
Introduction to OAuth
and its applications

CNAF SD - Federica Agostini
12/01/2023

Outline

● Brief introduction to OAuth

● JSON Web Tokens

● OAuth grant types
○ authorization code flow
○ device code flow
○ refresh token flow
○ client credentials
○ token exchange

● oidc-agent

● Usage in WLCG

2

A brief introduction to OAuth

3

Core technologies in AAI

● OAuth 2

○ A standard framework for delegated authorization
○ Widely adopted in industry
○ Main specification is RFC 6749

● OpenID Connect (OIDC)

○ An authentication layer built on top of OAuth 2
○ Core specification

● JSON Web Tokens (JWTs)

○ A compact, URL-safe means of representing attributes
(claims) to be transferred between two or more parties

○ Main specification is RFC 7519

4

https://www.rfc-editor.org/rfc/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/rfc/rfc7519

OAuth 2 features that matter

● OAuth uses authorization tokens between users
and service providers to prove an identity without
sharing password data

● Heavily relies on web technology

● Allows for example to login on a service using
another social account

● Defines authorization workflows for web, desktop
and mobile applications

5

Example: https://accounts.spotify.com/en/login

https://accounts.spotify.com/en/login

OAuth 2 features that matter

● Enables Single Sign-On (SSO), based on strong
authentication mechanisms, including multi-factor
authentication

● Gives users more control over their data → they can
selectively grant access to the scopes an application
ask for

● Mandates the use of TLS (Transport Layer Security)

● Easy to implement

● Tokens can be (and usually are) self-contained, i.e.
their integrity and validity can be verified without
calling back the token issuer

6

OAuth 2 roles

● Resource owner
○ A user that owns resources hosted at a service

● Client
○ An application that wants to have delegated access to user resources
○ It has to be registered on the Authorization Server
○ Relying Party (RP) in OIDC

● Authorization Server (AS)
○ A service that authenticates users and Clients
○ It issues tokens to Clients that can be used to access user resources
○ OpenID Provider (OP) in OIDC

● Resource Server (RS)
○ A service that holds protected resources (e.g., user data)
○ It grants access based on tokens issued by the Authorization Server and presented by a Client
○ It has to validate the access token
○ Not mandatory to register a RS on the Authorization Server

7

The Authorization Server
may be the same as the

Resource Server

Authorization flow in theory

1. Authorization request to the resource owner
○ The Client (A) requests authorization from the resource owner

to access a resource within a defined scope

■ the authorization request can be performed indirectly
via the Authorization Server (AS)

○ The Client receives an authorization grant, which is a
credential representing the resource owner's authorization

■ it depends on the authorization flow (aka grant type)
used by the Client to perform the authorization requests

2. Authorization request to the AS token endpoint
○ The Client requests for an access token by authenticating

with the AS and presenting the authorization grant

■ additional tokens can be requested at this stage
8

Authorization flow in theory

3. Access to the protected resource

○ The Client requests the protected resource from the
Resource Server (B) and authenticates by presenting the
access token

○ The RS validates the access token, and if valid, serves
the request

○ Access is granted/denied according to the contents of the
access token

■ local policies that map token claims into
permissions may be applied by the RS

9

OAuth/OIDC token types

Access Token (AT)

● Defined within OAuth 2
● Is a string that the Client uses to make requests to the Resource Server

○ do not have to be in any particular format
● AT may be bearer tokens, meaning that those who hold the token can use it

ID token

● Defined within OIDC
● Is a JWT intended to be read by the OAuth Client, which is the audience of the token
● May also contain information about the user such as their name or email address

○ client applications can use it to build a user profile to personalize the user
experience

Refresh token (RT)

● Defined within OAuth 2
● Is a string that the OAuth Client can use to get a new AT without the user's interaction
● Must not allow the Client to gain any access beyond the scope of the original grant

10

https://www.rfc-editor.org/rfc/rfc6749#section-1.4
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://www.rfc-editor.org/rfc/rfc6749#section-1.5

Examples of scopes

Standard commonly used OAuth/OIDC scopes

● openid signal that the Client wants to receive authentication information about the user

● profile used to request profile information (name, address, etc)

● email used to request access to the user’s email (name, address)

● offline_access used to request refresh tokens, needed to renew access tokens

WLCG-defined scopes (detailed later)

● storage.read, storage.create, storage.modify, storage.stage used to manage access to WLCG storage

● compute.read, compute.modify, compute.create, compute.cancel used to manage access to WLCG
computing resources

● wlcg.groups used to request the inclusion of group information in tokens

11

OAuth Client registration

● Clients which interact with an Authorization Server need to be registered
● When a client is registered, it is assigned a unique identifier (client_id) and a

credential, either
○ a password (client_secret), or
○ an assertion (in the form of a JWT)

Credentials are required in most of the OAuth/OIDC flows or to access specific
endpoints, where different privileges may be assigned to different Clients

● Client registration is necessary to integrate any application that needs to “drive” an
authorization flow

○ e.g., if your web app needs to authenticate users through a “Login” button, you need to register a Client

● Registration is not needed for Resource Servers (e.g., a REST API)
○ Resource Servers need to validate the ATs before to allow/deny access to protected resources

12

OAuth Client registration in IAM

13

● In INDIGO IAM versions >= 1.8.0:
○ users own their newly created clients
○ users can reclaim their old clients through the registration

token (once)
○ admins can assign to one or more users the ownership of

a client

● A list of System Scopes may be defined in IAM so
that each newly registered Client has

○ default access to them, if they are declared as default
○ access needs to be granted by an admin, if they are

declared as restricted
○ access has to be explicitly requested, but there is no need of

intervention from an admin

● Client registration in IAM through
○ web application
○ API

https://indigo-iam.github.io/v/current/docs/reference/configuration/system-scopes/

Client registration in IAM through web interface

● Documentation here

● One can create a New client from the My Client link on the
left navigation bar of the IAM dashboard

● Minimum information required for a web app which needs to
authenticate users through a “Login with IAM” button is

○ Client name choose a name for your Client
○ Redirect URIs one or more URIs for your web app (it

is required when the authorization code flow is enabled
– see later)

● Then, IAM will generate a client_id and
client_secret which have to be saved into your web app

● Select the offline_access scope from the Scopes tab if
you want to request the RT for the Client being created

14

https://indigo-iam.github.io/v/current/docs/tasks/user/client-registration/

Client registration in IAM through API

15

● IAM supports anonymous OAuth Client registration

○ a Client is not linked to an account
○ used for example by oidc-agent

● In IAM one can use the client-registration API

https://indigo-iam.github.io/v/current/docs/reference/api/oidc-client-registration/

Example of client registration in IAM through API

Prepare a JSON file with the Client details, for instance
$ cat client_req.json
{
 "redirect_uris": [

"https://another.client.example/oidc"
],
 "client_name": "client-demo",
 "contacts": [

"test@iam.test"
],
 "token_endpoint_auth_method": "client_secret_basic",
 "scope": "address phone openid email profile offline_access",
 "grant_types": [

"refresh_token",
"authorization_code"

],
 "response_types": [

"code"
]
}

16

Example of client registration in IAM through API

POST HTTP request to the IAM client-registration API

$ curl https://wlcg.cloud.cnaf.infn.it/iam/api/client-registration -H "Content-Type: application/json" -d @client_req.json 2>/dev/null |
jq
{
 "client_id": "90b4f677-2551-4852-935e-8f785c583572",
 "client_secret": "xxx",
 "client_name": "client-demo",
 "redirect_uris": [

"https://another.client.example/oidc"
],
 "contacts": [

"test@iam.test"
],
 "grant_types": [

"authorization_code",
"refresh_token"

],
 "response_types": [

"code"
],
 "token_endpoint_auth_method": "client_secret_basic",
 "scope": "openid profile offline_access email",
 "reuse_refresh_token": true,
 "dynamically_registered": true,
 "clear_access_tokens_on_refresh": true,
 "require_auth_time": false,
 "registration_access_token": "xxx”,
 "registration_client_uri": "https://wlcg.cloud.cnaf.infn.it/iam/api/client-registration/90b4f677-2551-4852-935e-8f785c583572",
 "created_at": 1669116921824
} 17

OAuth/OIDC grant types

Authorization grant types

=

Authorization Flows

=

Ways for an application to get tokens

18

OAuth/OIDC provider metadata

● OAuth & OIDC provide a standard way to expose the AS/OP configuration to Clients

● Information is published at a well-known endpoint for the server

○ .well-known/openid-configuration (in OIDC)
○ .well-known/oauth-authorization-server (in OAuth)

● Clients can use this information to know about

○ location of key material used to sign/encrypt tokens
○ supported grant types/authorization flows
○ endpoint locations
○ supported claims
○ …

and implement automatic Client configuration

● Example metadata document:

○ https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration
○ https://xfer.cr.cnaf.infn.it:8443/.well-known/openid-configuration
○ https://xfer.cr.cnaf.infn.it:8443/.well-known/oauth-authorization-server
○ https://accounts.google.com/.well-known/openid-configuration

19

INDIGO
IAM

StoRM
WebDAV

https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration
https://xfer.cr.cnaf.infn.it:8443/.well-known/openid-configuration
https://xfer.cr.cnaf.infn.it:8443/.well-known/oauth-authorization-server
https://accounts.google.com/.well-known/openid-configuration

Token-based AuthN/Z

In order to access resources/services, a Client
application needs an Access Token

The token is obtained from a VO (through an
OAuth Authorization Server) using standard
OAuth/OIDC flows

Authorization is then performed at the
services, leveraging info extracted from the
token:

● Identity attributes: e.g., groups/roles
● Scopes: capabilities linked to access

tokens at token creation time

20

Identity-based vs Scope-based Authorization

Identity-based authorization

● the token brings information about attribute
entitlement (e.g., group/role membership)

● the service maps these attributes to a local
authorization policy

Scope-based authorization

● the token brings information about which
actions should be authorized at a service

● the service needs to understand these
capabilities and honor them

● the authorization policy is managed at the VO
level (i.e., IAM)

21

In practice …

● The central AS provides attributes that can be used for authorization at services, e.g.:
○ groups/roles, e.g.: /escape, /cms/analysis, /atlas/production
○ scopes, e.g.: storage.read:/escape , compute.create

● This information is exposed to services via signed JWTs, possibly obtained via
OAuth/OIDC protocol message exchanges (aka flows)

● Services can then grant or deny access to functionality based on this information.
Examples:

○ allow read access on the /cms namespace to all members of the /cms group
○ allow read access on the /cms namespace to anyone with the capability storage.read:/cms

● For instance, in StoRM WebDAV one can set authorization policies based on JWT
subject/groups/issuer

○ capability-based access following the WLCG JWT profile requirements is natively supported

22

http://italiangrid.github.io/storm/documentation/sysadmin-guide/1.11.21/installation-guides/webdav/storage-area-configuration/index.html#Fine-grainedauthorization

JSON Web Tokens
(JWT)

23

OAuth bearer token usage

● RFC 6750

● It defines how to use tokens in HTTP requests to access protected resources on Resource Servers

● Any party in possession of a bearer token (a "bearer") can use it to get access to the associated
resources (without demonstrating possession of a cryptographic key)

● OAuth bearer token must be used in combination with TLS over HTTP

● Typically, tokens are sent in the Authorization HTTP header, as in the following example HTTP
request

GET / HTTP/1.1
Host: apache.test.example
Authorization: Bearer eyJraWQiOiJy…rYI
User-Agent: curl/7.65.3
Accept: */*

The token!

24

https://www.rfc-editor.org/rfc/rfc6750

JSON Web Tokens: definition

● RFC 7519

● JSON Web Token is a compact, self-contained way of securely transmitting
information between parties in a JSON object

● The payload of the JWT is encoded in token claims

● JWTs are typically signed and, if confidentiality is a requirement, can be encrypted
● A JWT is represented as a sequence of URL-safe parts separated by period (“.”)

characters. Each part contains a base64url-encoded value.

● The number of parts in the JWT is dependent upon the representation of the
resulting JSON Web Signature (JWS) using the JWS Compact Serialization or
JSON Web Encryption (JWE) using the JWE Compact Serialization

25

https://www.rfc-editor.org/rfc/rfc7519

JWT: Header.Body.Signature

Example of encoded token

eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJ3bGNnLnZlciI6IjEuMCIsInN1YiI6IjBmZD
c2YjNjLWMzZjEtNDI4MC1iZTNjLTVlYmVhZDgxYzZkNiIsImF1ZCI6Imh0dHBzOlwvXC93
bGNnLmNlcm4uY2hcL2p3dFwvdjFcL2FueSIsIm5iZiI6MTY2OTEyNzI3Nywic2NvcGUiOiJ
zdG9yYWdlLnJlYWQ6XC8iLCJpc3MiOiJodHRwczpcL1wvd2xjZy5jbG91ZC5jbmFmLmlu
Zm4uaXRcLyIsImV4cCI6MTY2OTEzMDg3NywiaWF0IjoxNjY5MTI3Mjc3LCJqdGkiOiI5Z
DE0NGRhMC1hMTQ5LTQwZTItYWM3NS01MjM0YzFjOTcyODIiLCJjbGllbnRfaWQiOiJl
YjllMWNjMi1mNWUxLTRhNGItYjk2Ny1iY2NlYTI2NmYwOWIifQ.YbsCossZBloBxJBgk9D
-IdVuAzm67rl_MVVdp8j4bXicLgPCM-6Wdze2VMzR6Nw0KMCBXhs59e5glgq0Fr5kagrp
Pjuua2sHX5ul84SNvlgoKMwSn_NIDXSO9fIaDIIuelrSgT1qOTSiMV5M_U4VpWjOimpYm
9fxmLSSIZT59MU

26

JWT: Header.Body.Signature
Example of decoded token

27

Header

$ echo $AT | cut -d. -f1 |
base64 -d 2>/dev/null | jq

{
 "kid": "rsa1",
 "alg": "RS256"
}

Payload

$ echo $AT | cut -d. -f2 | base64 -d
2>/dev/null | jq

{
 "wlcg.ver": "1.0",
 "sub":
"0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1669127273,
 "scope": "storage.read:/",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669130873,
 "iat": 1669127273,
 "jti":
"2222be79-e218-442b-9389-c741c5b95da2",
 "client_id":
 "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

Signature

$ echo $AT | cut -d. -f3

Zcamp7C40T4oygiO9_ua6oASnE
TYvkZhr8x_OredqLQagryptTwl
iDJRcCA2L8Uff_Tyh8KxKJsc1e
k86pGEZnkckFcfKscNJQyg8qKt
4plTDpxUkMV0ficF--IFOK3ACl
u18kWSG1pc85IGl8r64qF5e46o
fHjblGDnQAz06bc

JWT: Header.Body.Signature
Example of decoded token

28

Header

$ echo $AT | cut -d. -f1 |
base64 -d 2>/dev/null | jq

{
 "kid": "rsa1",
 "alg": "RS256"
}

Payload

$ echo $AT | cut -d. -f2 | base64 -d
2>/dev/null | jq

{
 "wlcg.ver": "1.0",
 "sub":
"0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1669127273,
 "scope": "storage.read:/",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669130873,
 "iat": 1669127273,
 "jti":
"2222be79-e218-442b-9389-c741c5b95da2",
 "client_id":
 "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

Signature

$ echo $AT | cut -d. -f3

Zcamp7C40T4oygiO9_ua6oASnE
TYvkZhr8x_OredqLQagryptTwl
iDJRcCA2L8Uff_Tyh8KxKJsc1e
k86pGEZnkckFcfKscNJQyg8qKt
4plTDpxUkMV0ficF--IFOK3ACl
u18kWSG1pc85IGl8r64qF5e46o
fHjblGDnQAz06bc

Useful JWT decoders

● https://jwt.io/
● https://github.com/troyharvey/jwt-cli
● etc

https://jwt.io/
https://github.com/troyharvey/jwt-cli

JWT claim names

Typical registered claim names (i.e. a set of basic claims defined by the JWT standard)

● “iss” (Issuer): the principal (AS/OP) that issued the JWT (e.g., IAM WLCG)
● “sub” (Subject): the principal that is the subject of the JWT (e.g., a unique ID linked to an IAM account)
● “aud” (Audience): identifies the recipients that the JWT is intended for (e.g., RUCIO)
● “exp” (Expiration time): identifies the expiration time after which the JWT MUST NOT be accepted by resources
● “nbf” (Not before): identifies the time before which the JWT MUST NOT be accepted by resources
● “iat” (Issued at): identifies the time at which the JWT was issued
● “jti” (JWT ID): provides a unique identifier for the JWT

Additional IAM claims

● “client_id”: ID of the client which requests the token
● “scope”: depends on the IAM profile in use (more explanation on the profiles in the WLCG slides)

○ iam => not included
○ wlcg => included
○ aarc => not included

● “groups”: list of groups the user is member of (available with iam profile)
● “wlcg.groups”: list of groups the user is member of, but has to be explicitly requested with the wlcg.groups scope (available

with wlcg profile)
● “eduperson_entitlement”: list of groups the user is member of, but has to be explicitly requested with the

eduperson_entitlement scope (available with aarc profile)
● etc

29

https://indigo-iam.github.io/v/current/docs/reference/configuration/jwt-profiles/

JWT validation

● Section 4 of RFC 9068

● Validating a JWT means:
○ check that the current time is before the time represented by the “exp” claim (delays of few minutes are

allowed to account for clock skew)
○ check the token signature using the algorithm specified in the JWT "alg" Header Parameter

■ the well-known endpoint of the AS shares its public/symmetric key through the jwks_uri field
■ the JWKS can be cached (in IAM the max-age is configurable, default is 6 hours)

○ if validation is performed by the Resource Server, the “aud” claim must contain a resource indicator value
corresponding to the resource itself

● OAuth 2 foresees that the AS implements an introspection endpoint which does the job (RFC
7662)

● Anyhow, a callback to the AS for the token validation can (and should) be avoided
○ many libraries support the token validation
○ we strongly advise to implement your own token validation
○ example on github 30

https://www.rfc-editor.org/rfc/rfc9068#section-4
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7662
https://github.com/federicaagostini/useful-jwt-stuff

OAuth grant types

○ authorization code flow
○ device code flow
○ refresh token flow
○ client credentials
○ token exchange

31

Authorization code flow

● Section 4.1 of RFC 6749 (OAuth 2)

● Section 3.1 of the OpenID Connect spec

● The recommended flow for server-side applications that can maintain the
confidentiality of client credentials

○ but recommended for any client when combined with PKCE

● Allows an application to obtain tokens to act on behalf of a user for a
potentially unbounded amount of time within the limits of allowed scopes

32

https://www.rfc-editor.org/rfc/rfc6749#section-4.1
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://www.rfc-editor.org/rfc/rfc7636

Authorization code flow

OAuth 2.0 and OpenID Connect video from OktaDev

33

https://www.youtube.com/watch?v=996OiexHze0

Authorization code flow in practice

● In practice, many OAuth/OIDC client libraries implement all the above behind the
scenes

● As an example, Apache and nginx modules require the following information to
enable a working OIDC integration

○ The OIDC provider discovery/metadata URL
○ Client credentials

● The library then takes care of exchanging messages with the OP, implementing
verification checks, and provides the obtained authentication/authorization
information to the protected web application

○ typically via env variables or HTTP headers

● Source code of an Apache integration demo by Andrea here

34

https://github.com/zmartzone/mod_auth_openidc
https://github.com/zmartzone/ngx_openidc_module
https://github.com/andreaceccanti/iam-tutorial/tree/master/apache-integration-demo

Integration Demo setup

35

From ESCAPE AAI Webinar

https://indico.in2p3.fr/event/21072/

Apache mod_auth_openidc configuration
ServerName demo.cloud.cnaf.infn.it

<VirtualHost _default_:80>

 OIDCProviderMetadataURL https://iam-escape.cloud.cnaf.infn.it/.well-known/openid-configuration
 OIDCClientID demo_client
 OIDCClientSecret ***
 OIDCScope "openid email profile"
 OIDCRedirectURI https://demo.cloud.cnaf.infn.it/oidc/redirect_uri
 OIDCCryptoPassphrase *****

 <Location /escape>
 …
 AuthType openid-connect
 Require valid-user
 </Location>

 …

 <Location /lofar>
 …
 AuthType openid-connect
 Require claim groups:/escape/lofar
 </Location>

</VirtualHost>

36

From ESCAPE AAI Webinar

https://indico.in2p3.fr/event/21072/

Demo application in action

37

https://demo.cloud.cnaf.infn.it

https://demo.cloud.cnaf.infn.it

What happens behind the scenes
● GET https://demo.cloud.cnaf.infn.it

● GET https://demo.cloud.cnaf.infn.it/escape

● 302, redirect to
https://iam-escape.cloud.cnaf.infn.it/authorize?response_type=code&scope=openid%20profile%20email%20wlcg.groups&client_id=
demo_client&state=UbSXWU5MyWvFvaWnoQwOkVwUM_M&redirect_uri=https%3A%2F%2Fdemo.cloud.cnaf.infn.it%2Foidc%2Fredirect_uri&no
nce=q5dHehbHMSM1b7CGm6lWR8m26RynGPgwpmimr7rpesY

● GET
https://iam-escape.cloud.cnaf.infn.it/authorize?response_type=code&scope=openid%20profile%20email%20wlcg.groups&client_id=
demo_client&state=UbSXWU5MyWvFvaWnoQwOkVwUM_M&redirect_uri=https%3A%2F%2Fdemo.cloud.cnaf.infn.it%2Foidc%2Fredirect_uri&no
nce=q5dHehbHMSM1b7CGm6lWR8m26RynGPgwpmimr7rpesY

● 302, redirect to https://iam-escape.cloud.cnaf.infn.it/login

38

What happens behind the scenes

● GET https://iam-escape.cloud.cnaf.infn.it/login

● 200 => user has to authenticate (I am using x509 in this
example)

● GET
https://iam-escape.cloud.cnaf.infn.it/dashboard?
x509ClientAuth=true

● 302, redirect to
https://iam-escape.cloud.cnaf.infn.it/authorize
?response_type=code&scope=openid%20profile%20e
mail%20wlcg.groups&client_id=demo_client&state
=UbSXWU5MyWvFvaWnoQwOkVwUM_M&redirect_uri=http
s%3A%2F%2Fdemo.cloud.cnaf.infn.it%2Foidc%2Fredi
rect_uri&nonce=q5dHehbHMSM1b7CGm6lWR8m26RynGPgw
pmimr7rpesY

39

What happens behind the scenes

● GET
https://iam-escape.cloud.cnaf.infn.it/authorize?re
sponse_type=code&scope=openid%20profile%20email%20
wlcg.groups&client_id=demo_client&state=UbSXWU5MyW
vFvaWnoQwOkVwUM_M&redirect_uri=https%3A%2F%2Fdemo.
cloud.cnaf.infn.it%2Foidc%2Fredirect_uri&nonce=q5d
HehbHMSM1b7CGm6lWR8m26RynGPgwpmimr7rpesY

● 200 => user has to authorize the Client app to access their data

● POST
https://iam-escape.cloud.cnaf.infn.it/authorize

○ IAM generates an authorization code and sends it back to the
web app using an HTTP redirect

● 303, redirect to
https://demo.cloud.cnaf.infn.it/oidc/redirect_uri?c
ode=jjBikzc_C_vWe9_ho8iqUO&state=UbSXWU5MyWvFvaWnoQ
wOkVwUM_M

40

What happens behind the scenes
● GET https://demo.cloud.cnaf.infn.it/oidc/redirect_uri?code=jjBikzc_C_vWe9_ho8iqUO&state=UbSXWU5MyWvFvaWnoQwOkVwUM_M

○ The demo app exchanges the authorization code with an access and id token in the back channel

● 302, redirect to https://demo.cloud.cnaf.infn.it/escape

● 200 => users has access to their resource

41

Clone your demo app

● A web server is necessary to reproduce the authorization code flow (i.e. not
feasible with curl)

● Many examples can be found on github, e.g.

○ iam-test-client
○ sample-oauth2-client
○ invenio-oauth-client
○ flask-dance
○ etc

● Clone it and enjoy !

42

https://wlcg.cloud.cnaf.infn.it/iam-test-client/

https://github.com/indigo-iam/iam/tree/master/iam-test-client
https://github.com/aaronpk/sample-oauth2-client
https://github.com/inveniosoftware/invenio-oauthclient
https://github.com/singingwolfboy/flask-dance
https://wlcg.cloud.cnaf.infn.it/iam-test-client/

Device code flow

● RFC 8628

● Used in place of the authorization code flow when the Client can not easily trigger a
browser-based authorization

○ the authorization to access protected resources happens on a separate device

● Requirements for the device code flow:
○ the device is able to display or otherwise communicate an URI and code sequence to the user
○ the user has a secondary device (e.g., personal computer or smartphone) from which they can

process the request

● Since the protocol supports Clients that can not receive incoming requests, the
Clients poll the authorization server repeatedly until the end user completes the
approval process

43

https://www.rfc-editor.org/rfc/rfc8628

Device code flow

● The authorization grant is a code, e.g. a sequence of 6 letters/numbers in IAM

○ The code has to be requested at the device code endpoint exposed by the AS
○ The device code endpoint can be retrieved from the well-known endpoint
○ The code is used to obtain an AT

● Supported by oidc-agent

44

Example of a device code request

● Client credentials are needed to get a device code

● The audience request parameter can be used to suggest an audience for the requested
access token

● The device code endpoint in IAM it is /devicecode

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d client_id=${CLIENT_ID} -d
scope="${CLIENT_SCOPES}" ${DEVICECODE_ENDPOINT} > response.json
$ device_code=$(jq -r .device_code response.json)
$ user_code=$(jq -r .user_code response.json)
$ verification_uri=$(jq -r .verification_uri response.json)
$ verification_uri_complete=$(jq -r .verification_uri_complete response.json)

45Useful script

https://github.com/andreaceccanti/indigo-aai-tutorial/blob/master/scripts/dc-get-access-token.sh

Example of a device code request

● After authentication, copy in the browser the obtained user_code
○ URI of the code verification is ${verification_uri}
○ use ${verification_uri_complete} instead, if you do not want to copy-and-paste the

code

● Then, you will be prompted to the consent page

● The device_code is finally used in the POST request to the token endpoint
○ it can be retrieved from the well-known endpoint. In IAM it is /token

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:device_code -d audience=${AUDIENCE} -d
device_code=${device_code} ${TOKEN_ENDPOINT}

46Useful script

https://github.com/andreaceccanti/indigo-aai-tutorial/blob/master/scripts/dc-get-access-token.sh

Real device code request

● Register a Client with the device code grant type enabled

○ I have used oidc-agent (next slides), selecting WLCG IAM as token issuer/AS
○ my client_id is eb9e1cc2-f5e1-4a4b-b967-bccea266f09b
○ among the scopes allowed for my client, there is openid offline_access storage.read:/ storage.create:/

● POST request to the device code endpoint

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d client_id=${CLIENT_ID} -d scope="openid
offline_access storage.read:/ storage.create:/" https://wlcg.cloud.cnaf.infn.it/devicecode >
code_response.json
$ device_code=$(jq -r .device_code code_response.json)
$ user_code=$(jq -r .user_code code_response.json)
$ verification_uri=$(jq -r .verification_uri code_response.json)
$ echo ${user_code}
EMGFZA
$ echo ${verification_uri}
https://wlcg.cloud.cnaf.infn.it/device

47

Real device code request
● I have copied the code EMGFZA in the box which appears at https://wlcg.cloud.cnaf.infn.it/device

● Then, I gave permissions to the Client to access my data

● And now I can ask for tokens

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=urn:ietf:params:oauth:grant-type:device_code -d
audience=myAudience -d device_code=${device_code} https://wlcg.cloud.cnaf.infn.it/token > token_response.json
$ jq -r .access_token token_response.json | tr -d '"' | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "myAudience",
 "nbf": 1669306655,
 "scope": "storage.read:/ storage.create:/ openid offline_access",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669310255,
 "iat": 1669306655,
 "jti": "f05aaef8-efc4-46f4-be94-bf440c318f42",
 "client_id": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

48

https://wlcg.cloud.cnaf.infn.it/device

Real device code request

● A refresh token has been issued to the Client (together with the AT) due to the offline_access scope requested during
the device code flow

● An id token has been issued due to the openid scope requested during the device code flow

$ jq -r . token_response.json
{
 "access_token":
"eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJ3bGNnLnZlciI6IjEuMCIsInN1YiI6IjBmZDc2YjNjLWMzZjEtNDI4MC1iZTNjLTVlYmVhZDgxYzZkNiIsImF1
ZCI6Im15QXVkaWVuY2UiLCJuYmYiOjE2NjkzMDY2NTUsInNjb3BlIjoic3RvcmFnZS5yZWFkOlwvIHN0b3JhZ2UuY3JlYXRlOlwvIG9wZW5pZCBvZmZsaW5lX2FjY2Vz
cyIsImlzcyI6Imh0dHBzOlwvXC93bGNnLmNsb3VkLmNuYWYuaW5mbi5pdFwvIiwiZXhwIjoxNjY5MzEwMjU1LCJpYXQiOjE2NjkzMDY2NTUsImp0aSI6ImYwNWFhZWY4
LWVmYzQtNDZmNC1iZTk0LWJmNDQwYzMxOGY0MiIsImNsaWVudF9pZCI6ImViOWUxY2MyLWY1ZTEtNGE0Yi1iOTY3LWJjY2VhMjY2ZjA5YiJ9.B_gsWbro3GF9ZqClABe
tpZIn2p61OIGTbO9n18PjP5UiodqhrdEubv9EKj5kWZZfSFhlzszlvmBziT9IZIelnx5CocYXkqzRalK0IJq-c4rzWB_o-9QgJR84FdgxN5sY6OdMpxcp9N75gweuSJf
F0_ZZ9bLIgLWHzBnv4nTsKaw",
 "token_type": "Bearer",
 "refresh_token": "eyJhbGciOiJub25lIn0.eyJqd…",
 "expires_in": 3599,
 "scope": "storage.read:/ storage.create:/ openid offline_access",
 "id_token":
"eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJ3bGNnLnZlciI6IjEuMCIsInN1YiI6IjBmZDc2YjNjLWMzZjEtNDI4MC1iZTNjLTVlYmVhZDgxYzZkNiIsImF1
ZCI6ImViOWUxY2MyLWY1ZTEtNGE0Yi1iOTY3LWJjY2VhMjY2ZjA5YiIsImtpZCI6InJzYTEiLCJpc3MiOiJodHRwczpcL1wvd2xjZy5jbG91ZC5jbmFmLmluZm4uaXRc
LyIsImV4cCI6MTY2OTMwNzI1NSwiaWF0IjoxNjY5MzA2NjU1LCJqdGkiOiIxZjc3Y2MxYy01NmU2LTRmODQtODgzZC00NjYzNzI5MWY5ZDgifQ.LmyxnazIlAHzo16pZ
AgwLc-P7qjazgMtPMn_5xqcE5HJa2jf0H-QrnDPwQ0NSfmEEEuu6r48l2d6CeEBZOZf2SfoXZt6mXXR4wLX0lTPfj66Qj0lefd8r64bc_rONiw2y1qUesMUPHLxHqOwG
0cUyQKCAo9_KE6MvLSE57LezJU"
}

49

Device code flow exercise

● Reproduce the device code flow using the verification_uri_complete
value in place of the verification_uri

● Use the AT obtained by IAM to access a resource server (e.g., WebDAV)

○ in this case you can use groups, included in the token, requesting the wlcg.groups scope
○ hint: the audience claim must be the resource itself

50

Refresh token flow

● Section 1.5 of RFC 6749

● Mechanism to implement the ability for an application to act on behalf of a user and get
tokens without user’s interaction

● Used by a Client to refresh an AT that is about to expire

○ the authorization grant is a refresh token, which is obtained in a former
authorization flow

● Authenticated POST request to the AS token endpoint

○ Client credentials and a valid RT must be provided by the caller
○ Produces a new AT and possibly an updated RT

51

https://www.rfc-editor.org/rfc/rfc6749#section-1.5

Refresh token flow

● The scope request parameter should be used to attenuate the token privileges, by
requesting a subset of the scopes linked to the first user authorization grant

● A refresh token request can be performed in order to change the audience claim in
place of the token exchange flow (shown in next slides)

● RTs are Client specific, i.e., a refresh token issued to Client A cannot be used by Client
B

○ instead, this use case is supported by the token exchange flow

52

Refresh tokens in IAM

● In IAM, the refresh token flow can be enabled or disabled per Client

● RTs may have an expiration date, or be unbounded in validity. This depends
on the Client configuration

○ tokens validity settings in IAM can only be changed by administrators

● In IAM, the default RT lifetime is infinite (i.e., the RT does not expire)

○ within WLCG it has been asked to set the default lifetime of RT to 30 days
○ the WLCG IAM instance already supports this default

● RTs can be revoked/invalidated using a standard OAuth API

53

https://indico.cern.ch/event/1227927/

Refresh tokens: use cases

● How long do we want a user “session” to last?
 That’s the lifetime of the refresh token

● Example: users on a CLI should not be prompted for login more than once a
week

 RT lifetime: a week

● Vault requests one week of validity for the RT lifetime

54

https://github.com/fermitools/htvault-config

Example of a refresh token request

● Client credentials and a valid refresh token are needed to get a new access token

● The audience request parameter can be used to suggest an audience for the
requested access token

● The token endpoint can be retrieved from the well-known endpoint

○ in IAM it is /token

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=refresh_token -d
scope="${CLIENT_SCOPES}" -d audience=${AUDIENCE} -d
refresh_token=${REFRESH_TOKEN} ${TOKEN_ENDPOINT}

55

Useful script

https://github.com/andreaceccanti/indigo-aai-tutorial/blob/master/scripts/refresh-token.sh

Client registration for refresh token request

Register a Client with the refresh_token grant type enabled

● I have used oidc-agent (next slides), selecting WLCG IAM as token issuer/AS

● my client_id is eb9e1cc2-f5e1-4a4b-b967-bccea266f09b

● copy the RT stored in the local configuration for my oidc-agent client

○ it is visible with the command oidc-add -p <client-alias>

● the list of scopes allowed for my client are: openid, offline_access,
storage.read:/, storage.create:/, compute.read, compute.modify

56

Real refresh token request

Authenticated POST request to the token endpoint
● I am not prompted to the consent page at this stage, as the user is considered to be offline
● the consent to access their data was given in the previous OAuth flow

○ the one which issued the RT
○ in case of my oidc-agent Client, it was the device code flow

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=refresh_token -d audience=myAudience -d
refresh_token=${REFRESH_TOKEN} https://wlcg.cloud.cnaf.infn.it/token | jq -r .access_token | tr -d '"' |
cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "myAudience",
 "nbf": 1669390346,
 "scope": "storage.create:/ openid offline_access compute.read storage.read:/ compute.modify",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669393946,
 "iat": 1669390346,
 "jti": "d25af1fe-cc3a-4112-af80-2589c2f1b6af",
 "client_id": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

57

If I do not specify the list of requested
scopes, all the ones allowed for my
client are returned in the AT

Refresh token flow exercise

● Obtain a RT using the device code flow

○ hint: include offline_access among the requested scopes

● Obtain an AT using the refresh token flow and the RT issued in the previous
bullet point

● Use the AT to access a resource server (e.g., WebDAV)

58

Client credential flow

● Section 4.4 of RFC 6749

● A Client enabling the client credential flow is able to request tokens for itself

○ The client can request an AT using only its client credentials

● Client authentication is required (i.e. not enabled for public clients)

● The client authentication is used as authorization grant

○ No additional authorization request is needed
○ The authorization grant does not require intervention of a user (i.e. no login requested)
○ The consent page is not shown → a user does not have to authorize the Client app to access

their data

59

https://www.rfc-editor.org/rfc/rfc6749#section-4.4

Client credentials: use cases

● Used to obtain tokens not linked to user identities → they are linked to the service
itself

● The AT issued with the client credentials request contains scope-based attributes
only, i.e.

○ the group claim is not present
○ the sub claim is the client_id (NOT the user’s uuid)
○ authorization is based on the scopes which are present in the AT → it has to be honoured by Resource

Servers without introducing further authorization policies

● An automated script can ask for a new AT when the previous one is about to expire
○ the client credentials needed for this flow have to be maintained confidentials, stored on a secure

server with restricted access

● Useful for service accounts, when the authorization is based on capabilities, e.g.
○ Rucio
○ FTS
○ etc

60

Example of a client credentials request

● Client credentials are the only required parameter to get an access token

● The audience request parameter can be used to suggest an audience for the
requested access token

● The token endpoint can be retrieved from the well-known endpoint

○ in IAM it is /token

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=client_credentials -d scope="${CLIENT_SCOPES}" -d
audience="${AUDIENCE}" ${TOKEN_ENDPOINT}

61

Useful script

https://github.com/andreaceccanti/indigo-aai-tutorial/blob/master/scripts/client-cred.sh

Client registration for client credentials request

Register a Client with the client_credentials grant type enabled

● just for simplicity, I have reused the oidc-agent Client

● my client_id is eb9e1cc2-f5e1-4a4b-b967-bccea266f09b

● enabled the client_credentials grant below the Grant types tab

● I will request scopes which do not provide user informations → they are
meaningless in this flow and would not introduce further claims in the token

○ i.e.: storage.read:/, storage.create:/, compute.read,
compute.modify

62

Real client credentials request

Authenticated POST request to the token endpoint
● I am not prompted to the consent page at this stage, since the client authentication is used as authorization grant

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=client_credentials -d
scope="compute.read compute.modify" -d audience=myAudience
https://wlcg.cloud.cnaf.infn.it/token | jq -r .access_token | tr -d '"' | cut -d. -f2 |
base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b",
 "aud": "myAudience",
 "nbf": 1669829197,
 "scope": "compute.modify compute.read",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669832797,
 "iat": 1669829197,
 "jti": "57a2e594-f212-4183-b6fa-e9b6b9402393",
 "client_id": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

63

The sub claim of the AT is the
client_id (NOT the user’s
uuid)

Real client credentials request

According with RFC 6749, a RT should not be issued in a client credential request
● when the offline_access scope is requested, it appears in the AT, but no RT is issued

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=client_credentials -d
scope="compute.read compute.modify offline_access" -d audience=myAudience
https://wlcg.cloud.cnaf.infn.it/token | jq
{
 "access_token":
"eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJ3bGNnLnZlciI6IjEuMCIsInN1YiI6ImViOWUxY2MyLWY1ZTEtNGE0Yi
1iOTY3LWJjY2VhMjY2ZjA5YiIsImF1ZCI6Im15QXVkaWVuY2UiLCJuYmYiOjE2Njk4OTA3NzIsInNjb3BlIjoiY29tcHV0ZS5t
b2RpZnkgY29tcHV0ZS5yZWFkIG9mZmxpbmVfYWNjZXNzIiwiaXNzIjoiaHR0cHM6XC9cL3dsY2cuY2xvdWQuY25hZi5pbmZuLm
l0XC8iLCJleHAiOjE2Njk4OTQzNzIsImlhdCI6MTY2OTg5MDc3MiwianRpIjoiZjg1Y2ZkOWQtOGRjNS00YjAwLThiYmYtODQ5
ODQwNjA4NWUzIiwiY2xpZW50X2lkIjoiZWI5ZTFjYzItZjVlMS00YTRiLWI5NjctYmNjZWEyNjZmMDliIn0.bnMwu4juY2npv9
cTlRtxXHSf9pJFUzpDAX9JUbSymdPxGMP-hE36z2lB0i4Y1c1yCnpz5Nou7j_0IL-0Wg89LXDvFCY5o4aX5rOb2lff0HvwlOu2
pOMspyFCDSPO_in_fttC1mHwNSJbEyrtSa8PDBFM9Lew3LHUpFC0Z1P1HDM",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "compute.read compute.modify offline_access"
}

64

https://www.rfc-editor.org/rfc/rfc6749#section-4.4.3

Client credential flow exercise

● Register a Client in the WLCG IAM with the client_credentials grant enabled
and include the wlcg.groups among the allowed scopes

● Ask for an AT using the client credential flow and requests the wlcg.groups
scope

○ check if the wlcg.groups claim appears in the AT

● Use this AT to access to https://xfer.cr.cnaf.infn.it:8443/wlcg
○ are you allowed?
○ if not, why?

● Enable the storage.read:/ scope for your client and try to access to
https://xfer.cr.cnaf.infn.it:8443/wlcg

65

https://xfer.cr.cnaf.infn.it:8443/wlcg
https://xfer.cr.cnaf.infn.it:8443/wlcg

Token exchange

● RFC 8693

● This flow has been designed to satisfy the needs to
access resources hosted by other downstream services
on behalf of the user

○ allows a Resource Server A to make calls to a backend service C on
behalf of the requesting user B

○ the RS is an OAuth 2 Client of the AS

● Allows a Client to request the exchange of an AT with
another AT (and potentially a RT to renew such AT)

● Preferably used when the exchanged token and the
new token are requested by two different Clients

● Useful to implement controlled delegation of
privileges between two registered client applications

66

A C

B

https://www.rfc-editor.org/rfc/rfc8693

Token exchange

67

● The new token might be an AT that

○ is more narrowly scoped for the downstream service
○ has an audience different from the original token (which corresponds to the RS)

● In order to request a token exchange, a Client must be configured with the
urn:ietf:params:oauth:grant-type:token-exchange grant type enabled

● Terminology:

○ subject token represents the subject access token that the Client wants to exchange
○ actor token represents the new token issued during a token exchange flow

● The act claim is a JSON object which identifies the acting party to whom authority has been delegated. It
provides a representation of a delegation chain

○ members in the JSON object are claims that identify the actor
○ i.e., it contains at least the sub claim
○ a chain of delegation can be expressed by nesting one act claim within another: the least recent actor is

the most deeply nested

Impersonation vs. delegation

Impersonation

● When a subject A impersonates B, A has all the rights of B and it is indistinguishable from
B

● When A interacts within any other entity, A is B within the scope authorized by the token

● Basically, the process allows a subject to change to a different subject
○ an application or API cannot determine by looking at the token if the subject is the entity that was

actually logged in or not

Delegation

● With delegation A still has its own identity, which is separated from B

● When A interacts within another entity, it is explicit that A is representing B, because B
has delegated some of its rights to A

○ the token contains explicit information that one subject delegates its rights to another entity
○ the subject can decide to only delegate certain rights to another subject

68

From RFC 8693

https://www.rfc-editor.org/rfc/rfc8693#section-appendix.a

Token exchange in IAM

● The current IAM implementation (v1.8.0) does not support delegation

○ the scopes requested during a token exchange have to be enabled also by the Client
which requested the subject token

● The token exchange grant is disabled by default for dynamically registered
Clients; it can only be enabled by administrators for few trusted Clients (i.e.,
VO central services)

● offline_access privileges can be delegated across trusted Client
applications using token exchange (i.e. IAM allows to exchange an AT for a
longer-lived RT)

○ a token obtained with a token exchange cannot be further exchanged by the same Client
○ the lifetime of the RT depends on the Client configuration
○ a token exchange request from the same Client which requested the subject token is forbidden if

offline_access is included among the requested scopes. This prevents the Client to extend
indefinitely the lifetime of an exchanged RT

69

Token exchange: use case

Example: moving some of my files with
RUCIO + FTS

● I give RUCIO permission to act on my behalf

● RUCIO then delegates this task to FTS, which still
acts on my behalf to trigger third-party transfers
across Storage Elements

○ Here two different Client apps act on my
behalf (RUCIO and FTS)

● Different scopes are needed at different level of the
infrastructure

● Token exchange allows to provide tokens with
minimum privileges to each service without
requiring that big fat tokens are used at the top of the
chain

70

From WLCG CE Hackathon

https://indico.cern.ch/event/1032742/

The token exchange flow

User B wants to access the resource C.
Since resource A is an OAuth Client of the AS enabled for token exchanges,
B requests access to A using a bearer token issued by AS

 GET /resource HTTP/1.1
 Host: frontend.example.com
 Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

71

A C

B

frontend.example.com backend.example.com

From section 2.3 of RFC 8693

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

User B wants to access the resource C.
Since resource A is an OAuth Client of the AS enabled for token exchanges,
B requests access to A using a bearer token issued by AS

 GET /resource HTTP/1.1
 Host: frontend.example.com
 Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

Then A requests for a token exchange properly scoped for resource C

 POST /as/token.oauth2 HTTP/1.1
 Host: as.example.com
 Authorization: Basic cnMwODpsb25nLXNlY3VyZS1yYW5kb20tc2VjcmV0
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange
 &resource=https%3A%2F%2Fbackend.example.com%2Fapi
 &subject_token=accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC
 &subject_token_type=
 urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Aaccess_token

72

A C

B

frontend.example.com backend.example.com

From section 2.3 of RFC 8693

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow
User B wants to access the resource C.
Since resource A is an OAuth Client of AS enabled for token exchanges,
B requests access to A using a bearer token issued by AS

 GET /resource HTTP/1.1
 Host: frontend.example.com
 Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

Then A requests for a token exchange properly scoped for resource C

 POST /as/token.oauth2 HTTP/1.1
 Host: as.example.com
 Authorization: Basic cnMwODpsb25nLXNlY3VyZS1yYW5kb20tc2VjcmV0
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange
 &resource=https%3A%2F%2Fbackend.example.com%2Fapi
 &subject_token=accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC
 &subject_token_type=
 urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Aaccess_token

73

A C

B

frontend.example.com backend.example.com

The bearer token becomes
the subject token

From section 2.3 of RFC 8693

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow
User B wants to access the resource C.
Since resource A is an OAuth Client of AS enabled for token exchanges,
B requests access to A using a bearer token issued by AS

 GET /resource HTTP/1.1
 Host: frontend.example.com
 Authorization: Bearer accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC

Then A requests for a token exchange properly scoped for resource C

 POST /as/token.oauth2 HTTP/1.1
 Host: as.example.com
 Authorization: Basic cnMwODpsb25nLXNlY3VyZS1yYW5kb20tc2VjcmV0
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Atoken-exchange
 &resource=https%3A%2F%2Fbackend.example.com%2Fapi
 &subject_token=accVkjcJyb4BWCxGsndESCJQbdFMogUC5PbRDqceLTC
 &subject_token_type=
 urn%3Aietf%3Aparams%3Aoauth%3Atoken-type%3Aaccess_token

74

A C

B

frontend.example.com backend.example.com

resource parameter indicates
the location of the backend
service (similar to audience)

HTTP basic authentication to
AS using the credentials of the
OAuth Client A

From section 2.3 of RFC 8693

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

The AS validates the Client credentials and the subject token, and issues
a new access token to A

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-cache, no-store

 {
 "access_token":"eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9.eyJhdWQiOiJo
 dHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCJpc3MiOiJodHRwczovL2FzLmV
 4YW1wbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCJpYXQiOjE0NDE5MTc1MzMsIn
 N1YiI6ImJkY0BleGFtcGxlLmNvbSIsInNjb3BlIjoiYXBpIn0.40y3ZgQedw6rx
 f59WlwHDD9jryFOr0_Wh3CGozQBihNBhnXEQgU85AI9x3KmsPottVMLPIWvmDCM
 y5-kdXjwhw",
 "issued_token_type":
 "urn:ietf:params:oauth:token-type:access_token",
 "token_type":"Bearer",
 "expires_in":60
 }

75

A C

B

frontend.example.com backend.example.com

From section 2.3 of RFC 8693

The access token is of Bearer type,
meaning opaque to the Client (it only has
to be sent in another HTTP request)

https://www.rfc-editor.org/rfc/rfc8693#section-2.3

The token exchange flow

Now A can finally use the newly acquired AT to access the
backend server C using HTTP bearer authentication

 GET /api HTTP/1.1
 Host: backend.example.com
 Authorization: Bearer eyJhbGciOiJFUzI1NiIsImtpZCI6IjllciJ9.eyJhdWQ
 iOiJodHRwczovL2JhY2tlbmQuZXhhbXBsZS5jb20iLCJpc3MiOiJodHRwczovL2
 FzLmV4YW1wbGUuY29tIiwiZXhwIjoxNDQxOTE3NTkzLCJpYXQiOjE0NDE5MTc1M
 zMsInN1YiI6ImJkY0BleGFtcGxlLmNvbSIsInNjb3BlIjoiYXBpIn0.40y3ZgQe
 dw6rxf59WlwHDD9jryFOr0_Wh3CGozQBihNBhnXEQgU85AI9x3KmsPottVMLPIW
 vmDCMy5-kdXjwhw

76

A C

B

frontend.example.com backend.example.com

From section 2.3 of RFC 8693

https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc8693#section-2.3

Example of a token exchange request

● Client authentication may be required by the AS

● A valid subject token is needed to get a new AT

● The audience request parameter can be used to suggest an audience for the requested AT
○ in IAM it is used in place of the resource parameter

● The token endpoint can be retrieved from the well-known endpoint

○ in IAM it is /token

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d
grant_type=urn:ietf:params:oauth:grant-type:token-exchange -d
scope=${CLIENT_SCOPES} -d audience=${AUDIENCE} -d
subject_token=${SUBJECT_TOKEN} ${TOKEN_ENDPOINT}

77

Useful script

https://github.com/andreaceccanti/indigo-aai-tutorial/blob/master/scripts/token-exchange.sh

Client registration for token exchange request

● I got the subject token using the oidc-agent Client, where:
○ client id: eb9e1cc2-f5e1-4a4b-b967-bccea266f09b
○ scopes allowed: openid, offline_access, storage.read:/, storage.create:/,

compute.read, compute.modify
○ then, the subject token is obtained with (oidc-token command explained in next slides)

SUBJECT_TOKEN=$(oidc-token -s "compute.read compute.modify" demo)

● I have registered a new client in the WLCG IAM instance, with the token
exchange grant type
(urn:ietf:params:oauth:grant-type:token-exchange) enabled

○ client id: 6f944ab8-8127-4a84-afc8-da78fd238148
○ scopes allowed: openid, offline_access, profile, storage.read:/,

storage.create:/, compute.read, compute.create, compute.modify, wlcg.groups

78

Real token exchange request

Authenticated POST request to the token endpoint
● I am not prompted to the consent page at this stage, since the subject token is used as authorization grant

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=urn:ietf:params:oauth:grant-type:token-exchange
-d scope="storage.read:/ storage.create:/" -d audience=myAudience -d subject_token=${SUBJECT_TOKEN}
https://wlcg.cloud.cnaf.infn.it/token | jq -r .access_token | tr -d '"' | cut -d. -f2 | base64 -d
2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "myAudience",
 "act": {

"sub": "6f944ab8-8127-4a84-afc8-da78fd238148"
 },
 "nbf": 1670336503,
 "scope": "storage.create:/ storage.read:/",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1670340103,
 "iat": 1670336503,
 "jti": "4de24aa3-c4e6-44c3-8c81-61b7788c192b",
 "client_id": "6f944ab8-8127-4a84-afc8-da78fd238148"
}

79

My uuid in the
WLCG IAM

Client requesting the
actor token

No client_id of the Client requesting the
subject token is present in the AT as this
is an example of impersonation

Token exchange flow exercise

Prerequisites:

● Register a Client with oidc-agent enabling the compute.read and compute.modify scopes

● Register a new client in the same IAM instance, enabling the offline_access, compute.read,
compute.modify and compute.create scopes

○ enable the client credentials grant to your Client configuration
○ ask the IAM admin administrator to enable also the token exchange grant

● obtain a subject token (named SUBJECT_TOKEN_OIDC) using the oidc-token command and asking for the
compute.read scope

● obtain another subject token (named SUBJECT_TOKEN_CLIENT_CRED) using the client credentials flow and
authenticating with the second client to the token endpoint

80

Token exchange flow exercise

● Ask for an AT using the token exchange flow and the SUBJECT_TOKEN_OIDC; request the

○ compute.read
○ compute.read, compute.modify
○ compute.read, compute.create

scopes and try to predict which output would you get from the AS/IAM in each request

● Ask for an AT using the token exchange flow and the SUBJECT_TOKEN_CLIENT_CRED including the
offline_access scope

○ understand and explain the output you get

81

Deprecated grant types

● Implicit

○ section 4.2 of RFC 6749
○ simplified authorization code flow optimized for web browser-based Clients (e.g., JavaScript apps)

■ the AS issues directly an AT to the Client; code exchange is bypassed
■ the AS does not authenticate the Client (i.e. the Client is public); Client identity may be verified via the redirect URI

used to deliver the access token

● Resource owner password credentials

○ section 4.3 of RFC 6749
○ the resource owner password credentials (i.e., username and password) are used as authorization grant to obtain an AT
○ this flow prevents the typical delegation pattern OAuth has been designed for

● Public clients

○ Clients incapable of maintaining the confidentiality of their credentials (e.g., executing on the device used by the resource
owner), and incapable of secure Client authentication via any other means

○ not really deprecated, but discouraged in IAM

82

https://www.rfc-editor.org/rfc/rfc6749#section-4.2
https://www.rfc-editor.org/rfc/rfc6749#section-4.3

What’s new in OAuth2.1

● OAuth 2.1 (draft)

○ it is a draft with the aim of consolidating and simplifying the most commonly used features of OAuth 2.0

● New features of OAuth 2.1

○ PKCE (Proof Key for Code Exchange) is required for all OAuth Clients using the authorization code flow

■ it should be used in OAuth 2 by public Clients in order to prevent interception attack

○ redirect URIs must be compared using exact string matching

■ prevents using wildcards in the URI

○ the implicit grant is omitted from this specification
○ the resource owner password credentials grant is omitted
○ using bearer tokens in the query string of URIs is forbidden
○ refresh tokens for public Clients must either be sender-constrained or one-time use

83

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-07
https://www.rfc-editor.org/rfc/rfc7636

OpenID Connect Federation 1.0

● Spec (draft 25 at December 2, 2022)

● OpenID Connect 1.0 extends OAuth 2 to provide a standard identity layer. It allows Clients to verify the identity
of the end-user and to obtain basic profile information based on the authentication performed by an OP

○ i.e. who the user is and how it was authenticated → contained in the ID token
○ allows to establish login sessions (SSO)

● The OpenID Connect federation is a draft to standardize the concept of multilateral federation using the OIDC
protocol, as it is now for SAML (e.g. EduGain)

○ A federation can be expressed as an agreement between parties that trust each other
○ The federation trust chains rely on cryptographically signed JWT
○ An Entity in the federation must be able to trust that other Entities it is interacting with belong to the same federation
○ In an OIDC federation, Entities are represented by OPs and RPs
○ The specification describes the technical trust infrastructure needed to build a dynamic and distributed trust network

● G. De Marco from Developers Italia (developers of SPID, CIE, etc) is one of the authors of the OIDC federation
draft

○ Series of seminars hosted by GARR are available here

84

https://openid.net/specs/openid-connect-federation-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://edugain.org/
https://github.com/italia
https://learning.garr.it/

OIDC Federation: how it could work

85

chnet-iam

https://www.inps.it/

https://www.inps.it/

JWT-based client authentication

● RFC 7523

● The OAuth and OIDC protocols support JWT-based client-authentication, i.e.
○ Clients authenticate to the token issuer sending a signed JWT
○ it replaces the client credentials (client_id, client_secret)

● The AS inspects the JWT, resolves the client_id and verifies the JWT using
either a shared secret or a public key linked to the Client configuration

● Clients need to know how to generate and sign a JWT

● Pros: time-limited Client credentials under the control of the Client

86

https://www.rfc-editor.org/rfc/rfc7523

JWT client authN methods

87

In order to use a JWT Bearer Token as client authentication method, the following query parameters have
to be added to the token request:

● client_assertion_type, whose value is
urn:ietf:params:oauth:client-assertion-type:jwt-bearer

● client_assertion, which must contain a JWT
● scope (if omitted the AS returns all the ones allowed by the Client)

 POST /token HTTP/1.1
 Host: iam.local.io
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3A
 client-assertion-type%3Ajwt-bearer&
 client_assertion=eyJhbGciOiJSUzI1NiIsImtpZCI6IjIyIn0.eyJpc3Mi[...].cC4hiUPo[...]

JWT assertion signature

88

In IAM users can choose between two types of JWT
assertion signatures (documentation here):

● a symmetrically-signed JWT assertion, signed with
the client_secret

○ client_secret_jwt shared secret scheme, Clients
that have received a client secret from the AS create a
JWT using an HMAC SHA algorithm (i.e., HMAC
SHA-256)

● an asymmetrically-signed JWT assertion, signed
with a RSA private key

○ private_key_jwt Clients that have registered a
public key sign a JWT using the corresponding private
key

○ IAM retrieves the RSA public key used to validate the
JWT assertion from a JSON Web Keyset that can be
provided during Client registration

■ by URI, or
■ by value

https://indigo-iam.github.io/v/current/docs/tasks/user/jwt-authn/

JWT assertion

89

Example of symmetrically signed decoded assertion:

Header
{
 "alg": "HS256"
}
Payload
{
 "sub": "181f26f9-4562-4919-b718-759241485335",
 "aud": "https://iam.local.io/token",
 "nbf": 1649162752,
 "iss": "181f26f9-4562-4919-b718-759241485335",
 "exp": 1651754752,
 "iat": 1649162752,
 "jti": "120240aa-e389-4a55-8384-f4d7a54c2633"
}

Header
{
 "alg": "RS256",
 "kid": "rsa1"
}
Payload
{
 "sub": "bdb6ca15-be9c-470a-81dc-69d30dabb340",
 "aud": "https://iam.local.io/token",
 "nbf": 1649162752,
 "iss": "bdb6ca15-be9c-470a-81dc-69d30dabb340",
 "exp": 1651754752,
 "iat": 1649162752,
 "jti": "f4392c1e-6d6a-423e-8e5e-5d114585f750"
}

Example of asymmetrically signed decoded assertion:

JWT-based client authentication example

90

Example of an HTTP POST request to the token endpoint where the Client is authenticated with
JWT assertion and is authorized via the client credentials OAuth 2 flow.

$ JWTA=eyJhbGciOiJI[...]I6IkpXVCJ9.eyJpc3[...]wfQ.3g9o80SyE[...]W_0dNpwg
$ curl -d client_assertion=${JWTA} -d
client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-bearer -d
grant_type=client_credentials -d scope=storage.read:/ https://iam.local.io/token | jq

{
 "access_token": "eyJraWQiOiJyc2ExIiwiY...",
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": "storage.read:/"
}

Main WLCG possible use cases

● Reduced risk of exposed Client credentials

○ JWT-based auth is a requirement for high security OpenID-connect use, e.g., the Financial
Grade API OpenID Connect profile

● Time-limited credential delegation

● Examples:

○ RUCIO server delegates short-lived JWT client credential to RUCIO client that can be used for
time-limited token renewal

○ VO job framework delegates short-lived JWT client credential to payload job for time-limited
token renewal

91

https://fapi.openid.net/
https://fapi.openid.net/

oidc-agent

92

oidc-agent

● oidc-agent is a set of tools which allow to manage tokens using command
line.
It follows the ssh-agent design

● Source code (developed by KIT team)

● Documentation

● Installation
○ repo file available
○ supports debian- and rpm-based linux distributions
○ available for MacOS (using brew)
○ … and also for windows

93

https://github.com/indigo-dc/oidc-agent
https://indigo-dc.gitbook.io/oidc-agent/
http://repo.data.kit.edu/

What oidc-agent does during client registration

In order to request for tokens, you firstly have to register a Client.
With oidc-agent you have to run
$ eval $(oidc-agent)
$ oidc-gen -w device demo

94

The OAuth authorization flow used here
is device. oidc-agent allows to
specify one: code, device, password or
refresh. Default to code.
The oidc-gen -w device command
basically replaces the curl version
reported in the Device code flow slides

What oidc-agent does during client registration

In order to request for tokens, you firstly have to register a Client.
With oidc-agent you have to run
$ eval $(oidc-agent)
$ oidc-gen -w device demo
[1] https://wlcg.cloud.cnaf.infn.it/
[2] https://iam-dev.cloud.cnaf.infn.it/
…
Issuer [https://iam-demo.cloud.cnaf.infn.it/]: 1

95

Select the AS where you want to register
the Client.
I choose WLCG IAM here

What oidc-agent does during client registration

In order to request for tokens, you firstly have to register a Client.
With oidc-agent you have to run
$ eval $(oidc-agent)
$ oidc-gen -w device demo
[1] https://wlcg.cloud.cnaf.infn.it/
[2] https://iam-dev.cloud.cnaf.infn.it/
…
Issuer [https://iam-demo.cloud.cnaf.infn.it/]: 1
The following scopes are supported: openid profile email offline_access wlcg wlcg.groups storage.read:/ storage.create:/ compute.read
compute.modify compute.create compute.cancel storage.modify:/ eduperson_scoped_affiliation eduperson_entitlement eduperson_assurance
storage.stage:/
Scopes or 'max' (space separated) [openid profile offline_access]: storage.read:/ storage.create:/ compute.read compute.modify

96

List of supported scopes is taken from the
/.well-known/openid-configuration
endpoint of the AS. Insert the necessary scopes
only

What oidc-agent does during client registration

In order to request for tokens, you firstly have to register a Client.
With oidc-agent you have to run
$ eval $(oidc-agent)
$ oidc-gen -w device demo
[1] https://wlcg.cloud.cnaf.infn.it/
[2] https://iam-dev.cloud.cnaf.infn.it/
…
Issuer [https://iam-demo.cloud.cnaf.infn.it/]: 1
The following scopes are supported: openid profile email offline_access wlcg wlcg.groups storage.read:/ storage.create:/ compute.read
compute.modify compute.create compute.cancel storage.modify:/ eduperson_scoped_affiliation eduperson_entitlement eduperson_assurance
storage.stage:/
Scopes or 'max' (space separated) [openid profile offline_access]: storage.read:/ storage.create:/ compute.read compute.modify
Registering Client ...
Generating account configuration ...
accepted

97

The oidc-agent Client has been registered in the WLCG
IAM. The configuration details have been saved locally

What oidc-agent does during client registration

In order to request for tokens even when the AT is expired, you have to obtain a
refresh token
$ eval $(oidc-agent)
$ oidc-gen -w device demo
[1] https://wlcg.cloud.cnaf.infn.it/
[2] https://iam-dev.cloud.cnaf.infn.it/
…
Issuer [https://iam-demo.cloud.cnaf.infn.it/]: 1
The following scopes are supported: openid profile email offline_access wlcg wlcg.groups storage.read:/ storage.create:/ compute.read
compute.modify compute.create compute.cancel storage.modify:/ eduperson_scoped_affiliation eduperson_entitlement eduperson_assurance
storage.stage:/
Scopes or 'max' (space separated) [openid profile offline_access]: storage.read:/ storage.create:/ compute.read compute.modify
Registering Client ...
Generating account configuration ...
accepted

Using a browser on any device, visit:
https://wlcg.cloud.cnaf.infn.it/device

And enter the code: LYE0TT

98

The AS asks the user to authenticate
before to insert the code

What oidc-agent does during client registration

In order to request for tokens even when the AT is expired, you have to obtain a
refresh token
$ eval $(oidc-agent)
$ oidc-gen -w device demo
[1] https://wlcg.cloud.cnaf.infn.it/
[2] https://iam-dev.cloud.cnaf.infn.it/
…
Issuer [https://iam-demo.cloud.cnaf.infn.it/]: 1
The following scopes are supported: openid profile email offline_access wlcg wlcg.groups storage.read:/ storage.create:/ compute.read
compute.modify compute.create compute.cancel storage.modify:/ eduperson_scoped_affiliation eduperson_entitlement eduperson_assurance
storage.stage:/
Scopes or 'max' (space separated) [openid profile offline_access]: storage.read:/ storage.create:/ compute.read compute.modify
Registering Client ...
Generating account configuration ...
accepted

Using a browser on any device, visit:
https://wlcg.cloud.cnaf.infn.it/device

And enter the code: LYE0TT

99

What oidc-agent does during client registration

In order to request for tokens even when the AT is expired, you have to obtain a
refresh token
$ eval $(oidc-agent)
$ oidc-gen -w device demo
[1] https://wlcg.cloud.cnaf.infn.it/
[2] https://iam-dev.cloud.cnaf.infn.it/
…
Issuer [https://iam-demo.cloud.cnaf.infn.it/]: 1
The following scopes are supported: openid profile email offline_access wlcg wlcg.groups storage.read:/ storage.create:/ compute.read
compute.modify compute.create compute.cancel storage.modify:/ eduperson_scoped_affiliation eduperson_entitlement eduperson_assurance
storage.stage:/
Scopes or 'max' (space separated) [openid profile offline_access]: storage.read:/ storage.create:/ compute.read compute.modify
Registering Client ...
Generating account configuration ...
accepted

Using a browser on any device, visit:
https://wlcg.cloud.cnaf.infn.it/device

And enter the code: LYE0TT

100

The AS asks for the consent of the user to
access the information linked to the requested
scopes

What oidc-agent does during client registration

In order to request for tokens even when the AT is expired, you have to obtain a
refresh token
$ eval $(oidc-agent)
$ oidc-gen -w device demo
[1] https://wlcg.cloud.cnaf.infn.it/
[2] https://iam-dev.cloud.cnaf.infn.it/
…
Issuer [https://iam-demo.cloud.cnaf.infn.it/]: 1
The following scopes are supported: openid profile email offline_access wlcg wlcg.groups storage.read:/ storage.create:/ compute.read
compute.modify compute.create compute.cancel storage.modify:/ eduperson_scoped_affiliation eduperson_entitlement eduperson_assurance
storage.stage:/
Scopes or 'max' (space separated) [openid profile offline_access]: storage.read:/ storage.create:/ compute.read compute.modify
Registering Client ...
Generating account configuration ...
accepted

Using a browser on any device, visit:
https://wlcg.cloud.cnaf.infn.it/device

And enter the code: LYE0TT

[Polling the device code verification from the https://wlcg.cloud.cnaf.infn.it/device/approve endpoint]

Enter encryption password for account configuration 'demo': ***
Confirm encryption Password: ***
Everything setup correctly!

101

https://wlcg.cloud.cnaf.infn.it/device/approve

oidc-agent Client configuration

● Local oidc-agent Client configurations are saved in ~/.config/oidc-agent or ~/.oidc-agent

● In this example, demo is an alias for the oidc-agent Client

● The Client configuration is encrypted using the password set by the user during Client registration

$ cat ~/.config/oidc-agent/demo
932
P0ZXJ563imIdd9xWSDjsyFJFx2RfGr51
AWS5IEnedUX13Drf7DdfGg==
24:16:16:32:1:2:67108864:2
Nag1k2Epdlyvjni47XRCJs7RUg1Q314LjLJam0bEm0WkpcBnlvddeZ6lcZXZWGwnt+YzvGeu8ij6xjzKgrmWvNjJQKGxPW7G/0HD9PHwf+8jU2A8z5WqR2Axe0fZRQkVcCaOzmL+Ws
9E+xoaP/GFeTOVXUW6FlxRGBALfix/wkvOUwNi6tbyPHGwtlXpBHie/8eR5NW+vohuwZOmoMyNpu3paQq3k4563sfgtMqU/SjflrYPupgyAVs8MwMT36Mhv6Bsdz5LgHTGALIkz6jM
/78wDPMJH0zdhqRvkP4ugaFJ2cOx8XVpMD3WbcRPFgDYgOhA+nCE/gTgwoHiCUntaCcCPORCT6QjwZ5Ulc5Uuq5MSFM1DGpllPPOuiGbdY5JMVcwgy+nHAmr1tXRvXIqqS7j8chH6O
f65B0S25eIZwnsLkPtD418dTp4wTc4eOzsx/LjwDg//R/vaG1vRsfDH3ZcvTupmak7UsVmzglHnPblK/WAqOOIdJrYC0y5SpyeSoAkKpQSVqmugC3s54JM3orjCcVRJa2LDZzNHlR4
R139CInViyaCu3BbqX246ULJe7GIG6wdkeDZS83gdMs9ItzNnhb4yOkndDPUubg0uUzdC3xkLopjkBiwKS6qkYPj0q3e8/GfCiR5PeagoCt8fYzr3XRJPfSAAXkAl2WibuJwO2yNYV
P9WvNI++DNfQtNYzCJNbPJXYVyIOzWuvTol8bMpuRcN5cP8YqEqYS+RCk7OXRurdTeL3e3KPbRrT07b8DfnVs61phwLZ2rOHYY0A1PrOO5ojjHyY1rFbqRXQU/M5WMt4ggGZ3rrbMI
uVvAyp0KqjS7ocjuBxw+10vvbvi5kdImDTfrdaEFxFMVL+2oWL2TcU8ytEF6wSiajb5yMyi1cOXJtIwFgEnnhqOdRvGg6TGoTn2c7KYOAS3mGaZkPmUGvC1K4+fztXTP1TWBRigTsF
1j5fqwYFvYPLjak7crtMAGKejmk34K8ZmSSduQp501ZXmmwngFr8NFj3WyK89iTExcYceQeg64zQH6BcZoEUb5z4gGZwwD/Yz8cnypX8vIByAxA18fbevqDrIDfzGwrZQCbQXz6Dhk
382RIrPXIHPvVMPcgqj4X/ywTWJw38JDLCvXdNoYQaektIfHikyLN5ktAWDVEdiEtgjO/fh3IzJRXNp9hzDZYreoFQXtbu9baOyKEoID7SZIVw9l8DT0vRuuyDma+dqa3/HAxe/xen
c=
H7tVFJiY/or8PH4wdvSiVG1gFtadO+POA77mDJjpbmA=
Generated using version: 4.3.2

102

oidc-agent client configuration
● The decrypted oidc-agent configuration can be checked with oidc-add -p command

● The encryption pwd is required. It can be saved in an env variable or a file and passed to the agent using one of the
pw-cmd /pw-env /pw-file option (useful for automated environment)

$ oidc-add -p demo
Enter decryption password for account config 'demo': ***
{
 "name": "demo",
 "client_name": "oidc-agent:demo-22c1d2935474",
 "issuer_url": "https://wlcg.cloud.cnaf.infn.it/",
 "config_endpoint": "https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration",
 "device_authorization_endpoint": "https://wlcg.cloud.cnaf.infn.it/devicecode",
 "daeSetByUser": 0,
 "client_id": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b",
 "client_secret": "xxx",
 "refresh_token": "eyJhbGciOiJub25lIn0.eyJqdGkiOiIyMTAwOTcy…",
 "cert_path": "/etc/pki/tls/certs/ca-bundle.crt",
 "scope": "storage.read:/ storage.create:/ compute.read compute.modify openid offline_access",
 "audience": "",
 "oauth": 0,
 "redirect_uris": ["edu.kit.data.oidc-agent:/redirect", "http://localhost:43708", "http://localhost:8080",
"http://localhost:4242"],
 "username": "",
 "password": ""
}

103

oidc-agent client configuration
$ oidc-add -p demo
Enter decryption password for account config 'demo': ***
{
 "name": "demo",
 "client_name": "oidc-agent:demo-22c1d2935474",
 "issuer_url": "https://wlcg.cloud.cnaf.infn.it/",
 "config_endpoint": "https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration",
 "device_authorization_endpoint": "https://wlcg.cloud.cnaf.infn.it/devicecode",
 "daeSetByUser": 0,
 "client_id": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b",
 "client_secret": "xxx",
 "refresh_token": "eyJhbGciOiJub25lIn0.eyJqdGkiOiIyMTAwOTcy…",
 "cert_path": "/etc/pki/tls/certs/ca-bundle.crt",
 "scope": "storage.read:/ storage.create:/ compute.read compute.modify openid offline_access",
 "audience": "",
 "oauth": 0,
 "redirect_uris": ["edu.kit.data.oidc-agent:/redirect", "http://localhost:43708", "http://localhost:8080",
"http://localhost:4242"],
 "username": "",
 "password": ""
}

104

Even if not requested by the user, oidc-agent adds the openid and
offline_access scopes during the token request. This triggers the AS to issue
an ID and refresh token; the latter is stored by oidc-agent

What oidc-agent does when requesting a token
● When a user wants to obtain an AT with the oidc-token command, the RT stored during the Client registration is used

○ oidc-agent triggers an OAuth refresh token flow

● No need to re-run oidc-gen before. Just start the agent (eval $(oidc-agent)) and load the Client configuration
(oidc-add <client-alias>) in case a new session is started

● Limit the scopes requested for your token as much as possible. The oidc-token command without arguments will request
all the scopes allowed by your Client

$ oidc-token -s storage.read:/myPath demo | cut -d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1669042833,
 "scope": "storage.read:/myPath",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669046433,
 "iat": 1669042833,
 "jti": "e5bef508-1d95-4530-ba8f-d1c98563b479",
 "client_id": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

105

My uuid on the WLCG IAM instance

client_id of the demo client

What oidc-agent does when requesting a token

The same token request can be performed via curl using the command just learnt:

$ curl -s -L -u ${CLIENT_ID}:${CLIENT_SECRET} -d grant_type=refresh_token -d scope=storage.read:/myPath -d
refresh_token=${REFRESH_TOKEN} https://wlcg.cloud.cnaf.infn.it/token | jq .access_token | tr -d '"' | cut
-d. -f2 | base64 -d 2>/dev/null | jq
{
 "wlcg.ver": "1.0",
 "sub": "0fd76b3c-c3f1-4280-be3c-5ebead81c6d6",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1669044151,
 "scope": "storage.read:/myPath",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1669047751,
 "iat": 1669044151,
 "jti": "2db33e00-616a-4156-ac06-a091430bbe33",
 "client_id": "eb9e1cc2-f5e1-4a4b-b967-bccea266f09b"
}

106

client_id of the demo client

My uuid on the WLCG IAM instance

Many other options can be used together with the
oidc-gen/oidc-add/oidc-token commands to handle the Client configuration
and token requests.

To know more about it, read the documentation !

107

https://indigo-dc.gitbook.io/oidc-agent/

Usage in WLCG

108

Evolution of the WLCG AAI beyond X.509

● To access computing and storage resources in the WLCG community, users use a
VOMS proxy, which provides information about

○ who the user is
○ for which VO it is acting
○ what it can do on the infrastructure (i.e., VOMS groups and roles)

● In the near future we will use tokens, which will provide similar information

● Tokens are obtained from a VO token issuer (e.g., INDIGO IAM) using OIDC
● Tokens are sent to services/resources following OAuth recommendations (e.g.,

embedded in the header or an HTTP request)

● Tokens are self-contained, i.e. their integrity and validity can be verified locally with
no callback to the token issuer

109

VOMS → IAM

● Knowing that the transition from X.509 to tokens will take
time, IAM was designed to be backward-compatible with
our existing infrastructure

● IAM provides a VOMS Attribute Authority (VOMS-AA)
micro-service that can encode IAM membership information
in a standard VOMS Attribute Certificate → can issue
VOMS credentials (voms-proxy-init) understood by
existing clients

● At some point IAM will be the only authoritative VOMS
server for the infrastructure

● Proven compatibility with existing clients and Grid services

110

VOMS → IAM

● A voms-importer migration script has been developed to import users from the legacy VOMS to
IAM

○ documentation here
○ users will NOT have to re-register in mass to IAM, and their IAM account will be automatically linked to their

x509 certificate

● The VOMS information that is synchronized includes
○ VOMS Groups
○ VOMS Roles
○ VOMS Users: Personal information, X.509 certificates, Group and role membership, Generic attributes

● Both IAM and VOMS support the concepts of group and role. As an example,
○ group: /wlcg/xfer (VOMS) → wlcg/xfer (IAM)
○ role: /wlcg/Role=test (VOMS) → wlcg/test (IAM)

111

In IAM it differs from a default
group because it is represented
with the voms.role and
wlcg.optional-group labels

https://github.com/indigo-iam/voms-importer
https://indigo-iam.github.io/v/current/docs/tasks/deployment/voms_importer/

VOMS vs. IAM: what’s in common?

● Attribute handling

○ VOMS users can have assignable attributes → IAM has support for generic attributes as well

● Group managers

○ In VOMS, VO managers may delegate the approval of some group/role to other VO members
→ IAM supports for group managers, currently only to approve/reject group membership
requests

● AUP expiration

○ Within VOMS, an expired AUP prevents to issue new VOMS X.509 proxies → an expired AUP
signature forces the user to sign the AUP when the user tries to login into IAM and prevents the
issuing of new tokens, the refresh of tokens or the issuing of VOMS attribute certificates

112

VOMS vs. IAM: what’s in common?

● Roles

○ VOMS roles → are replaced by “labelled” groups in IAM

● Primary group

○ Within VOMS, exists the concept of a primary group → the content of the wlcg.groups
claim (i.e. list of user’s group memberships) in WLCG JWT tokens issued by IAM is an
ordered list of groups. A WLCG JWT profile defines how a particular group ordering can be
requested.

● Additional certificates

○ Within VOMS users can add additional certificates → IAM allows to link multiple certificates to
an account (in the same way VOMS does)

113

WLCG JWT profile
https://doi.org/10.5281/zenodo.3460258

“This document describes how WLCG users may use the
available geographically distributed resources without X.509
credentials.”

“In this model, clients are issued with bearer tokens; these
tokens are subsequently used to interact with resources. The
tokens may contain authorization groups and/or
capabilities, according to the preference of the Virtual
Organisation (VO), applications and relying parties.”

“Three major technologies are identified as providing the
basis for this system: OAuth2, OpenID Connect and JSON
Web Tokens.”

114

https://doi.org/10.5281/zenodo.3460258
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/developers/specs/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

Supporting multiple profiles with IAM

115

● A profile is a set of rules that defines which information is included in

○ access tokens
○ id tokens
○ userinfo endpoint responses
○ introspection endpoint responses

● IAM allows to define a default profile (from configuration) that is used for all Clients, BUT

● it can be overridden per Client, requesting a scope equal to the name of the profile
○ example: a Client requesting a WLCG token with the compute.read scope should request scope="wlcg

compute.read"
○ same logic used with the openid scope

● IAM currently supports three profiles: iam, wlcg and aarc

● The wlcg profile has been implemented in IAM following the WLCG JWT profile
guidelines, in particular

○ the scope claim is always included in access tokens
○ groups are not included by default in access and ID tokens
○ groups can be requested with the wlcg.groups scope

WLCG specific token claims

● wlcg.ver version of the WLCG token profile the Relying Parties must
understand to validate the token

○ it corresponds to the version of the WLCG JWT profile document
○ example: "wlcg.ver": "1.0"

● wlcg.groups group information about an authenticated End-User, following a
UNIX-like path syntax

○ example: "wlcg.groups": ["/atlas", "/atlas/pilots", "/atlas/xfers"]

● aud represents the recipient the JWT is intended for
○ it is actually defined in the JWT and OpenID Connect core standard, BUT
○ the WLCG JWT profile specifies that the "https://wlcg.cern.ch/jwt/v1/any"

audience must be accepted by all WLCG Relying Parties

116

https://www.rfc-editor.org/rfc/rfc7519
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.5281/zenodo.3460258

Authorization models in WLCG

Capability-based authorization: scope

● When a capability is asserted, it has to be honoured by RS. It is the VO (i.e. the Authorization
Server), NOT the RS, who manages authorization within its area

● The WLCG authorization model follows the recommendation of Section 3.3 of RFC 6749:
○ each desired capability should be requested in the scope request
○ if an entity is not entitled to a capability, the scope requested may be ignored by the server and the corresponding token

may not have the corresponding claims
○ in this case, the AS must inform the Client

● The scopes limit what are the operations that can be authorized by Clients presenting an access
token to a RS

● The interpretation of such authorizations would result in a list of operations the bearer is allowed to
perform

● Building on the SciTokens experience, define scopes that would match our computing use-cases

117

https://www.rfc-editor.org/rfc/rfc6749#section-3.3

Authorization models in WLCG

Identity-based authorization: wlcg.groups

● When groups are asserted, the bearer has the access privileges corresponding to the VO’s listed
groups. It is up to the RS to determine the mapping of the group names to the access privileges

● Requests the wlcg.group scope to implement a group selection mechanism for groups equivalent to
the one provided by VOMS, following the approach outlined in the OpenID Connect standard

○ “scopes can be used to request that specific sets of information be made available as Claim Value”
○ in WLCG, scopes are defined and mapped to claims that are returned in access tokens, ID tokens and results for userinfo

endpoint and t oken introspection requests

● It results in a wlcg.group claim whose value is an ordered JSON array reflecting the VO groups of which
the token subject is a member

118

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Capability-based authorization for storage access

● storage.read Read data. Only applies to online resources such as disk (as opposed
to nearline such as tape where the storage.stage authorization should be used
in addition)

● storage.create Upload data. This includes renaming files if the destination file does
not already exist. This authorization DOES NOT permit overwriting or deletion of
stored data

● storage.modify Change data. This includes renaming files and writing data. This
permission includes overwriting or replacing stored data in addition to deleting or
truncating data

● storage.stage Cause data to be staged from a nearline resource to an online
resource. This is a superset of storage.read

119

Capability-based authorization for storage access

Storage scopes additionally provide a resource path, which further limits the
authorization
● The resource path follows the format $AUTHZ:$PATH

○ Example: storage.read:/foo provides a read authorization for the resource at /foo but not /bar

● The resource path may be / to authorize the entire resource associated with the
issuer

○ Example: a token issued by the Atlas IAM and containing the storage.modify:/ scope allows to
write data in the entire Atlas namespace

● Following the Scitokens model, permissions granted on a path apply transitively to
subpaths

○ Example: storage.read:/cms grants read access to the /cms directory and to all its content, but
does not grant read access to the /atlas directory

120

Capability-based authorization for storage access

● This approach is not equivalent with POSIX semantics, but matches well
with our experiments data access authorization models

○ For example, if a token contains the storage.read:/home scope, an implementation must
override normal POSIX access control and leave the bearer to access all user’s home
directories

● Implementing this authorization is up to Client applications (i.e. StoRM
WebDAV, dCache, etc.)

The token just provides a (signed) string!

121

Capability-based authorization for job submission

● compute.read “Read” or query information about a job status and attributes
● compute.modify Modify or change the attributes of an existing job
● compute.create Create or submit a new job at the computing resource
● compute.cancel Delete a job from the computing resource, potentially

terminating a running job

Currently, they refer to all jobs owned by the issuer (i.e. a finer-grained path
authorization is not foreseen).

For instance, a token with compute.read scope issued by
https://cms-auth.web.cern.ch would be able to query the status of any CMS job at
the resource

122

https://cms-auth.web.cern.ch

Identity-based authorization using groups

The wlcg.group scope is used to implement an attribute selection mechanism

In the WLCG JWT profile two types of groups have been defined

● Default groups, whose membership is always asserted (similar to VOMS groups)

● Optional groups, whose membership is asserted only when explicitly requested by the
Client application (similar to VOMS roles)

Those groups appears in the access token when a user (i.e. the sub of an AT) delegates
access to a Client application based on its attributes membership

123

Identity-based authorization using groups

● A parametric wlcg.groups scope is introduced with the following form:
wlcg.groups[:<group-name>]

● and the the following rules:
○ if the scope does not have the parametric part, i.e. its value is wlcg.groups, the authorization server will

return the list of default groups for the user being authenticated as a value in the wlcg.groups claim
○ if the scope is parametric, (i.e. it has the form wlcg.groups:<group-name>), in addition to the default

groups the authorization server will also return the requested group if the user is member of such group
○ the order of the groups in the returned wlcg.groups claim complies with the order in which the groups were

requested
○ to request multiple groups, multiple wlcg.groups:<group-name> scopes are included in the authorization

request

● This seems complex, but it’s the attribute selection mechanism we use everyday with
VOMS

Implementing this authorization is (mostly) up to the WLCG AuthZ server (i.e., IAM)

124

Identity-based authorization using groups: example

In the following examples /cms is the only default group

125

WLCG JWT compliance testsuite

● A WLCG JWT compliance testsuite runs daily in order to check that implementation on the storage
sites satisfies the WLCG JWT profile requirements

● Capability-based authorization with storage.*:/[<path>] scopes

126

Latest report here

https://github.com/indigo-iam/wlcg-jwt-compliance-tests
https://ci.cloud.cnaf.infn.it/view/wlcg/job/wlcg-jwt-compliance-tests/job/master/lastSuccessfulBuild/artifact/reports/reports/latest/joint-report.html

WLCG JWT compliance testsuite

● A WLCG JWT compliance testsuite runs daily in order to check that implementation on the storage
sites satisfies the WLCG JWT profile requirements

● Identity-based authorization with wlcg.groups[:<group-name>] scopes

127

Latest report here

https://github.com/indigo-iam/wlcg-jwt-compliance-tests
https://ci.cloud.cnaf.infn.it/view/wlcg/job/wlcg-jwt-compliance-tests/job/master/lastSuccessfulBuild/artifact/reports/reports/latest/joint-report.html

WLCG JWT profile v1.1

● There is a draft for the next version of the WLCG JWT profile

● In particular:

○ definition of wlcg.capability scope/claim (PR 6, PR 10 & PR 14)

○ specify the hierarchical authorization based on sub-groups (PR 15)

○ clarify the authorization model when the capability and identity is asserted in the AT (PR 23)

○ improve authorization based on storage.* scopes (Issue 21)

128

https://github.com/WLCG-AuthZ-WG/common-jwt-profile/pull/6
https://github.com/WLCG-AuthZ-WG/common-jwt-profile/pull/10
https://github.com/WLCG-AuthZ-WG/common-jwt-profile/pull/14
https://github.com/WLCG-AuthZ-WG/common-jwt-profile/pull/15
https://github.com/WLCG-AuthZ-WG/common-jwt-profile/pull/23
https://github.com/WLCG-AuthZ-WG/common-jwt-profile/issues/21

Summary

● To access computing and storage resources in the WLCG today you use a VOMS
proxy, which provides information about who you are, for which VO you’re acting
and what you can do on the infrastructure (i.e., VOMS groups and roles)

● In the near future we will use tokens, which will provide more or less the same
information

● Tokens are obtained from a VO token issuer (e.g., IAM) using OpenID Connect

● Tokens are sent to services/resources following OAuth recommendations (e.g.,
embedded in the header or an HTTP request)

● Tokens are self-contained, i.e. their integrity and validity can be verified locally with
no callback to the token issuer

129

Useful references
RFC

● The OAuth 2.0 Authorization Framework (6749)
● JWT (7519)
● Bearer token usage (6750)
● OAuth 2.0 Device Authorization Grant (8628)
● Token exchange (8693)
● Proof Key for Code Exchange (7636)
● JWT for client authentication (7523)

Draft
● The OAuth 2.1 Authorization Framework
● OpenID Connect federation

IAM
● Source code (GitHub)
● IAM documentation
● Video in action

Other
● OpenID Connect 1.0
● OAuth 2.0 and OpenID Connect video (OktaDev)
● Apache integration demo
● INDIGO AAI tutorial (useful scripts to showcase the OAuth grant types)
● SAML
● oidc-agent documentation
● WLCG common JWT profiles 130

https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc8628
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7523#section-2.2
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-07
https://openid.net/specs/openid-connect-federation-1_0.html
https://github.com/indigo-iam/iam
https://indigo-iam.github.io/v/current/docs/
https://www.youtube.com/watch?v=1rZlvJADOnY
https://openid.net/specs/openid-connect-core-1_0.html
https://www.youtube.com/watch?v=996OiexHze0
https://github.com/andreaceccanti/iam-tutorial/tree/master/apache-integration-demo
https://github.com/andreaceccanti/indigo-aai-tutorial
https://github.com/andreaceccanti/indigo-aai-tutorial/tree/master/scripts
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://indigo-dc.gitbook.io/oidc-agent/
https://zenodo.org/record/3460258#.Y2zUc77MJeB

Bkp

131

Authorization flow in theory

1. Authorization request to the resource owner

○ The client (A) requests authorization from the resource owner to
access a resource within a defined scope. The authorization
request can be performed directly to the resource owner (as
shown), or preferably indirectly via the authorization server (AS) as
an intermediary

○ The client receives an authorization grant, which is a credential
representing the resource owner's authorization, expressed using
one of the authorization flows, or grant types. The authorization
grant type depends on the method used by the client to request
authorization from the authorization server

2. Authorization request to the AS token endpoint

○ The client requests an access token by authenticating with the
authorization server and presenting the authorization grant

○ In this phase the client can obtain additional tokens (e.g. ID token,
refresh token)

132

Demo application in action

133

Demo application in action

134

Demo application in action

135

Demo application in action

136

