PRIN meeting: "String Theory as a bridge between Gauge Theories and Quantum Gravity" Turin - February 24th, 2023

Fate of Radiating Black Holes With Minimum Mass in Einstein-dilaton-Gauss-Bonnet Theory of Gravity

Fabrizio Corelli, Marina De Amicis, Taishi Ikeda and Paolo Pani

arXiv:2205.13006 [gr-qc] (accepted for publication in *Phys. Rev. Lett.*) arXiv:2205.13007 [gr-qc] (accepted for publication in *Phys. Rev. D*)

European Research Council Established by the European Commission

Istituto Nazionale di Fisica Nucleare

Introduction

Despite its formal elegance, in **General Relativity (GR)** has deep theoretical problems that require to modify it in the high energy/curvature regime.

Introduction of a fundamental length scale $\tilde{\ell}$:

$$\ell >> \hat{\ell}$$

 $\ell \leq \ell$

Theory reduces to GR

Modifications dominate

There are theories in which this brings to a minimum value of the BH mass.

How does this affect Hawking evaporation?

→ Einstein-dilaton-Gauss-Bonnet (EdGB) theory of gravity

→ Numerical setup and nonlinear stability of the BH solutions

→ Dynamics past the minimum mass driven by Hawking's evaporation

Einstein-dilaton-Gauss-Bonnet (EdGB) theory of gravity

Einstein-dilaton-Gauss-Bonnet (EdGB) Theory of Gravity

Action of the theory:

Einstein-dilaton-Gauss-Bonnet (EdGB) Theory of Gravity

$$S = \frac{1}{16\pi} \int_{\Omega} d^4 x \sqrt{-g} \left\{ \mathcal{R} - \left(\nabla\phi\right)^2 + 2F[\phi]\mathcal{G} \right\} + S_m$$

Coupling function $F[\phi] = \lambda e^{-\gamma\phi}$

Some properties:

- $[\lambda] = M^2$: λ sets the scale below which modifications dominate
- λ is **not** (necessarily) plankian
- BHs have a nontrivial profile of the scalar field outside them and a curvature singularity at finite radius.

[Kanti+ Phys. Rev. D (1996), Alexeyev-Pomazanov Phys. Rev. D (1997)]

Black Holes (BHs) in EdGB Gravity

Spherically symmetric BHs in this theory have a minimum mass solution that can be either singular or regular on the horizon.

For large enough γ this critical configuration is regular on the horizon and divides the domain of existence of BH solutions in two branches.

[Torii+ *Phys. Rev. D* (1997), Guo+ *Prog. Theor. Phys.* (2008), Blázquez-Salcedo+ *Phys. Rev. D* (2017)]

$$F[\phi] = \lambda e^{-\gamma\phi}$$

The upper branch is linearly stable while the lower branch is linearly unstable. [Torii-Maeda *Phys. Rev. D* (1998)]

Hawking's Evaporation in EdGB gravity

Evolution under Hawking's evaporation

Numerical setup and nonlinear stability of the BH solutions

Numerical Setup

We use Painlevé-Gullstrand-like (PG-like) coordinates:

$$ds^{2} = -\alpha^{2}dt^{2} + (R'(r)dr + \alpha\zeta dt)^{2} + R(r)^{2}d\Omega^{2}$$

In EdGB gravity there are regions in which the system of evolution equations is not well-posed (**elliptic regions**).

The equations can be integrated outside these regions as long as they remain inside the black hole horizon (**excision strategy**).

[Ripley-Petorius Phys. Rev. D (2020)]

Excision Boundary and Curvature Singularity

The excision boundary is close to the curvature singularity and slightly outside it.

2.00

1.95

1.90 m a

1.85

1.80

Horizon

2

Excision Boundary Singularity

3

Nonlinear Stability of the BH Solutions

Classical Emulation of Hawking Evaporation

Introducing a scalar field with opposite kinetic term (*phantom field*) we can mimic *at the classical level* the effect of the Hawking's evaporation process.

Idea:

$$S_m = \frac{1}{16\pi} \int_{\Omega} d^4x \sqrt{-g} \left(\nabla\xi\right)^2$$

Dynamics past the minimum mass driven by Hawking's evaporation

Apparent Horizon and Excision Boundary

Evolution of the apparent horizon and excision boundary

Formation of a naked elliptic region!

A consideration:

- At the beginning of the simulation the curvature singularity is close to the excision boundary.
- The excision boundary expands and at some point it crosses the apparent horizon.

Are we forming a naked singularity?

Formation of a Naked Singularity?

- The curvature at the horizon has grown by a factor 58 compared to its initial value.
- The contour lines follow the behavior of the excision boundary.

Hint to the formation of a naked singularity and violation of the weak cosmic censorship conjecture!

... elliptic region?

Gauge Dependence of naked Elliptic Regions

Abhishek Hegade+, Phys. Rev. D (2023):

In EdGB gravity the elliptic regions are gauge invariant

Formation of a Naked Elliptic Region: Event Horizon

Alternative Scenario: Wormholes

In the parameter space BH solutions coexist with wormhole solutions.

- 1. Can a critical BH transit toward a wormhole solution?
- 2. Wormholes is EdGB gravity have matter at the throat: can Hawking particles provide the correct matter content for forming a wormhole?

Take-home message

- \rightarrow In EdGB gravity there exists a BH configuration with minimum mass.
- → The minimum mass BH is subject to Hawking evaporation.
- → When simulating the Hawking evaporation process we observed a runaway instability due to the intrinsic (classical) dynamics of the theory.
- \rightarrow A naked elliptic region forms.
- → Possible scenarios: violation of the weak cosmic censorship conjecture, transition toward a (horizonless) wormhole solution.
- → These behaviors are interesting *per se* and might appear also in other modified theories of gravity that predict a minimum-mass BH solution

Future prospects

→ Inclusion of higher order terms in the action (e.g. $A[\phi](\nabla \phi)^4$)

→ Different model with second order field equations such as $\mathcal{L} = f(\mathcal{R}) - (\nabla \phi)^2 + F[\phi]\mathcal{G}$

→ Simulation of the transition between a BH and a wormhole configuration

Thank You!