$

signatures:

- increased mean-free path of photons
- irregularities in energy spectra

Decreased opacity due to ALP-photon oscillations source 3C279 at z = 0.538 and Kneiske EBL:

[De Angelis, Roncadelli, Mansutti '07]

Decreased opacity due to ALP-photon oscillations source 3C279 at z = 0.538 and Kneiske EBL:

[De Angelis, Roncadelli, Mansutti '07]

EGMF modelled as domain-like L = 1 Mpc

Modelling the turbulence

Modelling the turbulence

Effect on oscillation probability:

Effect on oscillation probability:

Decreased opacity: domain vs Gaussian turbulence

MHD vs Gaussian turbulence

MHD fields have larger tails – even less domain-like

MHD vs Gaussian turbulence

• MHD fields have larger tails - even less domain-like

- smaller change of opacity
- + larger irregulrities, maybe lucky L.o.S.
- how to implement? Multiplicative chaos

[Durrive, Leaffre, Ferrière '20]

- exceptionally brigh GRB at redshift z = 0.1505
- LHAASO: 5000 photon with E > 500 GeV up to 18 TeV

< ∃ ►

- exceptionally brigh GRB at redshift z = 0.1505
- LHAASO: 5000 photon with E > 500 GeV up to 18 TeV
- optical depth @18 TeV: $\tau \sim 9-27 \Rightarrow$ requires new physics?

(3)

- exceptionally brigh GRB at redshift z = 0.1505
- LHAASO: 5000 photon with E > 500 GeV up to 18 TeV
- optical depth @18 TeV: $\tau \sim 9$ -27 \Rightarrow requires new physics?
- including

[Baktash, Horns, Meyer '22,...]

A B A A B A

- energy resolution: $\tau \sim 10$ is ok
- CR background $R_{\rm CR} \simeq 5$ events/hour: even $\tau = 30$ is ok

- exceptionally brigh GRB at redshift z = 0.1505
- LHAASO: 5000 photon with E > 500 GeV up to 18 TeV
- optical depth @18 TeV: $\tau \sim 9$ -27 \Rightarrow requires new physics?
- including

[Baktash, Horns, Meyer '22,...]

A B A A B A

- \blacktriangleright energy resolution: $\tau \sim 10$ is ok
- CR background $R_{\rm CR} \simeq 5 {\rm events/hour:}$ even $\tau = 30$ is ok
- required value of $g_{a\gamma}$ disfavoured?

ALP-photon oscillations

Oscillation due to a mass difference of two mass eigenstates

$$\Rightarrow P_{\gamma \to a} = |\langle a | \Psi(t) \rangle|^2 = \sin^2(2\vartheta) \sin\left(\frac{L}{2E} \left(m_1^2 - m_2^2\right)\right)$$

 \Rightarrow The oscillation length depends on the refractive index!

various contributions to n:

 m_a , \vec{B} , EBL, QED vacuum, plasma

Dispersion space

Michael Kachelrieß (NTNU Trondheim) A

Oscill. probability for uniform B = 5 nG and l = 10 Mpc

• oscillations induce "regular irregularities" in energy spectra

ALP induced wiggles

Bari 9/23 16 / 25

ALP induced wiggles

[Liang et al. '18]

• non-detection \Rightarrow exclusion of parameter space

ALP induced wiggles: prospects for CTA

[Liang et al. '18]

Oscillation wiggles have definite energy dependence

but reduced in turbulent fields

Michael Kachelrieß (NTNU Trondheim)

Oscillation wiggles have definite energy dependence

• use known energy dependence as signature

< ∃ ►

Oscillation wiggles have definite energy dependence

- use known energy dependence as signature
- discrete Fourier transformation \Rightarrow power spectrum

$$G(k) = \left| \int_{\eta_{\min}}^{\eta_{\max}} \mathrm{d}\eta \, \mathbf{q}(\mathbf{k}) \mathrm{e}^{\mathrm{i}\eta \mathbf{k}} \right|^2 \simeq \left| \sum_{\mathrm{events}} \mathrm{e}^{\mathrm{i}\eta \mathbf{k}} \right|^2$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Oscillation wiggles have definite energy dependence

- use known energy dependence as signature
- discrete Fourier transformation \Rightarrow power spectrum

$$G(k) = \left| \int_{\eta_{\min}}^{\eta_{\max}} \mathrm{d}\eta \, \mathrm{q}(\mathrm{k}) \mathrm{e}^{\mathrm{i}\eta\mathrm{k}} \right|^2 \simeq \left| \sum_{\mathrm{events}} \mathrm{e}^{\mathrm{i}\eta\mathrm{k}} \right|^2$$

- signature:
 - ▶ low energies: peak in "inverse" energy spectrum $\eta \sim 1/E$
 - high energies: peak in energy spectrum $\eta \sim E$
- independent of B modelling
- G(k) contains info on B

- E > - E >

Axion wiggles -PKS 2155-304

Axion wiggles -PKS 2155-304

Axion wiggles -PKS 2155-304

< E

Axion wiggles -PKS 2155-304

< 回 > < 三 > < 三 >

Status of GMF models

- JF12 has become a "standard"
- but data are too sparse to constrain models

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Limits on extragalactic magnetic fields (EGMF)

- Origin of seed for EGMF is unknown
- Observations only in cluster cores,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs
- Plaga '95: EGMFs deflect and delay cascade electrons
 ⇒ search for delayed "echoes" of multi-TeV AGN flares/GRBs
- d'Avezac, Dubus, Giebels '07: non-observation of TeV blazars in GeV band leads to lower bound on EGMG

A B b A B b

Limits on extragalactic magnetic fields (EGMF)

- Origin of seed for EGMF is unknown
- Observations only in cluster cores,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs
- Plaga '95: EGMFs deflect and delay cascade electrons
 ⇒ search for delayed "echoes" of multi-TeV AGN flares/GRBs
- d'Avezac, Dubus, Giebels '07: non-observation of TeV blazars in GeV band leads to lower bound on EGMG

A B A A B A

Limits on extragalactic magnetic fields (EGMF)

- Origin of seed for EGMF is unknown
- Observations only in cluster cores,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs
- Plaga '95: EGMFs deflect and delay cascade electrons
 ⇒ search for delayed "echoes" of multi-TeV AGN flares/GRBs
- d'Avezac, Dubus, Giebels '07: non-observation of TeV blazars in GeV band leads to lower bound on EGMG
- Alternative: plasma instabilities

[Broderick et al.'12]

• • = • • = •

Michael Kachelrieß (NTNU Trondheim)

Bari 9/23 23 / 25

Acknowledgements

most work done by Jonas Tjemsland - defended his PhD 3 weeks ago

Summary

- ALP-photon oscillations lead to
 - decreased opacity
 - + EBL with smaller errors
 - regular wiggles in γ-ray spectra
 - + energy dependence as signature
 - + improved exp. sensitivity: CTA and ATHENA
- lower limit on EGMF is becoming stronger:
 - (but) no direct evidence (halos, time-delays)
 - plasma instabilities?