NNLO Corrections to Bhabha Scattering

Roberto BONCIANI

Institute for Theoretical Physics
University of Zürich CH-8057 Zürich, Switzerland

In collaboration with: A. Ferroglia and A. A. Penin

Plan of the Talk

- Introduction
- NNLO QED corrections:
- Photonic Contributions
- Electron-Loop Contributions
- Heavy-Fermion-Loop Contributions
- Numerics
- Summary

Why Bhabha Scattering?

Why Bhabha Scattering?

- Bhabha Scattering is a fundamental process for $e^{+} e^{-}$collider physics because it is chosen for the precise evaluation of the Luminosity:

$$
L=\frac{N}{\sigma_{t h}}
$$

where N is the measured number of Bhabha events and $\sigma_{t h}$ is the Bhabha cross section calculated from theory.

Since L enters as a normalization factor in the cross section measurements a process in which δL is as small as possible is needed.

Why Bhabha Scattering?

- Bhabha Scattering is a fundamental process for $e^{+} e^{-}$collider physics because it is chosen for the precise evaluation of the Luminosity:

$$
L=\frac{N}{\sigma_{t h}}
$$

where N is the measured number of Bhabha events and $\sigma_{t h}$ is the Bhabha cross section calculated from theory.

Since L enters as a normalization factor in the cross section measurements a process in which δL is as small as possible is needed.

- Bhabha scattering is a process with a large cross section and it is QED dominated \Rightarrow

Why Bhabha Scattering?

- Bhabha Scattering is a fundamental process for $e^{+} e^{-}$collider physics because it is chosen for the precise evaluation of the Luminosity:

$$
L=\frac{N}{\sigma_{t h}}
$$

where N is the measured number of Bhabha events and $\sigma_{t h}$ is the Bhabha cross section calculated from theory.

Since L enters as a normalization factor in the cross section measurements a process in which δL is as small as possible is needed.

- Bhabha scattering is a process with a large cross section and it is QED dominated \Rightarrow
- it allows precise experimental measurements (large statistics);

Why Bhabha Scattering?

- Bhabha Scattering is a fundamental process for $e^{+} e^{-}$collider physics because it is chosen for the precise evaluation of the Luminosity:

$$
L=\frac{N}{\sigma_{t h}}
$$

where N is the measured number of Bhabha events and $\sigma_{t h}$ is the Bhabha cross section calculated from theory.

Since L enters as a normalization factor in the cross section measurements a process in which δL is as small as possible is needed.

- Bhabha scattering is a process with a large cross section and it is QED dominated \Rightarrow
- it allows precise experimental measurements (large statistics);
- it allows precise theoretical calculation of the cross section \Longrightarrow radiative corrections under control at the level of NNLO.

Small and Large Angle Bhabha Scattering

Small and Large Angle Bhabha Scattering

- Small-Angle

SABS is important for high-energy accelerators, as for instance LEP or the future ILC.
For LEP, luminometers were located between 1.4° and 2.9°
For ILC, they will be located between 0.7° and 2.3°
The small angle region makes in such a way that the weak contribution can be neglected (the Born with a Z^{0} exchanged is already at the level of 0.1%)

Small and Large Angle Bhabha Scattering

In the small-angle limit, the CS is determined only by the Dirac form factor

$$
\begin{aligned}
& \frac{d \sigma_{2}^{(\mathrm{ph})}}{d \sigma_{0}} \stackrel{\theta}{=}{ }^{0} 6\left(F_{1}^{(1 l)}(t)\right)^{2}+4 F_{1}^{(2 l)}(t) \\
& =\frac{1}{\left(1-\xi+\xi^{2}\right)^{2}}\left\{\operatorname { l n } ^ { 2 } (\frac { s } { m ^ { 2 } }) \left[\frac{9}{2}+2 \ln ^{2}\left(\frac{4 \omega^{2}}{s}\right)\right.\right. \\
& \left.+6 \ln \left(\frac{4 \omega^{2}}{s}\right)\right]+\ln \left(\frac{s}{m^{2}}\right)\left[6 \zeta(3)-3 \zeta(2)-\frac{93}{8}+9 \ln (\xi)\right. \\
& \left.-4 \ln ^{2}\left(\frac{4 \omega^{2}}{s}\right)[1-\ln (\xi)]-2 \ln \left(\frac{4 \omega^{2}}{s}\right)[7-6 \ln (\xi)]\right] \\
& -9 \zeta(3)+\frac{51}{4} \zeta(2)-12 \zeta(2) \ln (2)-\frac{32}{5} \zeta^{2}(2) \\
& +\frac{27}{2}+6 \zeta(3) \ln (\xi)-3 \zeta(2) \ln (\xi)-\frac{93}{8} \ln (\xi)+\frac{9}{2} \ln (\xi)^{2} \\
& +\ln ^{2}\left(\frac{4 \omega^{2}}{s}\right)\left[2-4 \ln (\xi)+2 \ln ^{2}(\xi)\right] \\
& \left.+\ln \left(\frac{4 \omega^{2}}{s}\right)\left[8-14 \ln (\xi)+6 \ln ^{2}(\xi)\right]+\mathcal{O}(\xi)\right\}
\end{aligned}
$$

V. S. Fadin, E. A. Kuraev, L. Trentadue, L. N. Lipatov and N. P. Merenkov, Phys. Atom. Nucl. 56 (1993) 1537 [Yad. Fiz. 56N11 (1993) 145]

Small and Large Angle Bhabha Scattering

- Small-Angle

SABS is important for high-energy accelerators, as for instance LEP or the future ILC.
For LEP, luminometers were located between 1.4° and 2.9°
For ILC, they will be located between 0.7° and 2.3°
The small angle region makes in such a way that the weak contribution can be neglected (the Born with a Z^{0} exchanged is already at the level of 0.1%)

- Large-Angle

LABS is important for low-energy accelerators (meson factories), as for instance DA Φ NE.
The KLOE experiment has luminometers located between 55° and 125°
The small energy makes in such a way that the weak contributions also in this case are negligible. At 10 GeV they are at the level of 0.1%

Experimental Accuracy Requirements

Experimental Accuracy Requirements

DA $\Phi N E-V E P P-2 M$	$\Rightarrow 0.1 \%$
LEP	$\Rightarrow 0.3-0.5 \%$
ILC	$\Rightarrow \sim 0.01 \%$

Experimental Accuracy Requirements

DA Φ NE - VEPP-2M	$\Rightarrow 0.1 \%$
LEP	$\Rightarrow 0.3-0.5 \%$
ILC	$\Rightarrow \sim 0.01 \%$

This needs devoted Monte Carlos with two ingredients under control:

Experimental Accuracy Requirements

DA Φ NE - VEPP-2M	$\Rightarrow 0.1 \%$
LEP	$\Rightarrow 0.3-0.5 \%$
ILC	$\Rightarrow \sim 0.01 \%$

This needs devoted Monte Carlos with two ingredients under control:

- Parton shower (no way to reach this precision without showering)
- matched with fixed-order Radiative Corrections (at the level of NNLO?)
\rightarrow see PHIPSI 08 talk by C. M. Carloni Calame

Experimental Accuracy Requirements

DA Φ NE - VEPP-2M	$\Rightarrow 0.1 \%$
LEP	$\Rightarrow 0.3-0.5 \%$
ILC	$\Rightarrow \sim 0.01 \%$

This needs devoted Monte Carlos with two ingredients under control:

- Parton shower (no way to reach this precision without showering)
- matched with fixed-order Radiative Corrections (at the level of NNLO?)
\rightarrow see PHIPSI 08 talk by C. M. Carloni Calame
BABAYAGA

c. m. Carloni Calame, et al., Nucl. Phys. B 584 (2000) 459	
BHLUMI	s. Jadach, et al., Comput. Phys. Commun. 102 (1997) 229
BHAGENF	F. A. Berends, et al., Nucl. Phys. B 228 (1983) 537
BHWIDE	s. Jadach, et al., Phys. Lett. B 390 (1997) 298
MCGPJ	A. B. Arbuzov, et al., JHEP 9710 (1997) 001

Experimental Accuracy Requirements

DA Φ NE - VEPP-2M	$\Rightarrow 0.1 \%$
LEP	$\Rightarrow 0.3-0.5 \%$
ILC	$\Rightarrow \sim 0.01 \%$

This needs devoted Monte Carlos with two ingredients under control:

- Parton shower (no way to reach this precision without showering)
- matched with fixed-order Radiative Corrections (at the level of NNLO?)
\rightarrow see PHIPSI 08 talk by C. M. Carloni Calame
BABAYAGA

C. m. Carloni Calame, et al., Nucl. Phys. B 584 (2000) 459	
BHLUMI	s. Jadach, et al., Comput. Phys. Commun. 102 (1997) 229
BHWENF	F. A. Berends, et al., Nucl. Phys. B 228 (1983) 537
MCGPJ	s. Jadach, et al., Phys. Lett. B 390 (1997) 298

A. B. Arbuzov, et al., JHEP 9710 (1997) 001

Experimental Accuracy Requirements

DA $\Phi N E-V E P P-2 M$	$\Rightarrow 0.1 \%$
LEP	$\Rightarrow 0.3-0.5 \%$
ILC	$\Rightarrow \sim 0.01 \%$

This needs devoted Monte Carlos with two ingredients under control:

- Parton shower (no way to reach this precision without showering)
- matched with FIXED-ORDER RADIATIVE CORRECTIONS (at the level of NNLO?) \rightarrow see PHIPSI 08 talk by C. M. Carloni Calame
BABAYAGA \quad с. m. Carloni Calame, et al., Nucl. Phys. B 584 (2000) 459
BHLUMI
BHAGENF
s. Jadach, et al., Comput. Phys. Commun. 102 (1997) 229
BHWIDE
B. A. Berends, et al., Nucl. Phys. B 228 (1983) 537
MCGPJ
A. B. Arbuzov, et al., JHEP 9710 (1997) 001

Cross Section in the Literature

Cross Section in the Literature

- One-loop corrections
- QED and EW corr. (Consoli '79, Böhm-Denner-Hollik '88, Greco '88,)

Cross Section in the Literature

- One-loop corrections

- QED and EW corr. (Consoli '79, Böhm-Denner-Hollik '88, Greco '88,)
- Two-loop QED corrections
- Leading Log-enhanced corr. (virtual and real) for SABS and LABS (Faldt-Osland '94, Arbuzov-Fadin-Kuraev-Lipatov-Merenkov-Trentadue '95-'97)
- Virtual corr. to the cross section with $m=0$ (Bern-Dixon-Ghinkulov '00)
- Log-enhanced photonic contributions (Glover-Tausk-van der Bij '01)
- $\quad N_{F}=1$ with $m_{e} \neq 0$ (B.-Ferroglia-Mastrolia-Remiddi-van der Bij '04-'05)
- Constant term of photonic corrections not suppressed by the ratio $\mathrm{m}^{2} / \mathrm{s}$ (Penin '05)
- HF contr. in the small- m_{f} limit (Actis-Czakon-Gluza-Riemann '07, Becher-Melnikov '07)
- HF contribution: complete analytic dep. on m_{f} (B.-Ferroglia-Penin '07)
- HF and H contribution: num. with disp. rel. (Actis-Czakon-Gluza-Riemann '07)
\rightarrow see talk by T. Riemann

Cross Section in the Literature

- One-loop corrections
- QED and EW corr. (Consoli '79, Böhm-Denner-Hollik '88, Greco '88,)
- Two-loop QED corrections
- Leading Log-enhanced corr. (virtual and real) for SABS and LABS (Faldt-Osland '94, Arbuzov-Fadin-Kuraev-Lipatov-Merenkov-Trentadue '95-'97)
- Virtual corr. to the cross section with $m=0$ (Bern-Dixon-Ghinkulov '00)
- Log-enhanced photonic contributions (Glover-Tausk-van der Bij '01)
- $N_{F}=1$ with $m_{e} \neq 0$ (B.-Ferroglia-Mastrolia-Remiddi-van der Bij '04-'05)
- Constant term of photonic corrections not suppressed by the ratio $\mathrm{m}^{2} / \mathrm{s}$ (Penin '05)
- HF contr. in the small- m_{f} limit (Actis-Czakon-Gluza-Riemann '07, Becher-Melnikov '07)
- HF contribution: complete analytic dep. on m_{f} (B.-Ferroglia-Penin '07)
- HF and H contribution: num. with disp. rel. (Actis-Czakon-Gluza-Riemann '07)
\rightarrow see talk by T. Riemann
- Two-loop EW corrections
- Log-enhanced corr. (Bardin-Hollik-Riemann '90, Fadin-Lipatov-Martin-Melles '00, Jantzen-Kühn-Moch-Penin-Smirnov '01-'05)

QED Corrections

We can devide the QED higher-order corrections in three gauge-independent groups:

QED Corrections

We can devide the QED higher-order corrections in three gauge-independent groups:

Pure Photonic Corrections
Electron-Loop Corrections

Heavy-F Loop Corrections

QED Corrections

We can devide the QED higher-order corrections in three gauge-independent groups:

Electron-Loop Corrections

> Heavy-F Loop Corrections

[^0]
QED Corrections

We can devide the QED higher-order corrections in three gauge-independent groups:

Pure Photonic Corrections

Arbuzov-Fadin-Kuraev-Lipatov-
-Merenkov-Trentadue '95-'97
Glover-Tausk-van der Bij '01
Penin ' 05
(B.-Ferroglia '05)

Electron-Loop Corrections
Heavy-F Loop Corrections

Arbuzov-Kuraev-Merenkov-
-Trentadue '97
B.-Ferroglia-Mastrolia-Remiddi--van der Bij '04-' 05
(B.-Ferroglia'05)

QED Corrections

We can devide the QED higher-order corrections in three gauge-independent groups:

Pure Photonic Corrections

Arbuzov-Fadin-Kuraev-Lipatov-
-Merenkov-Trentadue '95-'97
Glover-Tausk-van der Bij '01
Penin ' 05
(B.-Ferroglia '05)

Electron-Loop Corrections

Arbuzov-Kuraev-Merenkov-
-Trentadue '97
B.-Ferroglia-Mastrolia-Remiddi- Becher-Melnikov ' 07 -van der Bij '04-'05
(B.-Ferroglia ' 05)

Heavy-F Loop Corrections

Actis-Czakon-Gluza-Riemann '07
B.-Ferroglia-Penin ' 07

Mass Hierarchy

Mass Hierarchy

The physical problem is characterized by a well defined mass hierarchy

- Low-Energy Acc.

$$
m_{e}^{2} \ll m_{\mu}^{2}<m_{c}^{2} \sim m_{\tau}^{2} \sim m_{b}^{2} \sim s, t, u \ll m_{t}^{2}
$$

- High-Energy Acc.

$$
m_{e}^{2} \ll m_{\text {light }-f}^{2} \ll m_{t}^{2} \sim s, t, u
$$

The electron mass is always small compared to all the scales in the game
In both cases, therefore, the electron contribution provides the biggest fermionic contribution, followed by the muon

This hierarchy allows to calculate radiative corrections neglecting the mass of the electron, or, better, keeping the mass of the electron only in the log-enhanced terms, as a regulator for the collinear divergences

Mass Hierarchy

$$
D_{\mathrm{N}_{\mathrm{F}}=1}(\theta, E)=\left(\frac{\alpha}{\pi}\right)^{2}\left|\left(\frac{d \sigma_{2}^{\left(\mathrm{N}_{\mathrm{F}}=1\right)}}{d \Omega}-\left.\frac{d \sigma_{2}^{\left(\mathrm{N}_{\mathrm{F}}=1\right)}}{d \Omega}\right|_{L}\right)\right|\left(\frac{d \sigma_{0}}{d \Omega}+\left(\frac{\alpha}{\pi}\right) \frac{d \sigma_{1}}{d \Omega}\right)^{-1}
$$

The soft-photon energy cut-off is set equal to the beam energy: $\omega=E$ The soft-pair energy cut-off is set equal to the beam energy: $\Omega=E$
R. B. and A. Ferroglia, Phys. Rev. D 72, 056004 (2005)

Mass Hierarchy

$$
D_{i}(\theta, E)=\left(\frac{\alpha}{\pi}\right)^{2}\left|\left(\frac{d \sigma_{2}^{(\mathrm{ph} i)}}{d \Omega}-\left.\frac{d \sigma_{2}^{(\mathrm{ph} i)}}{d \Omega}\right|_{L}\right)\right|\left(\frac{d \sigma_{0}}{d \Omega}+\left(\frac{\alpha}{\pi}\right) \frac{d \sigma_{1}}{d \Omega}\right)^{-1}
$$

The soft-photon energy cut-off is set equal to the beam energy: $\omega=E$

The Cross Section in the small- m_{e} limit

... therefore, we can expand the Bhabha scattering Differential Cross Section in series of the electron mass and retain only terms that do not vanish in the limit $m_{e}^{2} / s \rightarrow 0$.

The Cross Section in the small- m_{e} limit

... therefore, we can expand the Bhabha scattering Differential Cross Section in series of the electron mass and retain only terms that do not vanish in the limit $m_{e}^{2} / s \rightarrow 0$.

At the NNLO the Cross Section has the following form:

$$
\frac{d \sigma_{2}}{d \sigma_{0}}=\delta_{2}^{(2)}(\xi) \ln ^{2}\left(\frac{s}{m_{e}^{2}}\right)+\delta_{2}^{(1)}(\xi) \ln \left(\frac{s}{m_{e}^{2}}\right)+\delta_{2}^{(0)}(\xi)+\mathcal{O}\left(\frac{m_{e}^{2}}{s}\right)
$$

where

$$
\xi=\frac{1-\cos \theta}{2}
$$

The Cross Section in the small- m_{e} limit

... therefore, we can expand the Bhabha scattering Differential Cross Section in series of the electron mass and retain only terms that do not vanish in the limit $m_{e}^{2} / s \rightarrow 0$.

At the NNLO the Cross Section has the following form:

$$
\frac{d \sigma_{2}}{d \sigma_{0}}=\delta_{2}^{(2)}(\xi) \ln ^{2}\left(\frac{s}{m_{e}^{2}}\right)+\delta_{2}^{(1)}(\xi) \ln \left(\frac{s}{m_{e}^{2}}\right)+\delta_{2}^{(0)}(\xi)+\mathcal{O}\left(\frac{m_{e}^{2}}{s}\right)
$$

where

$$
\xi=\frac{1-\cos \theta}{2}
$$

NOTE: this approximation is not valid in the almost-forward $\left(|t|<m^{2}\right)$ and in the almost-backward $\left(|u|<m^{2}\right)$ directions, where terms of order m^{2} / t and m^{2} / u become important

The Cross Section in the small- m_{e} limit

... therefore, we can expand the Bhabha scattering Differential Cross Section in series of the electron mass and retain only terms that do not vanish in the limit $m_{e}^{2} / s \rightarrow 0$.

At the NNLO the Cross Section has the following form:

$$
\frac{d \sigma_{2}}{d \sigma_{0}}=\delta_{2}^{(2)}(\xi) \ln ^{2}\left(\frac{s}{m_{e}^{2}}\right)+\delta_{2}^{(1)}(\xi) \ln \left(\frac{s}{m_{e}^{2}}\right)+\delta_{2}^{(0)}(\xi)+\mathcal{O}\left(\frac{m_{e}^{2}}{s}\right)
$$

where

$$
\xi=\frac{1-\cos \theta}{2}
$$

NOTE: this approximation is not valid in the almost-forward $\left(|t|<m^{2}\right)$ and in the almost-backward $\left(|u|<m^{2}\right)$ directions, where terms of order m^{2} / t and m^{2} / u become important

However, alredy at 1° the terms of order m^{2} / t are totally negligible.

The Photonic Contribution

$$
\frac{d \sigma_{p h o t}}{d \sigma_{0}}=\delta_{p h o t, 2}^{(2)} \ln ^{2}\left(\frac{s}{m^{2}}\right)+\delta_{p h o t, 1}^{(2)} \ln \left(\frac{s}{m^{2}}\right)+\delta_{p h o t, 0}^{(2)}
$$

The Photonic Contribution

$$
\frac{d \sigma_{p h o t}}{d \sigma_{0}}=\delta_{p h o t, 2}^{(2)} \ln ^{2}\left(\frac{s}{m^{2}}\right)+\delta_{p h o t, 1}^{(2)} \ln \left(\frac{s}{m^{2}}\right)+\delta_{p h o t, 0}^{(2)}
$$

$\delta_{\text {phot , } 2}^{(2)}$
$\delta_{\text {phot }, 1}^{(2)}$
$\delta_{\text {phot, } 1}^{(2)}$
known since
Arbuzov-Kuraev-Shaikhatdenov '98
known since Glover-Tausk-van der Bij ' 01
known since Penin ' 05

The Photonic Contribution

$$
\frac{d \sigma_{p h o t}}{d \sigma_{0}}=\delta_{p h o t, 2}^{(2)} \ln ^{2}\left(\frac{s}{m^{2}}\right)+\delta_{p h o t, 1}^{(2)} \ln \left(\frac{s}{m^{2}}\right)+\delta_{p h o t, 0}^{(2)}
$$

-

Reconstruction from massless CS
For a generic QED/QCD process without closed fermion loops

$$
\mathcal{M}^{(m \neq 0)}=\prod_{i \in\{\text { all legs }\}} Z_{i}^{\frac{1}{2}}(m, \epsilon) \mathcal{M}^{(m=0)}
$$

where Z is the ratio between the massive and massless Dirac form factor

$$
F^{(m \neq 0)}\left(Q^{2}\right)=Z(m, \epsilon) F^{(m=0)}\left(Q^{2}\right)+\mathcal{O}\left(m^{2} / Q^{2}\right)
$$

Therefore, starting from the totally massless result of Bern-Dixon-Ghinkulov '00, one can reconstruct the photonic cross section where the collinear divergences are regulated with the mass of the electron.

rine tecteon-ta000 conteindition

$$
\frac{d \sigma_{N_{F}=1}}{d \sigma_{0}}=\delta_{N_{F}=1,3}^{(2)} \ln ^{3}\left(\frac{s}{m^{2}}\right)+\delta_{N_{F}=1,2}^{(2)} \ln ^{2}\left(\frac{s}{m^{2}}\right)+\delta_{N_{F}=1,1}^{(2)} \ln \left(\frac{s}{m^{2}}\right)+\delta_{N_{F}}^{(2)}=1,0
$$

where:

$$
\begin{aligned}
\delta_{N}^{(2)}=1,3= & \left.\frac{1}{\left(1-\xi+\xi^{2}\right)^{2}} \left\lvert\,-\frac{1}{9}+\frac{2}{9} \xi-\frac{1}{3} \xi^{2}+\frac{2}{9} \xi^{3}-\frac{1}{9} \xi^{4}\right.\right\} \\
\delta_{N_{F}=1,2}^{(2)}= & \frac{1}{\left(1-\xi+\xi^{2}\right)^{2}} \left\lvert\, \ln \left(\frac{4 w^{2}}{s}\right)\left(-\frac{4}{3}+\frac{8}{3} \xi-4 \xi^{2}+\frac{8}{3} \xi^{3}-\frac{4}{3} \xi^{4}\right)-\left(\frac{17}{18}-\frac{17}{9} \xi+\frac{17}{6} \xi^{2}-\frac{17}{9} \xi^{3}+\frac{17}{18} \xi^{4}\right)\right. \\
& \left.-\left(\frac{1}{3}-\frac{2}{3} \xi+\xi^{2}-\frac{2}{3} \xi^{3}+\frac{1}{3} \xi^{4}\right) \ln (1-\xi)-\left(\frac{1}{3}-\frac{1}{3} \xi+\frac{1}{3} \xi^{3}-\frac{1}{3} \xi^{4}\right) \ln (\xi)\right\} \\
\delta_{N_{F}=1,1}^{(2)}= & \frac{1}{\left(1-\xi+\xi^{2}\right)^{2}}\left|\ln \left(\frac{4 w^{2}}{s}\right)\right|\left(\frac{4}{3}-\frac{8}{3} \xi+4 \xi^{2}-\frac{8}{3} \xi^{3}+\frac{4}{3} \xi^{4}\right) \ln (1-\xi)+\left(\frac{32}{9}-\frac{64}{9} \xi+\frac{32}{3} \xi^{2}-\frac{64}{9} \xi^{3}\right. \\
& \left.\left.+\frac{32}{9} \xi^{4}\right)-\left(\frac{8}{3}-\frac{14}{3} \xi+6 \xi^{2}-\frac{10}{3} \xi^{3}+\frac{4}{3} \xi^{4}\right) \ln (\xi)|\cdots|\right) \\
\delta_{N_{F}}^{(2)}=1,0= & \frac{1}{\left(1-\xi+\xi^{2}\right)^{2}}\left|\ln \left(\frac{4 w^{2}}{s}\right)\right|\left(-\frac{20}{9}+\frac{40}{9} \xi-\frac{20}{3} \xi^{2}+\frac{40}{9} \xi^{3}-\frac{20}{9} \xi^{4}\right) \ln (1-\xi)-\left(\frac{20}{9}-\frac{40}{9} \xi+\frac{20}{3} \xi^{2}\right. \\
& \left.\left.-\frac{40}{9} \xi^{3}+\frac{20}{9} \xi^{4}\right) \cdot \cdots\right)
\end{aligned}
$$

In agreement with Becher-Melnikov '07 and Actis-Czakon-Gluza-Riemann '07
A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov and L. Trentadue, Phys. Atom. Nucl. 60 (1997) 591
[Yad. Fiz. 60N4 (1997) 673]
R. B., A. Ferroglia, P. Mastrolia, E. Remiddi and J. J. van der Bij, Nucl. Phys. B716 (2005) 280

Soft-Pair Production

$$
\frac{d \sigma_{P a i r}}{d \sigma_{0}}=\delta_{P a i r, 3}^{(2)} \ln ^{3}\left(\frac{s}{m^{2}}\right)+\delta_{P a i r, 2}^{(2)} \ln ^{2}\left(\frac{s}{m^{2}}\right)+\delta_{P a i r, 1}^{(2)} \ln \left(\frac{s}{m^{2}}\right)+\delta_{P a i r, 0}^{(2)}
$$

where:

$$
\begin{aligned}
& \delta_{\text {Pair }, 3}^{(2)}=\frac{1}{\left(1-\xi+\xi^{2}\right)^{2}}\left(\frac{1}{9}-\frac{2}{9} \xi+\frac{1}{3} \xi^{2}-\frac{2}{9} \xi^{3}+\frac{1}{9} \xi^{4}\right) \\
& \delta_{P a i r, 2}^{(2)}=\frac{1}{\left(1-\xi+\xi^{2}\right)^{2}}\left\{\ln \left(\frac{4 w^{2}}{s}\right)\left(\frac{1}{3}-\frac{2}{3} \xi+\xi^{2}-\frac{2}{3} \xi^{3}+\frac{1}{3} \xi^{4}\right)-\left(\frac{1}{3}-\frac{2}{3} \xi+\xi^{2}-\frac{2}{3} \xi^{3}+\frac{1}{3} \xi^{4}\right) \ln (1-\xi)\right. \\
& \left.-\left(\frac{5}{9}-\frac{10}{9} \xi+\frac{5}{3} \xi^{2}-\frac{10}{9} \xi^{3}+\frac{5}{9} \xi^{4}\right)+\left(\frac{1}{3}-\frac{2}{3} \xi+\xi^{2}-\frac{2}{3} \xi^{3}+\frac{1}{3} \xi^{4}\right) \ln (\xi)\right) \\
& \delta_{P a i r, 1}^{(2)}=\frac{1}{\left(1-\xi+\xi^{2}\right)^{2}}\left\{\ln ^{2}\left(\frac{4 w^{2}}{s}\right)\left(\frac{1}{3}-\frac{2}{3} \xi+\xi^{2}-\frac{2}{3} \xi^{3}+\frac{1}{3} \xi^{4}\right)+\ln \left(\frac{4 w^{2}}{s}\right)\left(-\frac{2}{3}+\frac{4}{3} \xi-2 \xi^{2}+\frac{4}{3} \xi^{3}\right.\right. \\
& \left.-\frac{2}{3} \xi^{4}\right) \ln (1-\xi)-\left(\frac{10}{9}-\frac{20}{9} \xi+\frac{10}{3} \xi^{2}-\frac{20}{9} \xi^{3}+\frac{10}{9} \xi^{4}\right)+\left(\frac{2}{3}-\frac{4}{3} \xi+\cdots\right) \\
& \delta_{P a i r, 0}^{(2)}=\frac{1}{\left(1-\xi+\xi^{2}\right)^{2}}\left|\ln ^{2}\left(\frac{4 w^{2}}{s}\right)\right|\left(-\frac{1}{3}+\frac{2}{3} \xi-\xi^{2}+\frac{2}{3} \xi^{3}-\frac{1}{3} \xi^{4}\right) \ln (1-\xi)+\left(\frac{1}{3}-\frac{2}{3} \xi+\xi^{2}\right. \\
& -\frac{2}{3} \xi^{3}+\frac{1}{3} \xi^{4}|\ln (\xi)| \cdots
\end{aligned}
$$

A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov and L. Trentadue, Phys. Atom. Nucl. 60 (1997) 591 [Yad. Fiz. 60N4 (1997) 673]; Nucl. Phys. B474 (1996) 271.

Photonic and Electron-Loop Corrections

$E=0.5 \mathrm{GeV}$ and $\Omega=\omega=E$

Heavy-Fermion Contribution

Heavy-Fermion Contribution

The calculation of the two-loop heavy-fermion contribution to the Bhabha scattering differential cross section is, in principle, a four-scales problem

Heavy-Fermion Contribution

The calculation of the two-loop heavy-fermion contribution to the Bhabha scattering differential cross section is, in principle, a four-scales problem!
$\Longrightarrow \quad$ it is REALLY VERY difficult to solve in a standard way (diagrammatically), keeping the full dependence on the heavy and electron mass.

Heavy-Fermion Contribution

The calculation of the two-loop heavy-fermion contribution to the Bhabha scattering differential cross section is, in principle, a four-scales problem!
$\Longrightarrow \quad$ it is REALLY VERY difficult to solve in a standard way (diagrammatically), keeping the full dependence on the heavy and electron mass.

Nevertheless, it can be afforded if one relaxes some constraints.

Heavy-Fermion Contribution

The calculation of the two-loop heavy-fermion contribution to the Bhabha scattering differential cross section is, in principle, a four-scales problem!
$\Longrightarrow \quad$ it is REALLY VERY difficult to solve in a standard way (diagrammatically), keeping the full dependence on the heavy and electron mass.

Nevertheless, it can be afforded if one relaxes some constraints.

- One can get the solution in the "small- m_{f} " limit

$$
m_{e}^{2} \ll m_{f}^{2} \ll s, t, u
$$

T. Becher and K. Melnikov, JHEP 0706 (2007) 084.
S. Actis, M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. B 786 (2007) 26.

Heavy-Fermion Contribution

The calculation of the two-loop heavy-fermion contribution to the Bhabha scattering differential cross section is, in principle, a four-scales problem!
$\Longrightarrow \quad$ it is REALLY VERY difficult to solve in a standard way (diagrammatically), keeping the full dependence on the heavy and electron mass.

Nevertheless, it can be afforded if one relaxes some constraints.

- One can get the solution in the "small- m_{f} " limit

$$
m_{e}^{2} \ll m_{f}^{2} \ll s, t, u
$$

T. Becher and K. Melnikov, JHEP 0706 (2007) 084.
S. Actis, M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. B 786 (2007) 26.

- but it is also possible to keep the full dependence on the heavy-fermion mass

$$
m_{e}^{2} \ll m_{f}^{2} \sim s, t, u
$$

R. B., A. Ferroglia, A. A. Penin, Phys. Rev. Lett. 100 (2008) 131601; JHEP 0802 (2008) 080.

Heavy-Fermion Contribution: small- m_{f}

Heavy-Fermion Contribution: small- m_{f}

- Reconstruction from massless CS

If we include closed fermion loops, the formula changes a bit

$$
\mathcal{M}^{(m \neq 0)}=Z^{2}(m, \epsilon) \mathcal{M}^{(m=0)} S\left(s, t, u, m_{f}, \epsilon\right)
$$

where Z is the ratio between the massive and massless Dirac form factor and S is the "soft" function, calculated in SCET.

Again, from the totally massless result of Bern-Dixon-Ghinkulov '00, one can reconstruct the N_{F} part of the CS, in the limit $m_{e} \ll m_{f} \ll s, t, u$

Heavy-Fermion Contribution: small- m_{f}

- Reconstruction from massless CS

If we include closed fermion loops, the formula changes a bit

$$
\mathcal{M}^{(m \neq 0)}=Z^{2}(m, \epsilon) \mathcal{M}^{(m=0)} S\left(s, t, u, m_{f}, \epsilon\right)
$$

where Z is the ratio between the massive and massless Dirac form factor and S is the "soft" function, calculated in SCET.

Again, from the totally massless result of Bern-Dixon-Ghinkulov '00, one can reconstruct the N_{F} part of the CS, in the limit $m_{e} \ll m_{f} \ll s, t, u$

```
T. Becher and K. Melnikov, JHEP 0706 (2007) 084.
```

- Diagrammatic Calculation
e reduction to the MIs with the Laporta algorithm
- calculation of the MIs directly in the $m_{e} / s \rightarrow 0$ limit with Mellin-Barnes
S. Actis, M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. B 786 (2007) 26.

Heavy-Fermion Contribution: small- m_{f}

The constraint $m_{e}^{2} \ll m_{f}^{2} \ll s, t, u$ is well verified for instance for leptons at high-energy accelerators (ILC) and for the muon at meson factories.

Heavy-Fermion Contribution: small- m_{f}

The constraint $m_{e}^{2} \ll m_{f}^{2} \ll s, t, u$ is well verified for instance for leptons at high-energy accelerators (ILC) and for the muon at meson factories.

However it is no longer satisfied in the following cases

- Contributions coming from a tau loop at KLOE energies $\left(m_{\tau} \sim \sqrt{s}\right)$
- Contributions coming from a top loop at high energies (ILC)

Heavy-Fermion Contribution: small- m_{f}

The constraint $m_{e}^{2} \ll m_{f}^{2} \ll s, t, u$ is well verified for instance for leptons at high-energy accelerators (ILC) and for the muon at meson factories.

However it is no longer satisfied in the following cases

- Contributions coming from a tau loop at KLOE energies $\left(m_{\tau} \sim \sqrt{s}\right)$
- Contributions coming from a top loop at high energies (ILC)

[^1]
Heavy-Fermion Contribution: small- m_{f}

The constraint $m_{e}^{2} \ll m_{f}^{2} \ll s, t, u$ is well verified for instance for leptons at high-energy accelerators (ILC) and for the muon at meson factories.

However it is no longer satisfied in the following cases

- Contributions coming from a tau loop at KLOE energies $\left(m_{\tau} \sim \sqrt{s}\right)$
- Contributions coming from a top loop at high energies (ILC)

A solution with the full dependence on m_{f} is desirable

Heavy-Fermion Contribution: exact m_{f}

Heavy-Fermion Contribution: exact m_{f}

- Each two-loop heavy-fermion box diagram in a physical gauge is collinear-safe! (Frenkel-Taylor '76)

Heavy-Fermion Contribution: exact m_{f}

- Each two-loop heavy-fermion box diagram in a physical gauge is collinear-safe! (Frenkel-Taylor '76)
- This is in general not true in any gauge, but, since the boxes (planar + crossed) constitute a gauge-independent set (actually each pair planar+crossed is gauge independent), in any gauge their sum is collinear safe!

Heavy-Fermion Contribution: exact m_{f}

- Each two-loop heavy-fermion box diagram in a physical gauge is collinear-safe! (Frenkel-Taylor '76)
- This is in general not true in any gauge, but, since the boxes (planar + crossed) constitute a gauge-independent set (actually each pair planar+crossed is gauge independent), in any gauge their sum is collinear safe!

$=$ Free of collinear poles
$=$ Free of collinear poles

Heavy-Fermion Contribution: exact m_{f}

- Each two-loop heavy-fermion box diagram in a physical gauge is collinear-safe! (Frenkel-Taylor '76)
- This is in general not true in any gauge, but, since the boxes (planar + crossed) constitute a gauge-independent set (actually each pair planar+crossed is gauge independent), in any gauge their sum is collinear safe!
\Longrightarrow we can choose from the beginning $m_{e}=0$ in the calculation, reducing, effectively, the number of scales in the game from 4 to 3 .
Moreover, we can evaluate the boxes in Feynman gauge.

Heavy-Fermion Contribution: exact m_{f}

- Each two-loop heavy-fermion box diagram in a physical gauge is collinear-safe! (Frenkel-Taylor '76)
- This is in general not true in any gauge, but, since the boxes (planar + crossed) constitute a gauge-independent set (actually each pair planar+crossed is gauge independent), in any gauge their sum is collinear safe!
\Longrightarrow we can choose from the beginning $m_{e}=0$ in the calculation, reducing, effectively, the number of scales in the game from 4 to 3 , and we can evaluate the boxes in Feynman gauge.
- The collinear divergence comes from the other sets of graphs. In particular it is possible to show that it comes from the reducible ones!

Heavy-Fermion Contribution: exact m_{f}

- Each two-loop heavy-fermion box diagram in a physical gauge is collinear-safe! (Frenkel-Taylor '76)
- This is in general not true in any gauge, but, since the boxes (planar + crossed) constitute a gauge-independent set (actually each pair planar+crossed is gauge independent), in any gauge their sum is collinear safe!
\Longrightarrow we can choose from the beginning $m_{e}=0$ in the calculation, reducing, effectively, the number of scales in the game from 4 to 3 , and we can evaluate the boxes in Feynman gauge.
- The collinear divergence comes from the other sets of graphs. In particular it is possible to show that it comes from the reducible ones!
\Longrightarrow in these trivial diagrams we can keep the electrom mass and the heavy-fermion mass different from zero.

Heavy-Fermion Contribution: exact m_{f}

- Each two-loop heavy-fermion box diagram in a physical gauge is collinear-safe! (Frenkel-Taylor '76)
- This is in general not true in any gauge, but, since the boxes (planar + crossed) constitute a gauge-independent set (actually each pair planar+crossed is gauge independent), in any gauge their sum is collinear safe!
\Longrightarrow we can choose from the beginning $m_{e}=0$ in the calculation, reducing, effectively, the number of scales in the game from 4 to 3 , and we can evaluate the boxes in Feynman gauge.
- The collinear divergence comes from the other sets of graphs. In particular it is possible to show that it comes from the reducible ones! \Longrightarrow in these trivial diagrams we can keep the electrom mass and the heavy-fermion mass different from zero.

The collinear structure of the cross section is

$$
\frac{d \sigma_{N_{F}>1}}{d \sigma_{0}}=\delta_{N_{F}>1,1}^{(2)}\left(s, t, m_{f}^{2}\right) \ln \left(\frac{s}{m_{e}^{2}}\right)+\delta_{N_{F}>1,0}^{(2)}\left(s, t, m_{f}^{2}\right)
$$

Boxes and two-loop vertices contribute to $\delta_{N_{F}>1,0}^{(2)}\left(s, t, m_{f}^{2}\right)$ while the reducible diagrams contribute to $\delta_{N_{F}>1,1}^{(2)}\left(s, t, m_{f}^{2}\right)$

Heavy-Fermion Contribution: exact m_{f}

Laporta Algorithm

- Reduction to the MIs

Differential Equations

- Analytic evaluation of the MIs

(B-Ferroglia-Penin '07-'08)

Heavy-Fermion Contribution: exact m_{f}

Laporta Algorithm

- Reduction to the MIs

$\left(p_{3} \cdot k_{2}\right)$

Differential Equations

- Analytic evaluation of the MIs
(B-Ferroglia-Penin '07-'08)

Heavy-Fermion Contribution: exact m_{f}

Laporta Algorithm

- Reduction to the MIs

Differential Equations

- Analytic evaluation of the MIs
(B-Ferroglia-Penin '07-'08)

$$
\begin{aligned}
M_{1,-3}= & -\frac{1}{2 m_{f}^{2} x} \\
M_{1,-2}= & \frac{1}{4 m_{f}^{2} x}\left|2-G(0 ; x)-\frac{y+4}{\sqrt{y(y+4)}} G(-\mu ; y)\right| \\
M_{1,-1}= & \left.\frac{1}{8 m_{f}^{2} x} \right\rvert\,-4+\zeta(2)+2 G(0 ; x)-G(0,0 ; x)+2 G(-\mu,-\mu ; y) \\
& \left.+\frac{y+4}{\sqrt{y(y+4)}} 2 G(-\mu ; y)-3 G(-4,-\mu ; y)-G(0 ; x) G(-\mu ; y) \right\rvert\,
\end{aligned}
$$

$M_{1,0}=$

Numerical Analysis

Numerical Analysis

$$
\begin{array}{|ll}
\hline \sqrt{s}=1 \mathrm{GeV} \quad \text { QED Corrections } \\
\hline
\end{array}
$$

θ
Two-loop corrections to the Bhabha scattering differential cross section at $\sqrt{s}=1 \mathrm{GeV}$ due to a closed loop of muon (dashed line). The solid line represents the sum of the contributions of the muon, τ-lepton, c-quark and b-quark.

Two-loop corrections to the Bhabha scattering differential cross section at $\sqrt{s}=1 \mathrm{GeV}$ due to a closed loop of τ-lepton (dotted line), c-quark (dashed line) and b-quark (solid line) for $m_{c}=$ 1.25 GeV and $m_{b}=4.7 \mathrm{GeV}$.

Numerical Analysis

$$
\sqrt{s}=500 \mathrm{GeV} \quad \text { QED Corrections }
$$

θ
Two-loop leptonic corrections to the Bhabha scattering differential cross section at $\sqrt{s}=$ 500 GeV . The dash-dotted line represents the electron contribution including the soft-pair radiation. The dashed and dotted lines represent the contributions of muon and τ-lepton. The solid line is the sum of the three.

Two-loop corrections to the Bhabha scattering differential cross section at $\sqrt{s}=500 \mathrm{GeV}$ due to a closed loop of top quark for $m_{t}=170.9 \mathrm{GeV}$.

Numerical Analysis

$$
\begin{array}{|ll|}
\hline \sqrt{s}=500 \mathrm{GeV} \quad \text { Structure of the QED Corrections } \\
\hline
\end{array}
$$

Self-energy (" $S^{\prime \prime}$), vertex (" V "), reducible plus one-loop times one-loop (" R "), and box (" B ") contributions to the two-loop τ-lepton correction to the differential cross section of Bhabha scattering at $\sqrt{s}=1 \mathrm{GeV}$.

Numerical Analysis

$$
\begin{array}{|ll}
\hline \sqrt{s}=500 \mathrm{GeV} \quad \text { Including QCD Corrections } \\
\hline
\end{array}
$$

θ
QED and QCD self-energy (" S "), vertex (" V "), reducible plus one-loop times one-loop (" R ") and box (" B ") contribution to the two-loop top-quark corrections to the differential cross section of Bhabha scattering at $\sqrt{s}=$ 500 GeV .

Summary and Outlook

- Bhabha scattering is among the "easiest" precesses to be studied in perturbation theory (it is basically "only" QED). This is the reason why its CS is known at the level of NNLO quantum corrections.
- In the past years, several groups contributed to the calculation of the CS. The state of the art includes
- The complete NLO in the full Electroweak Standard Model
- The full set of NNLO QED corrections ($\mathcal{O}\left(\alpha^{4}\right)$ and $\mathcal{O}\left(\alpha^{3} \alpha_{S}\right)$) and hadronic effects for the process $e^{+} e^{-} \rightarrow e^{+} e^{-}$
- These corrections have been included already in several Monte Carlos that provide, at the moment, a very good precision. In the case of LABS at DA Φ NE energies the CS is known at the level of better than 0.1%. Crucial is the showering.
- In order to complete the knowledge of the Bhabha scattering CS at the level of NNLO perturbative corrections (mostly for esthetic reasons), some pieces are still missing:
- the soft-pair production contribution is known at the logarithmic level
- the process $e^{+} e^{-} \rightarrow e^{+} e^{-}+\gamma$ (hard photon) enters in the MCs at the LO
- the two-loop electroweak logarithmic corrections in four-fermion processes are studied (for instance for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$), but not included yet in the analysis of the Bhabha scattering (in the TeV region they range below the \%).

[^0]: Arbuzov-Fadin-Kuraev-Lipatov-
 -Merenkov-Trentadue '95-'97
 Glover-Tausk-van der Bij '01
 Penin 05
 (B.-Ferroglia '05)

[^1]: Two-loop corrections to the Bhabha scattering differential cross section at $\theta=60^{\circ}$ due to a closed loop of muon. The solid line represents the exact result. The dashed and dotted lines represent the results of the large-mass expansion and small-mass expansion, respectively.

