Corrections to the thermodynamics of AdS_{5} black holes and the superconformal index

Alejandro Ruipérez
Università di Roma Tor Vergata \& INFN Sezione di Roma Tor Vergata

Torino, 23 February 2023

Joint work with:
D. Cassani and E. Turetta

JHEP 11 (2022) 059

+ work to appear

Introduction

- Some black holes admit a description in terms of fundamental constituents: strings and branes. Key to explain the microscopic origin of their entropies

Introduction

- Some black holes admit a description in terms of fundamental constituents: strings and branes. Key to explain the microscopic origin of their entropies
- Use AdS/CFT to address the microstate counting of AdS black holes

Black hole $=$ensemble of states $\stackrel{\text { AdS/CFT }}{=}$ in quantum gravity
ensemble of states
in the dual CFT

$$
\mathcal{S}_{\mathrm{CFT}}=\log N_{\mathrm{micro}}=\frac{A_{\mathrm{H}}}{4 G}+\text { corrections }
$$

Introduction

- Some black holes admit a description in terms of fundamental constituents: strings and branes. Key to explain the microscopic origin of their entropies
- Use AdS/CFT to address the microstate counting of AdS black holes

$$
\left.\begin{array}{|c}
\hline \text { Black hole }=\begin{array}{c}
\text { ensemble of states } \stackrel{\text { AdS/CFT }}{=} \stackrel{\text { ensemble of states }}{ } \\
\text { in quantum gravity }
\end{array} \\
\text { in the dual CFT }
\end{array} \right\rvert\,
$$

- We will focus on $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ and consider the microstate counting of supersymmetric $\mathbf{A d S}_{5}$ black holes in minimal gauged supergravity. Dual states should exist in any holographic $\mathcal{N}=1$ SCFT

Euclidean approach

- We set ourselves in the grand-canonical ensemble (fixed $\left.\beta, \Omega_{i}, \Phi\right)$
- The grand-canonical partition function $\mathcal{Z}\left(\beta, \Omega_{i}, \Phi\right)$ is computed by the Euclidean path integral with (anti-)periodic boundary conditions

$$
\mathcal{Z}\left(\beta, \Omega_{i}, \Phi\right)=\int D g_{\mu \nu} D A_{\mu} D \psi e^{-I\left[g_{\mu \nu}, A_{\mu}, \psi\right]} \overbrace{\simeq}^{\text {semiclassical approx. }} e^{-I\left(\beta, \Omega_{i}, \Phi\right)}
$$

- $I\left(\beta, \Omega_{i}, \Phi\right)$ should then be identified with $\beta \times($ grand-canonical potential $)$, leading to the quantum statistical relation (QSR)

$$
I=\beta E-\mathcal{S}-\beta \Omega_{i} J_{i}-\beta \Phi Q
$$

- By the master formula of the AdS/CFT correspondence:

$$
I\left(\beta, \Omega_{i}, \Phi\right)=-\log \mathcal{Z}_{\mathrm{CFT}}\left(\beta, \Omega_{i}, \Phi\right)
$$

Review of AdS_{5} black holes

We work with minimal gauged supergravity in 5d

$$
\mathcal{L}=R+12 g^{2}-\frac{1}{4} F^{2}-\frac{1}{12 \sqrt{3}} \epsilon^{\mu \nu \rho \sigma \lambda} F_{\mu \nu} F_{\rho \sigma} A_{\lambda}
$$

The most general AdS_{5} black hole depends on four parameters:

$$
E, J_{1}, J_{2}, Q \quad \leftrightarrow \quad \beta, \Omega_{1}, \Omega_{2}, \Phi
$$

Chong, Cvetic, Lu, Pope

These quantities obey the first law of black hole mechanics

$$
\mathrm{d} E=T \mathrm{~d} \mathcal{S}+\Omega_{1} \mathrm{~d} J_{1}+\Omega_{2} \mathrm{~d} J_{2}+\Phi \mathrm{d} Q
$$

as well as the quantum statistical relation

$$
I=\beta E-\mathcal{S}-\beta \Omega_{1} J_{1}-\beta \Omega_{2} J_{2}-\beta \Phi Q
$$

Reaching the BPS locus

$$
\text { supersymmetry } \nRightarrow \text { extremality }
$$

Reaching the BPS locus

supersymmetry \nRightarrow extremality

It is crucial to reach the BPS locus following a supersymmetric trajectory
(1) Supersymmetric solution if $E-g J_{1}-g J_{2}-\sqrt{3} Q=0$
(2) BPS (supersymmetric + extremal) limit: $\beta \rightarrow \infty$

Reaching the BPS locus

supersymmetry \nRightarrow extremality

It is crucial to reach the BPS locus following a supersymmetric trajectory
(1) Supersymmetric solution if $E-g J_{1}-g J_{2}-\sqrt{3} Q=0$
(2) BPS (supersymmetric + extremal) limit: $\beta \rightarrow \infty$

Cabo-Bizet, Cassani, Martelli, Murthy
The BPS charges must satisfy an additional constraint:

$$
\left(\frac{2 \sqrt{3}}{g} Q^{*}+\frac{\pi}{2 G g^{3}}\right)\left(\frac{4}{g^{2}} Q^{* 2}-\frac{\pi}{G g^{3}}\left(J_{1}^{*}+J_{2}^{*}\right)\right)=\left(\frac{2}{\sqrt{3} g} Q^{*}\right)^{3}+\frac{2 \pi}{G g^{3}} J_{1}^{*} J_{2}^{*}
$$

Reaching the BPS locus

supersymmetry \nRightarrow extremality

It is crucial to reach the BPS locus following a supersymmetric trajectory
(1) Supersymmetric solution if $E-g J_{1}-g J_{2}-\sqrt{3} Q=0$
(2) BPS (supersymmetric + extremal) limit: $\beta \rightarrow \infty$

The BPS charges must satisfy an additional constraint:

$$
\left(\frac{2 \sqrt{3}}{g} Q^{*}+\frac{\pi}{2 G g^{3}}\right)\left(\frac{4}{g^{2}} Q^{* 2}-\frac{\pi}{G g^{3}}\left(J_{1}^{*}+J_{2}^{*}\right)\right)=\left(\frac{2}{\sqrt{3} g} Q^{*}\right)^{3}+\frac{2 \pi}{G g^{3}} J_{1}^{*} J_{2}^{*}
$$

In the BPS limit, the chemical potentials are frozen to the following values

$$
\beta^{*} \rightarrow \infty, \quad \Omega_{1}^{*}=\Omega_{2}^{*}=g, \quad \Phi^{*}=\sqrt{3}
$$

which coincide with the coefficients appearing in the superalgebra

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\} \propto E-g J_{1}-g J_{2}-\sqrt{3} Q=0
$$

Supersymmetric thermodynamics

Let's impose supersymmetry while keeping β finite

$$
E-g J_{1}-g J_{2}-\sqrt{3} Q=0
$$

Supersymmetric thermodynamics

Let's impose supersymmetry while keeping β finite

$$
E-g J_{1}-g J_{2}-\sqrt{3} Q=0
$$

Using this in the QSR leads to

$$
I=-S-\omega_{1} J_{1}-\omega_{2} J_{2}-\frac{2}{\sqrt{3} g} \varphi Q
$$

where

$$
\omega_{i}=\beta\left(\Omega_{i}-\Omega_{i}^{*}\right) \quad \text { and } \quad \varphi=\frac{\sqrt{3} g}{2} \beta\left(\Phi-\Phi^{*}\right)
$$

which are constrained by

$$
\omega_{1}+\omega_{2}-2 \varphi=2 \pi i
$$

Supersymmetric thermodynamics

Let's impose supersymmetry while keeping β finite

$$
E-g J_{1}-g J_{2}-\sqrt{3} Q=0
$$

Using this in the QSR leads to

$$
I=-S-\omega_{1} J_{1}-\omega_{2} J_{2}-\frac{2}{\sqrt{3} g} \varphi Q
$$

where

$$
\omega_{i}=\beta\left(\Omega_{i}-\Omega_{i}^{*}\right) \quad \text { and } \quad \varphi=\frac{\sqrt{3} g}{2} \beta\left(\Phi-\Phi^{*}\right)
$$

which are constrained by

$$
\omega_{1}+\omega_{2}-2 \varphi=2 \pi i
$$

One can also obtain a supersymmetric first law

$$
\mathrm{d} \mathcal{S}+\omega_{1} \mathrm{~d} J_{1}+\omega_{2} \mathrm{~d} J_{2}+\frac{2}{\sqrt{3} g} \varphi \mathrm{~d} Q=0
$$

Supersymmetric thermodynamics

Let's impose supersymmetry while keeping β finite

$$
E-g J_{1}-g J_{2}-\sqrt{3} Q=0
$$

Using this in the QSR leads to

$$
I=-S-\omega_{1} J_{1}-\omega_{2} J_{2}-\frac{2}{\sqrt{3} g} \varphi Q
$$

where

$$
\omega_{i}=\beta\left(\Omega_{i}-\Omega_{i}^{*}\right) \quad \text { and } \quad \varphi=\frac{\sqrt{3} g}{2} \beta\left(\Phi-\Phi^{*}\right)
$$

which are constrained by

$$
\omega_{1}+\omega_{2}-2 \varphi=2 \pi i
$$

One can also obtain a supersymmetric first law

$$
\mathrm{d} \mathcal{S}+\omega_{1} \mathrm{~d} J_{1}+\omega_{2} \mathrm{~d} J_{2}+\frac{2}{\sqrt{3} g} \varphi \mathrm{~d} Q=0
$$

The dependence of I on β disappears after imposing supersymmetry

Supersymmetric action and BPS entropy

- Evaluating the Euclidean on-shell action of the CCLP black hole and imposing supersymmetry $\left(\omega_{1}+\omega_{2}-2 \varphi=2 \pi i\right)$:

$$
I=\frac{16 a}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}}
$$

where \boldsymbol{a} and $\boldsymbol{c}=\boldsymbol{a}+\ldots$ are the superconformal anomaly coefficients

Supersymmetric action and BPS entropy

- Evaluating the Euclidean on-shell action of the CCLP black hole and imposing supersymmetry $\left(\omega_{1}+\omega_{2}-2 \varphi=2 \pi i\right)$:

$$
I=\frac{16 a}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}}
$$

where \boldsymbol{a} and $\boldsymbol{c}=\boldsymbol{a}+\ldots$ are the superconformal anomaly coefficients

- The constrained Legendre transform of the supersymmetric action gives the black hole entropy Hosseini, Hristov, Zaffaroni; Cabo-Bizet, Cassani, Martelli, Murthy

$$
\mathcal{S}^{*}=\pi \sqrt{3 Q_{R}^{* 2}-8 a\left(J_{1}^{*}+J_{2}^{*}\right)}
$$

CFT side of the story

The relevant CFT quantity is the superconformal index (\equiv supersymmetric partition function on $S^{1} \times S^{3}$) on the "second sheet"

$$
\mathcal{I}=\operatorname{Tr}(-1)^{\mathrm{F}} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}+\left(\omega_{1}-2 \pi i\right)\left(J_{1}+\frac{1}{2} Q\right)+\omega_{2}\left(J_{2}+\frac{1}{2} Q\right)}
$$

CFT side of the story

The relevant CFT quantity is the superconformal index (\equiv supersymmetric partition function on $S^{1} \times S^{3}$) on the "second sheet"

$$
\mathcal{I}=\operatorname{Tr}(-1)^{\mathrm{F}} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}+\left(\omega_{1}-2 \pi i\right)\left(J_{1}+\frac{1}{2} Q\right)+\omega_{2}\left(J_{2}+\frac{1}{2} Q\right)}
$$

This is a refined Witten index: only receives contributions from states annihilated by $\mathcal{Q}, \mathcal{Q}^{\dagger}$

Kinney, Maldacena, Minwalla, Raju; Romelsberger

CFT side of the story

The relevant CFT quantity is the superconformal index (\equiv supersymmetric partition function on $S^{1} \times S^{3}$) on the "second sheet"

$$
\mathcal{I}=\operatorname{Tr}(-1)^{\mathrm{F}} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}+\left(\omega_{1}-2 \pi i\right)\left(J_{1}+\frac{1}{2} Q\right)+\omega_{2}\left(J_{2}+\frac{1}{2} Q\right)}
$$

This is a refined Witten index: only receives contributions from states annihilated by $\mathcal{Q}, \mathcal{Q}^{\dagger}$

Kinney, Maldacena, Minwalla, Raju; Romelsberger

The contribution of the supersymmetric black hole can be isolated by taking a Cardy-like limit:

$$
\begin{aligned}
-\log \mathcal{I}= & \frac{8(5 a-3 c)}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}}+\frac{2(c-a)}{3} \frac{\varphi\left(\omega_{1}^{2}+\omega_{2}^{2}-4 \pi^{2}\right)}{\omega_{1} \omega_{2}} \\
& -\log \left|\mathcal{G}_{1-\text { form }}\right|+\text { exp-terms }
\end{aligned}
$$

The leading-order contribution in the large N limit exactly matches the SUSY on-shell action

$$
-\log \mathcal{I}=\frac{16 a}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}} \quad \Rightarrow \quad-\log \mathcal{I}=I
$$

The leading-order contribution in the large N limit exactly matches the SUSY on-shell action

$$
-\log \mathcal{I}=\frac{16 a}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}} \quad \Rightarrow \quad-\log \mathcal{I}=I
$$

Cabo-Bizet, Cassani, Martelli, Murthy

But the result for the index in the Cardy-like limit holds at finite $N \ldots$

$$
-\log \mathcal{I}=\frac{8(5 a-3 c)}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}}-\frac{2(a-c)}{3} \frac{\varphi\left(\omega_{1}^{2}+\omega_{2}^{2}-4 \pi^{2}\right)}{\omega_{1} \omega_{2}}+\ldots
$$

Q1: How can we match this result from the gravitational side?

Q2: Does it count the number of microstates of BPS black holes beyond leading order in the large- N limit?

Plan for the rest of the talk

(1) Legendre transform of the superconformal index: field theory prediction for the black hole entropy
(2) Include relevant higher-derivative/quantum corrections
(3) Evaluate the on-shell action for the CCLP black hole and impose supersymmetry to match the result from the index
(1) Corrections to the entropy and charges and match with field theory

Legendre transform of the superconformal index

- Extremization principle:

$$
\begin{array}{r}
\mathcal{S}=\operatorname{ext}_{\left\{\omega_{1}, \omega_{2}, \varphi, \Lambda\right\}}\left[-I-\omega_{1} J_{1}-\omega_{2} J_{2}-\varphi Q_{R}-\Lambda\left(\omega_{1}+\omega_{2}-2 \varphi-2 \pi i\right)\right] \\
-\frac{\partial I}{\partial \omega_{i}}=J_{i}+\Lambda, \quad-\frac{\partial I}{\partial \varphi}=Q_{R}-2 \Lambda, \quad \omega_{1}+\omega_{2}-2 \varphi=2 \pi i
\end{array}
$$

Legendre transform of the superconformal index

- Extremization principle:

$$
\begin{array}{r}
\mathcal{S}=\operatorname{ext}_{\left\{\omega_{1}, \omega_{2}, \varphi, \Lambda\right\}}\left[-I-\omega_{1} J_{1}-\omega_{2} J_{2}-\varphi Q_{R}-\Lambda\left(\omega_{1}+\omega_{2}-2 \varphi-2 \pi i\right)\right] \\
-\frac{\partial I}{\partial \omega_{i}}=J_{i}+\Lambda, \quad-\frac{\partial I}{\partial \varphi}=Q_{R}-2 \Lambda, \quad \omega_{1}+\omega_{2}-2 \varphi=2 \pi i
\end{array}
$$

- I is homogeneous of degree 1

$$
\mathcal{S}=\left.2 \pi i \Lambda\right|_{\mathrm{ext}}
$$

Legendre transform of the superconformal index

- Extremization principle:

$$
\begin{array}{r}
\mathcal{S}=\operatorname{ext}_{\left\{\omega_{1}, \omega_{2}, \varphi, \Lambda\right\}}\left[-I-\omega_{1} J_{1}-\omega_{2} J_{2}-\varphi Q_{R}-\Lambda\left(\omega_{1}+\omega_{2}-2 \varphi-2 \pi i\right)\right] \\
-\frac{\partial I}{\partial \omega_{i}}=J_{i}+\Lambda, \quad-\frac{\partial I}{\partial \varphi}=Q_{R}-2 \Lambda, \quad \omega_{1}+\omega_{2}-2 \varphi=2 \pi i
\end{array}
$$

- I is homogeneous of degree 1

$$
\mathcal{S}=\left.2 \pi i \Lambda\right|_{\mathrm{ext}}
$$

- Working at linear order in $\mathbf{a}-\mathbf{c}$, one finds that Λ satisfies:

$$
\Lambda^{3}+p_{2} \Lambda^{2}+p_{1} \Lambda+p_{0}+\frac{p_{-1}}{\Lambda-\frac{Q_{R}}{2}}=0
$$

with $p_{\alpha}=p_{\alpha}\left(Q_{R}, J_{1}, J_{2}\right)$ real coefficients

Legendre transform of the superconformal index

- Extremization principle:

$$
\begin{array}{r}
\mathcal{S}=\operatorname{ext}_{\left\{\omega_{1}, \omega_{2}, \varphi, \Lambda\right\}}\left[-I-\omega_{1} J_{1}-\omega_{2} J_{2}-\varphi Q_{R}-\Lambda\left(\omega_{1}+\omega_{2}-2 \varphi-2 \pi i\right)\right] \\
-\frac{\partial I}{\partial \omega_{i}}=J_{i}+\Lambda, \quad-\frac{\partial I}{\partial \varphi}=Q_{R}-2 \Lambda, \quad \omega_{1}+\omega_{2}-2 \varphi=2 \pi i
\end{array}
$$

- I is homogeneous of degree 1

$$
\mathcal{S}=\left.2 \pi i \Lambda\right|_{\mathrm{ext}}
$$

- Working at linear order in $\mathbf{a}-\mathbf{c}$, one finds that Λ satisfies:

$$
\Lambda^{3}+p_{2} \Lambda^{2}+p_{1} \Lambda+p_{0}+\frac{p_{-1}}{\Lambda-\frac{Q_{R}}{2}}=0
$$

with $p_{\alpha}=p_{\alpha}\left(Q_{R}, J_{1}, J_{2}\right)$ real coefficients

- Reality condition $(\operatorname{Im} \mathcal{S}=0) \Leftrightarrow\left(\Lambda^{2}+X\right)($ rest $)=0$

Field theory predictions

The factorization condition $\left(\Lambda^{2}+X\right)$ (rest) $=0$ must be equivalent to the corrected non-linear constraint among the charges

$$
\begin{aligned}
& {\left[3 Q_{R}^{*}+4(2 a-c)\right]\left[3 Q_{R}^{* 2}-8 c\left(J_{1}^{*}+J_{2}^{*}\right)\right]} \\
& =Q_{R}^{* 3}+16(3 c-2 a) J_{1}^{*} J_{2}^{*}+64 a(a-c) \frac{\left(Q_{R}^{*}+a\right)\left(J_{1}^{*}-J_{2}^{*}\right)^{2}}{Q_{R}^{* 2}-2 a\left(J_{1}^{*}+J_{2}^{*}\right)}
\end{aligned}
$$

Field theory predictions

The factorization condition $\left(\Lambda^{2}+X\right)($ rest $)=0$ must be equivalent to the corrected non-linear constraint among the charges

$$
\begin{aligned}
& {\left[3 Q_{R}^{*}+4(2 a-c)\right]\left[3 Q_{R}^{* 2}-8 c\left(J_{1}^{*}+J_{2}^{*}\right)\right]} \\
& =Q_{R}^{* 3}+16(3 c-2 a) J_{1}^{*} J_{2}^{*}+64 a(a-c) \frac{\left(Q_{R}^{*}+a\right)\left(J_{1}^{*}-J_{2}^{*}\right)^{2}}{Q_{R}^{*}{ }^{2}-2 a\left(J_{1}^{*}+J_{2}^{*}\right)}
\end{aligned}
$$

The corrected BPS entropy

$$
S=2 \pi \sqrt{X}=\pi \sqrt{3 Q_{R}^{* 2}-8 a\left(J_{1}^{*}+J_{2}^{*}\right)-16 a(a-c) \frac{\left(J_{1}^{*}-J_{2}^{*}\right)^{2}}{Q_{R}^{*}{ }^{2}-2 a\left(J_{1}^{*}+J_{2}^{*}\right)}}
$$

The four-derivative effective action

- The goal is to go beyond the 2∂ approximation including 4∂ terms

EFT approach: Add all the possible four-derivative terms that are consistent with the symmetries of the two-derivative theory

The four-derivative effective action

- The goal is to go beyond the 2∂ approximation including 4∂ terms

EFT approach: Add all the possible four-derivative terms that are consistent with the symmetries of the two-derivative theory

- Methodology
(1) Start from the off-shell formulation of 5d supergravity where 4∂ supersymmetric invariants have been worked out in the literature

$$
\mathcal{L}_{\text {off-shell }}=\mathcal{L}_{\text {off-shell }}^{(2 \partial)}+\alpha\left(\lambda_{1} \mathcal{L}_{C^{2}}+\lambda_{2} \mathcal{L}_{R^{2}}+\lambda_{3} \mathcal{L}_{3}\right)
$$

Hanaki, Ohashi, Tachikawa
Bergshoeff, Rosseel, Sezgin
Ozkan, Pang
(2) Integrate out all the auxiliary fields at linear order in α
(3) Use perturbative field redefinitions

$$
g_{\mu \nu} \rightarrow g_{\mu \nu}+\alpha \Delta_{\mu \nu}, \quad A_{\mu} \rightarrow A_{\mu}+\alpha \Delta_{\mu}
$$

to simplify the resulting action as much as possible

The four-derivative effective action

Cassani, AR, Turetta

- Final result

$$
\begin{aligned}
\mathcal{L}= & c_{0} R+12 c_{1} g^{2}-\frac{c_{2}}{4} F^{2}-\frac{c_{3}}{12 \sqrt{3}} \epsilon^{\mu \nu \rho \sigma \lambda} F_{\mu \nu} F_{\rho \sigma} A_{\lambda} \\
& +\lambda_{1} \alpha\left(\mathcal{X}_{\mathrm{GB}}-\frac{1}{2} C_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}+\frac{1}{8} F^{4}-\frac{1}{2 \sqrt{3}} \epsilon^{\mu \nu \rho \sigma \lambda} R_{\mu \nu \alpha \beta} R_{\rho \sigma}{ }^{\alpha \beta} A_{\lambda}\right)
\end{aligned}
$$

where $\mathcal{X}_{\mathrm{GB}}=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}$ and $c_{i}=1+\alpha g^{2} \delta c_{i}$, with:
$\delta c_{0}=4 \boldsymbol{\lambda}_{\mathbf{2}}, \quad \delta c_{1}=-10 \boldsymbol{\lambda}_{\mathbf{1}}+4 \boldsymbol{\lambda}_{\mathbf{2}}, \quad \delta c_{2}=4 \boldsymbol{\lambda}_{1}+4 \boldsymbol{\lambda}_{\mathbf{2}}, \quad \delta c_{3}=-12 \boldsymbol{\lambda}_{1}+4 \boldsymbol{\lambda}_{\mathbf{2}}$

- Remarks
- Together with 4∂ corrections, there are 2∂ corrections controlled by $\lambda_{i} \alpha g^{2}$
- The effect of λ_{2} simply reduces to a renormalization of G
- It can be argued that λ_{3} can be set to zero without loss of generality

Holographic dictionary

- The bulk theory is controlled by 2 dimensionless quantities

$$
\frac{1}{G_{\mathrm{eff}} g^{3}} \equiv \frac{1+4 \boldsymbol{\lambda}_{2} \alpha g^{2}}{G g^{3}}, \quad \boldsymbol{\lambda}_{1} \alpha g^{2}
$$

Holographic dictionary

- The bulk theory is controlled by 2 dimensionless quantities

$$
\frac{1}{G_{\mathrm{eff}} g^{3}} \equiv \frac{1+4 \boldsymbol{\lambda}_{2} \alpha g^{2}}{G g^{3}}, \quad \lambda_{1} \alpha g^{2}
$$

- $\mathcal{N}=1$ SCFTs have a superconformal anomaly controlled by 2 coefficients:

$$
\begin{aligned}
T_{i}^{i} & =-\frac{a}{16 \pi^{2}} \hat{E}+\frac{c}{16 \pi^{2}} \hat{C}^{2}-\frac{c}{6 \pi^{2}} \hat{F}^{2}, \\
\nabla_{i} J^{i} & =\frac{c-a}{24 \pi^{2}} \frac{1}{2} \epsilon^{i j k l} \hat{R}_{i j a b} \hat{R}_{k l}^{a b}+\frac{5 a-3 c}{27 \pi^{2}} \frac{1}{2} \epsilon^{i j k l} \hat{F}_{i j} \hat{F}_{k l},
\end{aligned}
$$

Anselmi, Freedman, Grisaru, Johansen; Cassani, Martelli

Holographic dictionary

- The bulk theory is controlled by 2 dimensionless quantities

$$
\frac{1}{G_{\mathrm{eff}} \boldsymbol{g}^{3}} \equiv \frac{1+4 \boldsymbol{\lambda}_{2} \alpha g^{2}}{G g^{3}}, \quad \quad \boldsymbol{\lambda}_{1} \alpha g^{2}
$$

- $\mathcal{N}=1$ SCFTs have a superconformal anomaly controlled by 2 coefficients:

$$
\begin{aligned}
T_{i}^{i} & =-\frac{a}{16 \pi^{2}} \hat{E}+\frac{c}{16 \pi^{2}} \hat{C}^{2}-\frac{c}{6 \pi^{2}} \hat{F}^{2}, \\
\nabla_{i} J^{i} & =\frac{c-a}{24 \pi^{2}} \frac{1}{2} \epsilon^{i j k l} \hat{R}_{i j a b} \hat{R}_{k l}^{a b}+\frac{5 a-3 c}{27 \pi^{2}} \frac{1}{2} \epsilon^{i j k l} \hat{F}_{i j} \hat{F}_{k l},
\end{aligned}
$$

Anselmi, Freedman, Grisaru, Johansen; Cassani, Martelli

- The holographic dictionary tells us that

$$
a=\frac{\pi}{8 G g^{3}}\left(1+4 \boldsymbol{\lambda}_{2} \alpha g^{2}\right) \quad c=\frac{\pi}{8 G g^{3}}\left(1+4\left(2 \boldsymbol{\lambda}_{1}+\boldsymbol{\lambda}_{2}\right) \alpha g^{2}\right)
$$

Setting up the computation of the on-shell action at $\mathcal{O}(\alpha)$

A priori we need two ingredients to evaluate the on-shell action at $\mathcal{O}(\alpha)$:
(1) The corrected solution
(2) Boundary terms (Gibbons-Hawking terms + counterterms)

Setting up the computation of the on-shell action at $\mathcal{O}(\alpha)$

A priori we need two ingredients to evaluate the on-shell action at $\mathcal{O}(\alpha)$:
(1) The corrected solution
(2) Boundary terms (Gibbons-Hawking terms + counterterms)

However, it is possible to show that the two-derivative solution is enough for evaluating the on-shell action

$$
I=\left.I^{(0)}\right|_{\alpha=0}+\alpha \partial_{\alpha} I_{\alpha=0}^{(0)}+\left.\alpha I^{(1)}\right|_{\alpha=0}+\mathcal{O}\left(\alpha^{2}\right)
$$

if one fixes the boundary conditions appropriately, which is automatic if we work in the grand-canonical ensemble

Setting up the computation of the on-shell action at $\mathcal{O}(\alpha)$

A priori we need two ingredients to evaluate the on-shell action at $\mathcal{O}(\alpha)$:
(1) The corrected solution
(2) Boundary terms (Gibbons-Hawking terms + counterterms)

However, it is possible to show that the two-derivative solution is enough for evaluating the on-shell action

$$
I=\left.I^{(0)}\right|_{\alpha=0}+\alpha \partial_{\alpha} I_{\alpha=0}^{(0)}+\left.\alpha I^{(1)}\right|_{\alpha=0}+\mathcal{O}\left(\alpha^{2}\right)
$$

if one fixes the boundary conditions appropriately, which is automatic if we work in the grand-canonical ensemble

Reall, Santos

We are then left with the only task of identifying an appropriate set of boundary terms

Setting up the computation of the on-shell action at $\mathcal{O}(\alpha)$

Gibbons-Hawking terms

The Dirichlet variational problem is not well posed in higher-derivative gravity

Setting up the computation of the on-shell action at $\mathcal{O}(\alpha)$

Gibbons-Hawking terms

The Dirichlet variational problem is not well posed in higher-derivative gravity Still, in our case:

- the GH term associated to the GB is well known Myers; Teitelboim, Zanelli
- GH terms associated to $C_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}$ and to the mixed Chern-Simons term can be derived as well but do not contribute for $\mathbf{A l A d S}_{5}$ spacetimes

Grumiller, Mann, McNees; Landsteiner, Megías, Pena-Benitez
Cassani, AR, Turetta (to appear)

Setting up the computation of the on-shell action at $\mathcal{O}(\alpha)$

Gibbons-Hawking terms

The Dirichlet variational problem is not well posed in higher-derivative gravity Still, in our case:

- the GH term associated to the GB is well known Myers; Teitelboim, Zanelli
- GH terms associated to $C_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}$ and to the mixed Chern-Simons term can be derived as well but do not contribute for $\mathbf{A l A d S}_{5}$ spacetimes

Grumiller, Mann, McNees; Landsteiner, Megías, Pena-Benitez
Cassani, AR, Turetta (to appear)

Boundary counterterms

- same as in the 2∂ theory (only the GB term diverges in the 4∂ sector)

Matching the superconformal index

- We can now calculate the on-shell action of the CCLP black hole. After imposing supersymmetry ($\omega_{1}+\omega_{2}-2 \varphi=2 \pi i$) we find:

$$
I=\frac{2 \pi}{27 G g^{3}}\left(1-4\left(3 \lambda_{1}-\lambda_{2}\right) \alpha g^{2}\right) \frac{\varphi^{3}}{\omega_{1} \omega_{2}}+\frac{2 \pi \alpha \lambda_{1}}{3 G g} \frac{\varphi\left(\omega_{1}^{2}+\omega_{2}^{2}-4 \pi^{2}\right)}{\omega_{1} \omega_{2}}
$$

Matching the superconformal index

- We can now calculate the on-shell action of the CCLP black hole. After imposing supersymmetry $\left(\omega_{1}+\omega_{2}-2 \varphi=2 \pi i\right)$ we find:

$$
I=\frac{2 \pi}{27 G g^{3}}\left(1-4\left(3 \lambda_{1}-\lambda_{2}\right) \alpha g^{2}\right) \frac{\varphi^{3}}{\omega_{1} \omega_{2}}+\frac{2 \pi \alpha \lambda_{1}}{3 G g} \frac{\varphi\left(\omega_{1}^{2}+\omega_{2}^{2}-4 \pi^{2}\right)}{\omega_{1} \omega_{2}}
$$

- This fully matches the expression for the dual index in the Cardy-like limit once the holographic dictionary is implemented

$$
I=-\log \mathcal{I}=\frac{8(5 a-3 c)}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}}+\frac{2(c-a)}{3} \frac{\varphi\left(\omega_{1}^{2}+\omega_{2}^{2}-4 \pi^{2}\right)}{\omega_{1} \omega_{2}}
$$

Bobev, Dimitrov, Reys, Vekemans

Matching the superconformal index

- We can now calculate the on-shell action of the CCLP black hole. After imposing supersymmetry $\left(\omega_{1}+\omega_{2}-2 \varphi=2 \pi i\right)$ we find:

$$
I=\frac{2 \pi}{27 G g^{3}}\left(1-4\left(3 \lambda_{1}-\lambda_{2}\right) \alpha g^{2}\right) \frac{\varphi^{3}}{\omega_{1} \omega_{2}}+\frac{2 \pi \alpha \lambda_{1}}{3 G g} \frac{\varphi\left(\omega_{1}^{2}+\omega_{2}^{2}-4 \pi^{2}\right)}{\omega_{1} \omega_{2}}
$$

- This fully matches the expression for the dual index in the Cardy-like limit once the holographic dictionary is implemented

$$
I=-\log \mathcal{I}=\frac{8(5 a-3 c)}{27} \frac{\varphi^{3}}{\omega_{1} \omega_{2}}+\frac{2(c-a)}{3} \frac{\varphi\left(\omega_{1}^{2}+\omega_{2}^{2}-4 \pi^{2}\right)}{\omega_{1} \omega_{2}}
$$

Bobev, Dimitrov, Reys, Vekemans

- What about the black hole entropy?

The corrected BPS entropy and charges

Cassani, AR, Turetta

- Corrected charges from I (assuming first law and QSR):

$$
E=\frac{\partial I}{\partial \beta}, \quad J_{1}=-\frac{1}{\beta} \frac{\partial I}{\partial \Omega_{1}}, \quad J_{2}=-\frac{1}{\beta} \frac{\partial I}{\partial \Omega_{2}}, \quad Q=-\frac{1}{\beta} \frac{\partial I}{\partial \Phi}
$$

The corrected BPS entropy and charges

Cassani, AR, Turetta

- Corrected charges from I (assuming first law and QSR):

$$
E=\frac{\partial I}{\partial \beta}, \quad J_{1}=-\frac{1}{\beta} \frac{\partial I}{\partial \Omega_{1}}, \quad J_{2}=-\frac{1}{\beta} \frac{\partial I}{\partial \Omega_{2}}, \quad Q=-\frac{1}{\beta} \frac{\partial I}{\partial \Phi}
$$

- Corrected BPS entropy (from QSR and taking BPS limit):

$$
\mathcal{S}^{*}=\pi \sqrt{3 Q_{R}^{* 2}-8 a\left(J_{1}^{*}+J_{2}^{*}\right)-16 a(a-c) \frac{\left(J_{1}^{*}-J_{2}^{*}\right)^{2}}{Q_{R}^{*}-2 a\left(J_{1}^{*}+J_{2}^{*}\right)}}
$$

(also: Bobev, Dimitrov, Reys, Vekemans)

The corrected BPS entropy and charges

- Corrected charges from I (assuming first law and QSR):

$$
E=\frac{\partial I}{\partial \beta}, \quad J_{1}=-\frac{1}{\beta} \frac{\partial I}{\partial \Omega_{1}}, \quad J_{2}=-\frac{1}{\beta} \frac{\partial I}{\partial \Omega_{2}}, \quad Q=-\frac{1}{\beta} \frac{\partial I}{\partial \Phi}
$$

- Corrected BPS entropy (from QSR and taking BPS limit):

$$
\mathcal{S}^{*}=\pi \sqrt{3 Q_{R}^{* 2}-8 a\left(J_{1}^{*}+J_{2}^{*}\right)-16 a(a-c) \frac{\left(J_{1}^{*}-J_{2}^{*}\right)^{2}}{Q_{R}^{*}-2 a\left(J_{1}^{*}+J_{2}^{*}\right)}}
$$

(also: Bobev, Dimitrov, Reys, Vekemans)

- Corrected non-linear relation between the charges:

$$
\begin{aligned}
& {\left[3 Q_{R}^{*}+4(2 a-c)\right]\left[3 Q_{R}^{* 2}-8 c\left(J_{1}^{*}+J_{2}^{*}\right)\right]} \\
& =Q_{R}^{* 3}+16(3 c-2 a) J_{1}^{*} J_{2}^{*}+64 a(a-c) \frac{\left(Q_{R}^{*}+a\right)\left(J_{1}^{*}-J_{2}^{*}\right)^{2}}{Q_{R}^{* 2}-2 a\left(J_{1}^{*}+J_{2}^{*}\right)}
\end{aligned}
$$

Wald entropy from the near-horizon geometry

- We want to compute the BPS entropy using Wald's formula
- Corrected solution needed but the near-horizon geometry is enough
- Focus on the $J_{1}^{*}=J_{2}^{*}\left(\equiv J^{*}\right)$ case (Gutowski-Reall black hole), much simpler

Wald entropy from the near-horizon geometry

- We want to compute the BPS entropy using Wald's formula
- Corrected solution needed but the near-horizon geometry is enough
- Focus on the $J_{1}^{*}=J_{2}^{*}\left(\equiv J^{*}\right)$ case (Gutowski-Reall black hole), much simpler

$$
\begin{aligned}
\mathrm{d} s^{2} & =v_{1}\left(-\varrho^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} \varrho^{2}}{\varrho^{2}}\right)+\frac{v_{2}}{4}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+v_{3}\left(\sigma_{3}+w \varrho \mathrm{~d} t\right)^{2}\right] \\
A & =e \varrho \mathrm{~d} t+p\left(\sigma_{3}+w \varrho \mathrm{~d} t\right)
\end{aligned}
$$

where

$$
v_{i}=v_{i}^{\mathrm{GR}}+\alpha \delta v_{i}, \quad w=w^{\mathrm{GR}}+\alpha \delta w, \quad e=e^{\mathrm{GR}}+\alpha \delta e, \quad p=p^{\mathrm{GR}}+\alpha \delta p
$$

Wald entropy from the near-horizon geometry

- We want to compute the BPS entropy using Wald's formula
- Corrected solution needed but the near-horizon geometry is enough
- Focus on the $J_{1}^{*}=J_{2}^{*}\left(\equiv J^{*}\right)$ case (Gutowski-Reall black hole), much simpler

$$
\begin{aligned}
\mathrm{d} s^{2} & =v_{1}\left(-\varrho^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} \varrho^{2}}{\varrho^{2}}\right)+\frac{v_{2}}{4}\left[\sigma_{1}^{2}+\sigma_{2}^{2}+v_{3}\left(\sigma_{3}+w \varrho \mathrm{~d} t\right)^{2}\right] \\
A & =e \varrho \mathrm{~d} t+p\left(\sigma_{3}+w \varrho \mathrm{~d} t\right)
\end{aligned}
$$

where

$$
v_{i}=v_{i}^{\mathrm{GR}}+\alpha \delta v_{i}, \quad w=w^{\mathrm{GR}}+\alpha \delta w, \quad e=e^{\mathrm{GR}}+\alpha \delta e, \quad p=p^{\mathrm{GR}}+\alpha \delta p
$$

Solving the corrected EOMs boils down to a linear system of algebraic eqs

$$
\mathcal{M} \mathcal{X}=\mathcal{N}, \quad \mathcal{X}=\mathcal{X}^{H}+\mathcal{X}^{P}
$$

- \mathcal{X}^{H} is the homogeneous solution, fixed by boundary conditions
- \mathcal{X}^{P} is a particular solution, it contains the "new physics"

Wald entropy

Wald formula:

$$
\mathcal{S}=-2 \pi \int_{\Sigma} \mathrm{d}^{3} x \sqrt{\gamma} \frac{\delta S}{e \delta R_{\mu \nu \rho \sigma}} \epsilon_{\mu \nu} \epsilon_{\rho \sigma}
$$

where $\epsilon_{\mu \nu}$ is the binormal at the horizon

Wald entropy

Wald formula:

$$
\mathcal{S}=-2 \pi \int_{\Sigma} \mathrm{d}^{3} x \sqrt{\gamma} \frac{\delta S}{e \delta R_{\mu \nu \rho \sigma}} \epsilon_{\mu \nu} \epsilon_{\rho \sigma}
$$

where $\epsilon_{\mu \nu}$ is the binormal at the horizon

Using the corrected near-horizon solution and expressing the result in terms of the charges, one gets

$$
\mathcal{S}^{*}=\pi \sqrt{3 Q_{R}^{* 2}-16 a J^{*}}
$$

which agrees with the previous expressions when $\boldsymbol{J}_{1}^{*}=\boldsymbol{J}_{2}^{*} \equiv \boldsymbol{J}^{*}$

Note that all the corrections are encoded in a, c

Charges from the near-horizon

Surface charges

Make use of covariant phase-space formalism to construct a $(d-1)$-form current $\mathbf{j}_{\xi, \chi}$ such that:
(1) $\mathbf{j}_{\xi, \chi}$ is conserved, $\mathbf{j}_{\xi, \chi}=\mathrm{d} \mathbf{k}_{\xi, \chi}$
(2) $\mathbf{j}_{\xi, \chi}$ vanishes on-shell
when ξ, χ are field symmetries $\left(\equiv \delta_{\xi} g_{\mu \nu}=0\right.$ and $\left.\delta_{\xi, \chi} A_{\mu}=0\right)$

Charges from the near-horizon

Surface charges

Make use of covariant phase-space formalism to construct a $(d-1)$-form current $\mathbf{j}_{\xi, \chi}$ such that:
(1) $\mathbf{j}_{\xi, \chi}$ is conserved, $\mathbf{j}_{\xi, \chi}=\mathrm{d} \mathbf{k}_{\xi, \chi}$
(2) $\mathbf{j}_{\xi, \chi}$ vanishes on-shell
when ξ, χ are field symmetries $\left(\equiv \delta_{\xi} g_{\mu \nu}=0\right.$ and $\left.\delta_{\xi, \chi} A_{\mu}=0\right)$

Barnich, Brandt, Henneaux
$\mathbf{k}_{\xi, \chi}$ can be constructed from the Noether-Wald surface charge $\mathbf{Q}_{\xi, \chi}$ as follows:

$$
\mathbf{k}_{\xi, \chi}=\mathbf{Q}_{\xi, \chi}-\boldsymbol{\Xi}_{\xi, \chi} \quad \mathrm{d} \boldsymbol{\Xi}_{\xi, \chi}=\iota_{\xi} \mathbf{L}+\chi \boldsymbol{\Delta}
$$

and crucially satisfies

$$
\int_{\mathcal{C}} \mathrm{d} \mathbf{k}_{\xi, \chi}=0 \quad \Rightarrow \quad \int_{\partial \mathcal{M} \cap \mathcal{C}} \mathbf{k}_{\xi, \chi}=\int_{\mathcal{H}} \mathbf{k}_{\xi, \chi}
$$

Applications

- Electric charge $(\xi=0, \chi=1): Q=\int_{\mathcal{H}} \mathbf{k}_{0,1}$
- It corresponds to the Page charge of the solution
- It matches the charge extracted from the on-shell action (up to a topological contribution)
- Angular momenta $\left(\xi=\partial_{\phi_{i}}, \chi=0\right): J_{i}=\int_{\mathcal{H}} \mathbf{k}_{\partial \phi_{i}, 0}$
- It fully matches the expression extracted from the on-shell action
- Derivation of the quantum statistical relation and first law

Our main results

- Construction of a four-derivative extension of 5 d minimal gauged supergravity that captures the corrections to the index
- We have evaluated the on-shell action of the CCLP black hole at linear order in the corrections, showing that it matches the CFT prediction when supersymmetry is imposed

$$
I=-\log \mathcal{I}
$$

- We have computed the corrections to the BPS entropy using different methods, showing that all of them agree
- We have shown that the index counts the number of black hole microstates beyond leading order in the large- N limit approx.

Open questions and future directions

- Better understanding of the BPS limit
- What information can be extracted from the near-horizon?

```
Cassani, AR, Turetta (to appear)
```

- Extension to matter-coupled supergravities. Multi-charge case.
- Thermodynamics of near-BPS AdS_{5} black holes. Corrections to the mass gap? CFT description?

Boruch, Heydemann, Iliesiu, Turiaci

- Possible stringy origins of the gravitational EFT?

Thank you!

