MC Tools used and needed in the KLOE small angle analysis for $|F_{\pi}|^2$

S. Müller (KLOE ππγ group)

WG Meeting in Frascati, 11.4.2008

Federico Nguyen, PHIPSI08 conference:

Error table and results

Background	M ² dep (0.1-0.4%)
M _{trk} cuts	0.2%
Particle ID	0.3%
Tracking	0.3%
Trigger	0.1%
Acceptance	M ² dep (0.1%)
Unfolding	0.2%
L3 Trigger	0.1%
Luminosity $(0.1_{th} \oplus 0.3_{exp})$ %	0.3%

experimental fractional error on $a_{\mu} = 0.7\%$

Radiator H	0.5%

total fractional error on $a_{\mu} = 0.9\%$

$$\sigma_{\pi\pi} = \frac{\pi \alpha^2 \beta_{\pi}^3}{3s} \left| \mathbf{F}_{\pi} \right|^2$$

 F_{π} resolution effects unfolded

Selection of $\pi\pi\gamma$ events at small angle

a) 2 tracks with 50° < θ_{track} < 130°

b) small angle
$$\gamma (\theta_{\Sigma} \equiv \theta_{\pi\pi} < 15^{\circ})$$

kinematics: $\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$

Final State radiation:

The cross section for $e^+e^- \rightarrow \pi^+\pi^$ has to be inclusive with respect to final state radiation events in order to evaluate a_{μ} . We consider two kinds of FSR contributions:

LO-FSR: No initial state radiation, e⁺ and e⁻ collide at the energy $M_{\phi}=1.02 \text{ GeV}$ This is clearly the dominant part, and it enters our spectrum since $M_{\pi\pi}^2 < M_{\gamma*}^2$

NLO-FSR: Simultaneous presence of one photon from initial state radiation and one photon from final state radiation

The cut on $\theta_{\Sigma} < 15^{\circ}$ reduces very much the relative contribution from FSR with respect to ISR.

The correction for θ_{Σ} at the end of the analysis chain "adds" back the most part of the FSR

"Unshifting" Go from $M^2_{+-} \rightarrow M^2_{\gamma*}$

FSR photon present: $M^2_{\gamma*} = M^2_{\pi\pi\gamma_{(FSR)}}$

"Unshifting" Go from $M^2_{+} \rightarrow M^2_{\nu*}$ With log. Z-scale: The presence of γ_{FSR} results in a shift of the FSR lo measured quantity $M^2_{\pi\pi}$ towards lower $M^2_{\gamma*}$ [GeV²] values: $M_{\pi\pi}^2 < M_{\nu*}^2$ 0.8 Use special version of PHOKHARA which 0.6 MonteCarlo allows to determine whether photon comes from initial or final state \rightarrow build matrix which relates $M^2_{\pi\pi}$ to $M^2_{\nu*}$. 0.4 "PHOKHARA Omega" 0.2 $M^2_{\pi\pi}$ [GeV²] $M_{\gamma*}^2 = M_{\pi\pi}^2$ ISR only: 0.8 0.2 0.4 0.6Marry² VS Marr²

FSR photon present: $M^{2}_{\gamma*} = M^{2}_{\pi\pi\gamma_{(FSR)}}$

Certainly not a big effect, especially if done within $\theta_{\Sigma} < 15^{\circ}$

"Unshifting"

Certainly not a big effect, especially if done within $\theta_{\Sigma} < 15^{\circ}$

θ_{Σ} correction (Acceptance)

This correction now contains the biggest part of the FSR contribution to the spectrum.

What is the effect of a second hard photon from FSR

to this correction??

This process is not (yet?) included in PHOKHARA, and it might affect the contribution of FSR in our spectrum.

The radiator function:

is obtained from the PHOKHARA MC using

$$H(s_{\pi}) = \frac{3s_{\pi}}{\pi \alpha^2 \beta_{\pi}^3} \cdot s_{\phi} \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} \left(|F_{\pi}|^2 = 1, s_{\phi} \right)$$

with $\frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} \left(|F_{\pi}|^2 = 1, s_{\phi} \right)$ obtained from PHOKHARA

S.Jadach: KKMC

Discrepancy at high Q^2 reflects lack of exponentiation in PHOKHARA

0.5% error translates directly to a_μ^{ππ}
now biggest syst. Error from theory
validity above
0.9 GeV²??

The radiator function:

Checks on dependence on \sqrt{s} :

Difference between H evaluated at 1.0192 GeV² and 1.0198 GeV² used to estimate contribution to syst. error.

Update in the Bhabha cross section: luminosity

KLOE measures L with Bhabha scattering

 $55^{\circ} < \theta < 125^{\circ}$ icollinearity $< 9^{\circ}$ $p \ge 400 \text{ MeV}$

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) **Eur.Phys.J.C47:589-596,2006**

generator used for σ_{eff} BABAYAGA (Pavia group):

C. M.C. Calame et al., NPB758 (2006) 22 see C.M.C. Calame's talk

new version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1%

Systematics on Luminosity		
Theory	0.1 %	
Experiment	0.3 %	
TOTAL 0.1 % th ⊕ 0.3% exp = 0.3%		

Vacuum Polarisation:

We use the routines provided by F. Jegerlehner (http://www-com.physik.hu-berlin.de/~fjeger/)

- needed to undress cross section for the dispersion integral
- comparison with Novosibirsk VP?

We estimated the contribution of $e^+e^- \rightarrow$ $e^+e^-\pi^+\pi^-$ using the EKHARA generator (Czyz et al.), using reconstructed tracks from $\phi \rightarrow \eta \gamma \rightarrow (ee\pi\pi)\gamma$ to estimate the efficiency to select these kinds of events.

e

0.014 $< \theta_{-\pm} < 130$ 0.012 $\frac{d\sigma}{dQ^2}$) pair / $(\frac{d\sigma}{dQ^2})_{ph}$ 0r > 160.01 M_{tr} cut 0.008 $\sqrt{s} = 1.02 \text{ GeV}$ 0.006 0.004 0.002 0 0.3 0.9 0.4 0.5 0.6 0.7 0.8

The rel. contribution estimated in this way has been added to the syst. Error of the measurement

But not all of the graphs show are background - graphs a) and b) are actually some kind of signal...

Detector simulation effect on M_{Trk}

After the detector simulation, reconstructed MonteCarlo output needs to be tuned to reproduce data distributions. Effect of different "tuning"-methods on background eval., MC eff., etc. contributes to systematic error.

Conclusions:

• The development of both the PHOKHARA and the BABAYAGA Monte Carlo-Codes was very important to our analysis (and without these tools, we would have never reached the precision we have)

• The continuous feedback between theorists and experimentalists was crucial

• Even if the road gets harder (orders get higher...) this fruitful collaboration should be continued

• I think this Working Group is the perfect place for this enterprise