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Introduction

Some black holes admit a description in terms of fundamental constituents:
strings and branes. Key to explain the microscopic origin of their entropies

Strominger, Vafa

Use AdS/CFT to address the microstate counting of AdS black holes

Black hole = ensemble of states
AdS/CFT

= ensemble of states
in quantum gravity in the dual CFT

SCFT = logNmicro =
AH

4G
+ corrections

We will focus on AdS5/CFT4 and consider the microstate counting of
supersymmetric AdS5 black holes in minimal gauged supergravity. Dual
states should exist in any holographic N = 1 SCFT
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Euclidean approach

Gibbons, Hawking

We set ourselves in the grand-canonical ensemble (fixed β,Ωi,Φ)

The grand-canonical partition function Z (β,Ωi,Φ) is computed by the
Euclidean path integral with (anti-)periodic boundary conditions

Z (β,Ωi,Φ) =

∫
DgµνDAµDψ e

−I[gµν ,Aµ,ψ]

semiclassical approx.︷︸︸︷
' e−I(β,Ωi,Φ)

I (β,Ωi,Φ) should then be identified with β×(grand-canonical potential),
leading to the quantum statistical relation (QSR)

I = βE − S − βΩiJi − βΦQ

By the master formula of the AdS/CFT correspondence:

I (β,Ωi,Φ) = − logZCFT (β,Ωi,Φ)



Review of AdS5 black holes

We work with minimal gauged supergravity in 5d

L = R+ 12g2 − 1

4
F 2 − 1

12
√

3
εµνρσλFµνFρσAλ

The most general AdS5 black hole depends on four parameters:

E, J1, J2, Q ↔ β,Ω1,Ω2,Φ

Chong, Cvetic, Lu, Pope

These quantities obey the first law of black hole mechanics

dE = TdS + Ω1dJ1 + Ω2dJ2 + Φ dQ

as well as the quantum statistical relation

I = βE − S − βΩ1J1 − βΩ2J2 − βΦQ



Reaching the BPS locus

supersymmetry ��⇒ extremality

It is crucial to reach the BPS locus following a supersymmetric trajectory

1 Supersymmetric solution if E − gJ1 − gJ2 −
√

3Q = 0

2 BPS (supersymmetric + extremal) limit: β →∞

Cabo-Bizet, Cassani, Martelli, Murthy

The BPS charges must satisfy an additional constraint:(
2
√

3

g
Q∗ +

π

2Gg3

)(
4

g2
Q∗

2 − π

Gg3
(J∗1 + J∗2 )

)
=

(
2√
3 g

Q∗
)3

+
2π

Gg3
J∗1J

∗
2

In the BPS limit, the chemical potentials are frozen to the following values

β∗ →∞ , Ω∗1 = Ω∗2 = g , Φ∗ =
√

3

which coincide with the coefficients appearing in the superalgebra

{Q,Q†} ∝ E − gJ1 − gJ2 −
√

3Q = 0
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Supersymmetric thermodynamics

Let’s impose supersymmetry while keeping β finite

E − gJ1 − gJ2 −
√

3Q = 0

Using this in the QSR leads to

I = −S − ω1J1 − ω2J2 −
2√
3 g

ϕQ

where

ωi = β(Ωi − Ω∗i ) and ϕ =

√
3g

2
β(Φ− Φ∗)

which are constrained by

ω1 + ω2 − 2ϕ = 2πi

One can also obtain a supersymmetric first law

dS + ω1 dJ1 + ω2 dJ2 +
2√
3 g

ϕ dQ = 0

The dependence of I on β disappears after imposing supersymmetry
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Supersymmetric action and BPS entropy

Evaluating the Euclidean on-shell action of the CCLP black hole and imposing
supersymmetry (ω1 + ω2 − 2ϕ = 2πi):

I =
16a

27

ϕ3

ω1ω2

where a and c = a+ . . . are the superconformal anomaly coefficients

The constrained Legendre transform of the supersymmetric action gives the
black hole entropy Hosseini, Hristov, Zaffaroni; Cabo-Bizet, Cassani, Martelli, Murthy

S∗ = π
√

3Q∗
R

2 − 8a(J∗
1 + J∗

2 )

Kim, Lee



Supersymmetric action and BPS entropy

Evaluating the Euclidean on-shell action of the CCLP black hole and imposing
supersymmetry (ω1 + ω2 − 2ϕ = 2πi):

I =
16a

27

ϕ3

ω1ω2

where a and c = a+ . . . are the superconformal anomaly coefficients

The constrained Legendre transform of the supersymmetric action gives the
black hole entropy Hosseini, Hristov, Zaffaroni; Cabo-Bizet, Cassani, Martelli, Murthy

S∗ = π
√

3Q∗
R

2 − 8a(J∗
1 + J∗

2 )

Kim, Lee



CFT side of the story

The relevant CFT quantity is the superconformal index (≡ supersymmetric
partition function on S1 × S3) on the “second sheet”

I = Tr (−1)Fe−β{Q,Q
†}+(ω1−2πi)(J1+ 1

2
Q)+ω2(J2+ 1

2
Q)

This is a refined Witten index: only receives contributions from states annihilated
by Q,Q†

Kinney, Maldacena, Minwalla, Raju; Romelsberger

The contribution of the supersymmetric black hole can be isolated by taking a
Cardy-like limit:

−log I =
8 (5a− 3c)

27

ϕ3

ω1ω2
+

2 (c− a)

3

ϕ(ω2
1 + ω2

2 − 4π2)

ω1ω2

− log |G1−form|+ exp-terms

Cassani, Komargodsky; Choi, J. Kim, S. Kim, Nahmgoong + ...
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The leading-order contribution in the large N limit exactly matches the SUSY
on-shell action

− log I =
16a

27

ϕ3

ω1ω2
⇒ − log I = I

Cabo-Bizet, Cassani, Martelli, Murthy

But the result for the index in the Cardy-like limit holds at finite N ...

− log I =
8(5a− 3c)

27

ϕ3

ω1ω2
−2(a− c)

3

ϕ(ω2
1 + ω2

2 − 4π2)

ω1ω2
+ . . .

Q1: How can we match this result from the gravitational side?

Q2: Does it count the number of microstates of BPS black holes beyond
leading order in the large-N limit?
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Plan for the rest of the talk

1 Legendre transform of the superconformal index: field theory prediction for the
black hole entropy

2 Include relevant higher-derivative/quantum corrections

3 Evaluate the on-shell action for the CCLP black hole and impose
supersymmetry to match the result from the index

4 Corrections to the entropy and charges and match with field theory



Legendre transform of the superconformal index

Extremization principle:

S = ext{ω1,ω2,ϕ,Λ} [−I − ω1J1 − ω2J2 −ϕQR −Λ (ω1 + ω2 − 2ϕ− 2πi)]

− ∂I

∂ωi
= Ji + Λ , − ∂I

∂ϕ
= QR − 2Λ , ω1 + ω2 − 2ϕ = 2πi

I is homogeneous of degree 1

S = 2πiΛ|ext

Working at linear order in a− c, one finds that Λ satisfies:

Λ3 + p2Λ
2 + p1Λ + p0 +

p−1

Λ− QR
2

= 0

with pα = pα(QR, J1, J2) real coefficients

Reality condition (ImS = 0) ⇔ (Λ2 +X)(rest) = 0
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Field theory predictions

The factorization condition (Λ2 +X)(rest) = 0 must be equivalent to the corrected
non-linear constraint among the charges

[3Q∗
R + 4 (2 a− c)]

[
3Q∗

R
2 − 8c (J∗

1 + J∗
2 )
]

= Q∗
R

3 + 16 (3c− 2a) J∗
1J

∗
2 + 64a (a− c)(Q∗

R + a)(J∗
1 − J∗

2 )2

Q∗
R

2 − 2a(J∗
1 + J∗

2 )

The corrected BPS entropy

S = 2π
√
X = π

√
3Q∗

R
2 − 8a(J∗

1 + J∗
2 )−16 a(a− c) (J∗

1 − J∗
2 )2

Q∗
R

2 − 2a(J∗
1 + J∗

2 )

Cassani, AR, Turetta
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The four-derivative effective action

The goal is to go beyond the 2∂ approximation including 4∂ terms

EFT approach: Add all the possible four-derivative terms that are
consistent with the symmetries of the two-derivative theory

Methodology

1 Start from the off-shell formulation of 5d supergravity where 4∂
supersymmetric invariants have been worked out in the literature

Loff−shell = L(2∂)
off−shell + α (λ1 LC2 + λ2 LR2 +���λ3 L3)

Hanaki, Ohashi, Tachikawa

Bergshoeff, Rosseel, Sezgin

Ozkan, Pang

2 Integrate out all the auxiliary fields at linear order in α

3 Use perturbative field redefinitions

gµν → gµν + α∆µν , Aµ → Aµ + α∆µ

to simplify the resulting action as much as possible
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The four-derivative effective action

Cassani, AR, Turetta

Final result

L = c0R+ 12c1g
2 − c2

4
F 2 − c3

12
√

3
εµνρσλFµνFρσAλ

+ λ1α

(
XGB −

1

2
CµνρσF

µνF ρσ +
1

8
F 4 − 1

2
√

3
εµνρσλRµναβRρσ

αβAλ

)
where XGB = RµνρσR

µνρσ − 4RµνR
µν +R2 and ci = 1 + αg2δci, with:

δc0 = 4λ2 , δc1 = −10λ1 + 4λ2 , δc2 = 4λ1 + 4λ2 , δc3 = −12λ1 + 4λ2

Remarks

I Together with 4∂ corrections, there are 2∂ corrections controlled by λiαg
2

I The effect of λ2 simply reduces to a renormalization of G

I It can be argued that λ3 can be set to zero without loss of generality



Holographic dictionary

The bulk theory is controlled by 2 dimensionless quantities

1

Geffg
3 ≡

1 + 4λ2αg
2

Gg3
, λ1αg

2

N = 1 SCFTs have a superconformal anomaly controlled by 2 coefficients:

Ti
i = − a

16π2
Ê +

c

16π2
Ĉ2 − c

6π2
F̂ 2 ,

∇iJ i =
c− a
24π2

1

2
εijklR̂ijabR̂kl

ab +
5a− 3c

27π2

1

2
εijklF̂ijF̂kl ,

Anselmi, Freedman, Grisaru, Johansen; Cassani, Martelli

The holographic dictionary tells us that

a =
π

8Gg3

(
1 + 4λ2αg

2) c =
π

8Gg3

(
1 + 4 (2λ1 + λ2)αg2)

Witten

Henningson, Skenderis

Fukuma, Matsuura, Sakai
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Ê +

c

16π2
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Setting up the computation of the on-shell action at O(α)

A priori we need two ingredients to evaluate the on-shell action at O(α):

1 The corrected solution

2 Boundary terms (Gibbons-Hawking terms + counterterms)

However, it is possible to show that the two-derivative solution is enough for
evaluating the on-shell action

I = I(0)|α=0 + α����
∂αI

(0)
α=0 + α I(1)|α=0 +O(α2)

if one fixes the boundary conditions appropriately, which is automatic if we work in
the grand-canonical ensemble

Reall, Santos

We are then left with the only task of identifying an appropriate set of boundary
terms
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Setting up the computation of the on-shell action at O(α)

Gibbons-Hawking terms

The Dirichlet variational problem is not well posed in higher-derivative gravity

Still, in our case:

the GH term associated to the GB is well known Myers; Teitelboim, Zanelli

GH terms associated to CµνρσF
µνF ρσ and to the mixed Chern-Simons term can

be derived as well but do not contribute for AlAdS5 spacetimes
Grumiller, Mann, McNees; Landsteiner, Meǵıas, Pena-Benitez

Cassani, AR, Turetta (to appear)

Boundary counterterms

same as in the 2∂ theory (only the GB term diverges in the 4∂ sector)
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Cassani, AR, Turetta (to appear)

Boundary counterterms

same as in the 2∂ theory (only the GB term diverges in the 4∂ sector)



Matching the superconformal index

We can now calculate the on-shell action of the CCLP black hole. After
imposing supersymmetry (ω1 + ω2 − 2ϕ = 2πi) we find:

I =
2π

27Gg3

(
1− 4(3λ1 − λ2)αg2) ϕ3

ω1ω2
+

2παλ1

3Gg

ϕ
(
ω2

1 + ω2
2 − 4π2

)
ω1ω2

This fully matches the expression for the dual index in the Cardy-like
limit once the holographic dictionary is implemented

I = − log I =
8 (5a− 3c)

27

ϕ3

ω1ω2
+

2 (c− a)

3

ϕ(ω2
1 + ω2

2 − 4π2)

ω1ω2

Cassani, AR, Turetta

Bobev, Dimitrov, Reys, Vekemans

What about the black hole entropy?
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The corrected BPS entropy and charges

Cassani, AR, Turetta

Corrected charges from I (assuming first law and QSR):

E =
∂I

∂β
, J1 = − 1

β

∂I

∂Ω1
, J2 = − 1

β

∂I

∂Ω2
, Q = − 1

β

∂I

∂Φ

Corrected BPS entropy (from QSR and taking BPS limit):

S∗ = π

√
3Q∗

R
2 − 8a(J∗

1 + J∗
2 )−16 a(a− c) (J∗

1 − J∗
2 )2

Q∗
R

2 − 2a(J∗
1 + J∗

2 )

(also: Bobev, Dimitrov, Reys, Vekemans)

Corrected non-linear relation between the charges:

[3Q∗
R + 4 (2 a− c)]

[
3Q∗

R
2 − 8c (J∗

1 + J∗
2 )
]

= Q∗
R

3 + 16 (3c− 2a) J∗
1J

∗
2 + 64a (a− c)(Q∗

R + a)(J∗
1 − J∗

2 )2

Q∗
R

2 − 2a(J∗
1 + J∗

2 )
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Wald entropy from the near-horizon geometry

We want to compute the BPS entropy using Wald’s formula

Corrected solution needed but the near-horizon geometry is enough

Focus on the J∗1 = J∗2 (≡ J∗) case (Gutowski-Reall black hole), much simpler

ds2 = v1

(
−%2dt2 +

d%2

%2

)
+
v2

4

[
σ2

1 + σ2
2 + v3 (σ3 + w % dt)2]

A = e % dt+ p (σ3 + w % dt)

where

vi = vGR
i + α δvi , w = wGR + α δw , e = eGR + α δe , p = pGR + α δp

Solving the corrected EOMs boils down to a linear system of algebraic eqs

MX = N , X = XH + XP

XH is the homogeneous solution, fixed by boundary conditions

XP is a particular solution, it contains the “new physics”
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Wald entropy

Wald formula:

S = −2π

∫
Σ

d3x
√
γ

δS

eδRµνρσ
εµνερσ

where εµν is the binormal at the horizon

Using the corrected near-horizon solution and expressing the result in terms of
the charges, one gets

S∗ = π
√

3Q∗
R

2 − 16aJ∗

which agrees with the previous expressions when J∗
1 = J∗

2 ≡ J∗

Note that all the corrections are encoded in a, c

Cassani, AR, Turetta
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Charges from the near-horizon

Surface charges

Make use of covariant phase-space formalism to construct a (d− 1)-form current jξ,χ
such that:

1 jξ,χ is conserved, jξ,χ = dkξ,χ

2 jξ,χ vanishes on-shell

when ξ, χ are field symmetries (≡ δξgµν = 0 and δξ,χAµ = 0)

Barnich, Brandt, Henneaux

kξ,χ can be constructed from the Noether-Wald surface charge Qξ,χ as follows:

kξ,χ = Qξ,χ −Ξξ,χ dΞξ,χ = ιξL + χ∆

and crucially satisfies∫
C

dkξ,χ = 0 ⇒
∫
∂M∩C

kξ,χ =

∫
H

kξ,χ

Cassani, AR, Turetta (to appear)
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Applications

Electric charge (ξ = 0, χ = 1): Q =
∫
H k0,1

I It corresponds to the Page charge of the solution

I It matches the charge extracted from the on-shell action (up to a topological
contribution)

Angular momenta (ξ = ∂φi , χ = 0): Ji =
∫
H k∂φi,0

I It fully matches the expression extracted from the on-shell action

Derivation of the quantum statistical relation and first law



Our main results

Construction of a four-derivative extension of 5d minimal gauged
supergravity that captures the corrections to the index

We have evaluated the on-shell action of the CCLP black hole at linear
order in the corrections, showing that it matches the CFT prediction when
supersymmetry is imposed

I = − log I

We have computed the corrections to the BPS entropy using different
methods, showing that all of them agree

We have shown that the index counts the number of black hole microstates
beyond leading order in the large-N limit approx.



Open questions and future directions

Better understanding of the BPS limit

What information can be extracted from the near-horizon?

Cassani, AR, Turetta (to appear)

Extension to matter-coupled supergravities. Multi-charge case.

Thermodynamics of near-BPS AdS5 black holes. Corrections to the mass gap?
CFT description?

Boruch, Heydemann, Iliesiu, Turiaci

Possible stringy origins of the gravitational EFT?
Bilal, Chu

Liu, Minasian



Thank you!
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