Study of the e⁺e⁻ $\rightarrow \pi^+\pi^-\psi(2S)$ reaction at $\sqrt{s} > 4.6$ GeV and search for the charged $Z_c(4430)$ exotic state

Marco Scodeggio

mscodegg@fe.infn.it

Dipartimento di Fisica e Scienze della Terra **Weekly Charmonium Meeting** 21st December 2022

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ \rightarrow [$\pi^{+}\pi^{-}/f_{0}(980)$] $\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^{\pm}Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

Motivation

In Refs. [9, 10], the $Z_c(3900)^{\pm}$ state is seen both in $\pi\psi(2S)$ and $\pi J/\psi$, and in relation with the Y(4260) resonance

Ref. [10] finds R = $\sigma(\pi^{\pm}Z_{c}(3900)^{\mp} \rightarrow \pi^{+}\pi^{-}J/\psi)/\sigma(\pi^{+}\pi^{-}J/\psi) \sim 22\%$, neglecting the the J/ ψ to ψ (2S) PHSP change, ~100 events are expected around Y (4660)

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ \rightarrow [$\pi^{+}\pi^{-}/f_{0}(980)$] $\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^{\pm}Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

How

The study will make use of the ~5 fb⁻¹ data @√s > 4.6 GeV

No Z_c(4430) **signal** was observed in the **mono-energetic datasets**^[11], so the main idea is to merge all the data $@\sqrt{s} > 4.6 \text{ GeV}$ to use the whole statistics

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001 ^[11] Phys. Rev. D **104**, 052012

Weekly Charmonium - December 2022

DEC Cards

Z_cResonant

noPhotos $Z_{c}(4430)$ Particle vpho 4.680 0 $M_{Zc} = 4478^{+15}_{-18} \text{ MeV}$ Decay vpho $\sigma_{Zc} = 181 \pm 31 \text{ MeV}$ 0.5000 dummy10_1 pi- PHSP; 0.5000 anti-dummy10_1 pi+ PHSP; Enddecay Decay dummy10_1 1.0000 pi+ psi(2S) PHSP; Enddecay Decay anti-dummy10_1 1.0000 pi- psi(2S) PHSP; Enddecay **Signal MC samples** Decay psi(2S) **300k events** 1.0000 J/psi pi+ pi- JPIPI; Enddecay Decay J/psi 0.5000 e+ e- PHOTOS VLL; 0.5000 mu+ mu- PHOTOS VLL; Enddecay End

BOSS Release 7.0.6

non-Resonant

Particle vpho 4.6812 0.0

Decay vpho 1.0000 ConExc -2 100443 211 -211; Enddecay

```
Decay vhdr
1.0000 psi(2S) pi+ pi- VVPIPI;
Enddecay
```

```
Decay psi(2S)
1.000 J/psi pi+ pi- JPIPI;
Enddecay
```

```
Decay J/psi
0.5000 e+ e- PHOTOS VLL;
0.5000 mu+ mu- PHOTOS VLL;
Enddecay
```

```
End
```


Signal MC Studies Event Selection

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies **Charged Particles Momentum Comparison**

S(Sig_{MC} Z_c)/B(Inc_{MC}) optimisation $\forall \sqrt{s}$ and using only MC datasets

√s	p _{ch} [GeV/c]
4.612	0.72
4.626	0.73
4.640	0.74
4.660	0.75
4.680	0.77
4.700	0.78

MC Studies

Charged Particles Momentum Optimisation

Signal MC Studies Event Selection

Topology dependent KALMAN Fits

6C Kalman fit

1C on the $M_{J/\psi}$ 1C on the $M_{\psi(2S)}$ 4C on the p_{Tot} = (0.051, 0, 0, $M_{\sqrt{s}}$)

The $\pi\pi$ couples are selected via the best χ^2

$2\ell 3\pi$

6C Kalman fit

1C on the $M_{J/\psi}$ 1C on the $M_{\psi(2S)}$ 4C on the p_{Tot} = (0.051, 0, 0, $M_{\sqrt{s}}$)

 π_{Miss} either from prompt production or from $\psi(2S)$ decay

 $\pi\pi$ and $\pi\pi_{Miss}$ couples are selected by minimising $M^{Reco}_{\psi(2S)}$ - $M^{PDG}_{\psi(2S)}$

Signal MC Studies Event Selection

Topology dependent KALMAN Fits

6C Kalman fit

1C on the $M_{J/\psi}$ 1C on the $M_{\psi(2S)}$ 4C on the p_{Tot} = (0.051, 0, 0, $M_{\sqrt{s}}$)

The $\pi\pi$ couples are selected via the best χ^2

 $\pi\pi$ and $\pi\pi_{Miss}$ couples are selected by minimising $M^{Reco}_{\psi(2S)}$ - $M^{PDG}_{\psi(2S)}$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

MCStudies Just a bit more... $M_{J/\psi}$ Signal Windows

Signal MC sample 300k events

Selection on

 $M(\psi(n))$ both for $2\ell 4\pi$ and $2\ell 3\pi$ $M_{Miss}(\pi)$ for $2\ell 3\pi$

Given the width (σ) of the distribution:

ee channel: $-5\sigma < M < +3\sigma$ $\mu\mu$ channel: $-3(5)\sigma < M < +3\sigma$

MCStudies Just a bit more... $M_{\psi(2S)}$ Signal Windows

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

Selection on

 $M(\psi(n))$ both for $2\ell 4\pi$ and $2\ell 3\pi$ $M_{Miss}(\pi)$ for $2\ell 3\pi$

Given the width (σ) of the distribution:

ee channel: $-5\sigma < M < +3\sigma$ $\mu\mu$ channel: $-3(5)\sigma < M < +3\sigma$

MC Studies Just a bit more... $M_{Miss}(\pi)$ for $2\ell 3\pi$ Signal Window

Given the width (σ) of the distribution, $\forall \sqrt{s}$:

$-3\sigma < M < +5\sigma$

√s	σ(Miss-π) [MeV/ <i>c</i> ²]
4.612	29
4.626	30
4.640	32
4.660	34
4.680	35
4.700	37

$M_{Miss}(\pi) = \pi \pi^+ \pi^- \ell^+ \ell^-$ recoil mass

Fit function: sum of Gaussian and Crystal Ball

MCStudies **Background Rejection**

√s 4.680 GeV	Λ _c Λ _c	ττ	Hads	μμ	ee	γγ	Tot	Eff. [%]
NTot	35047250	56093530	287911230	69508120	55673000	10815600	515048730	100,0000
NCutCh	152301	751	97416298	930	1513908	3877322	102961510	19,9906
NCutGoodCh	243	238	1034648	315	19755	442	1055641	0,2050
NCut_5trks	0	1	5585	1	0	0	5587	0,0011
NCut_6trks	0	0	8786	0	0	0	8786	0,0017
NCut_Alltrks	0	1	14371	1	0	0	14373	0,0028

- From 1.3 billion inclusive MC events, 28136 survive, with a survival rate of ~ O(10ppm)
 - Virtually only hadron component is surviving after the selection criteria

13

MCStudies

Index (i)	Decay tree	N _{Evts}	\sum_{i}^{Tot}
1	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	3389	33
2	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow e^+e^-$	2983	63
3	$e^+e^- \rightarrow \pi^+\pi^-\psi'\gamma^I, \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	2875	92
4	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow \mu^+\mu^-$	2528	11
5	$e^+e^- \rightarrow \pi^+\pi^-\psi'\gamma^I, \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	2499	14
6	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	2313	16
7	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-$	1346	17
8	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow e^+e^-$	1249	19
9	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	1037	20
10	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	907	21
11	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-$	307	21
12	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	289	21
13	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow \mu^+\mu^-$	276	21
14	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	245	22
15	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-$	240	22
16	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^-J/\psi, J/\psi ightarrow e^+e^-$	197	22
17	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	188	22
18	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	161	23
19	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	156	23
20	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	144	23
21	$ e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	132	23
22	$ e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow e^+e^-$	109	23
23	$e^+e^- ightarrow \pi^+\pi^-\psi', \psi' ightarrow \pi^+\pi^- J/\psi, J/\psi ightarrow \mu^+\mu^-$	104	23
24	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\gamma^I$	103	23
25	$e^+e^- \rightarrow \pi^+\pi^-\psi', \psi' \rightarrow \pi^+\pi^-J/\psi, J/\psi \rightarrow \mu^+\mu^-$	96	23
26	•••		

Background Rejection N_{Evts})219 8873

Out of 28136 total **IncMC events**, more of the **90%** of events are from

- •Non-resonant $\pi\pi\psi(2S)$ signal
- <u>Multi-π states</u>

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

Weekly Charmonium - December 2022

MC Studies Inclusive MC / Non-resonant MC / Data

Weekly Charmonium - December 2022

Extraction of the $\sigma(\pi\pi\psi(2S))$ Non-resonant Signal MC sample **Efficiency and Cut-flow** 300k events

CONEXC

5 iterations

Sample	Efficiency [%]	ISR*VP Corr. Factor.	d(ISR*VP) Corr. Factor.	VP Corr. Factor
4,612	49,42	0,7230	0,0001	1,05453
4,626	48,39	0,7677	0,0002	1,05444
4,640	47,97	0,7760	0,0003	1,05442
4,660	46,91	0,8142	0,0004	1,05441
4,680	45,38	0,8588	0,0005	1,05448
4,700	43,84	0,8950	0,0005	1,05453

Extraction of the $\sigma(\pi\pi\psi(2S))$ $\pi\pi\psi(2S)$ cross-section

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

For each \sqrt{s} , the $\pi\pi\psi(2S)$ contribution is extracted by fitting the M($\pi\pi J/\psi$) invariant spectrum

The signal is modelled with a sum of Gaussian and Crystal Ball functions

A polynomial function is used to describe the background

$\pi\pi\psi(2S)$ cross-section

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

In **Ref.[11]**, a **simplified PWA** performed on the data sets highlighted **f**₀(**500**) and **f**₀(**980**) contributions

The six **data samples** are **merged together** to have more statistical significance

Weekly Charmonium - December 2022

In **Ref.[11]**, a **simplified PWA** performed on the data sets highlighted **f**₀(**500**) and **f**₀(**980**) contributions

Weekly Charmonium - December 2022

In **Ref.[11]**, a **simplified PWA** performed on the data sets highlighted **f**₀(**500**) and **f**₀(**980**) contributions

Weekly Charmonium - December 2022

In **Ref.[11]**, a **simplified PWA** performed on the data sets highlighted **f**₀(500) and **f**₀(980) contributions

17

Weekly Charmonium - December 2022

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

For each \sqrt{s} , the f₀(980) contribution is extracted by fitting the m($\pi\pi$) invariant distribution

> The signal is a Flatté smeared by a Gauss(0, σ) multiplied by a threshold

The f₀(500) contribution is modelled using a MC shape

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

Product of the $f_0(980) \rightarrow \pi^+\pi^-$ branching fraction and the Born cross-section of the $e^+e^- \rightarrow f_0(980)\psi(2S)$ process

No particular structures can be recognised as the statistical uncertainty prevents any conclusion to be possible

Analysis of the $\pi \psi(2S)$ Invariant Mass Efficiency and Cut-flow Z_c Signal MC sample

√s = 4.680 GeV	Events	Efficiency [%]
NTot	300000	100
NCutCh	248899	82,97
NCutGoodCh	215894	71,96
NCut_5trks	62850	20,95
NCut_6trks	100828	33,61
NCut_Alltrks	163678	54,56

Explicative sample ($@\sqrt{s} = 4.680 \text{ GeV}$)

But overall efficiency ~ 50% $\forall \sqrt{s}$

No assumption is made on the production cross-section

Analysis of the $\pi^{\pm}\psi(2S)$ Invariant Mass Signal MC Shape Extraction $z_{c} signal MC sample$

√s [GeV]	σ [pb]	∠ [pb-1]	w
4.600	12,9	586,9	7571,01
4.612	14,4	102,5	1476,00
4.626	20	511,06	10221,20
4.640	21,7	541,37	11747,73
4.660	24	523,63	12567,12
4.680	22,1	1637,43	36187,20
4.700	18,9	526,2	9945,18

Signal function MC Signal Shape

Weekly Charmonium - December 2022

Analysis of the $\pi^{\pm}\psi(2S)$ Invariant Mass

In accordance with Ref.[11] and the Dalitz plots only f₀ contributions are considered

No evident $Z_c(4430)$ contribution is present (0 ± 4)

A Bayesian U.L. @90% will be given

On the cross-sections, the systematic uncertainties come from the selection efficiencies, the integrated luminosity, the vacuum **polarisation**, the ISR **radiative corrections**, the **tracking efficiency**, and residual sources

- *Luminosity*: 1% as from Ref. [12]
- Vacuum polarisation: 0.5% from Ref. [13]
- ISR radiative corrections: Difference in the $(1 + \delta)$ between the last two iterations
- Intermediate states branching fractions: from PDG
- Lepton separation, trigger efficiency, and FSR: 1.0% from Ref. [11]

Systematic Uncertainties

• *Tracking efficiency*: 1.0% per track^[10], 2.0% (leptons) and 3.5% (average of 2 pion-topologies)

^[12] Chin. Phys. C **46**, 11, 113003 ^[13] Sov. J. Nucl. Phys **41**, 466-472

These uncertainties are **estimated with a toy MC** simulation and then **incorporated as a Gaussian prior** in the Bayesian U.L.

An additional systematic uncertainty comes from the number and selection efficiency of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ events for the production ratio estimation

Systematic Uncertainties

The systematic sources on the Z_c(4430) U.L. come from the fitting procedure and choices, such as the **binning**, the **signal range**, and the parametrisation of the signal and background

- $R = \sigma(e^+e^- \rightarrow \pi^{\pm}Z_c(4430)^{\mp} \rightarrow \pi^{+}\pi^{-}\psi(2S))/\sigma(e^+e^- \rightarrow \pi^{+}\pi^{-}\psi(2S))$

Conclusions and Outlook

- The results found in this analysis confirm Ref.[11] and clearly highlight the f₀ contributions to the $\pi^+\pi^-\psi(2S)$ cross-section
 - A search for the Z_c(4430) exotic state is performed via the $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction, but **no evident Z_c(4430)** is found
- For the Z_c(4430) studies, a **fitting model** can be chosen **following a PWA-motivated** generated signal **MC sample**
 - An analytical $f_0(500)$ shape can be implemented

Possible **interference between the two for states** needs to be accounted for

Thanks for your attention!

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies

Goodness Cuts

Vertex: R_{xy} < 1cm & R_z < 10 cm

Polar angle: $|\cos \theta| < 0.93$

Signal MC Studies E/p Selection

Extraction of the $\sigma(\pi\pi\psi(2S))$ $\pi\pi\psi(2S)$ cross-section

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

For each \sqrt{s} , the $\pi\pi\psi(2S)$ contribution is extracted by fitting the M($\pi\pi J/\psi$) invariant spectrum

The signal is modelled with a sum of Gaussian and Crystal Ball functions

Extraction of the $\sigma(\pi\pi\psi(2S))$

 $\pi\pi\psi(2S)$ cross-section

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

Extraction of the $\sigma(\pi\pi\psi(2S))$

E_{CoM} (MeV)	$\mathcal{L} (\mathrm{pb}^{-1})$	$N_{\rm Obs}$	ϵ (%)	$(1+\delta)$	$\left \begin{array}{c} 1 \\ 1-\Pi ^2 \end{array} \right $	$\sigma_{ m Born}$
4611.86	103.83	24^{+2}_{-5}	49.42 ± 0.13	0.723	1.05453	$16.38^{+1.37}_{-3.42}$
4628.00	521.52	155^{+18}_{-18}	48.39 ± 0.13	0.768	1.05444	$20.40^{+2.38}_{-2.38}$
4640.91	552.41	193^{+27}_{-29}	47.97 ± 0.13	0.776	1.05442	$23.93^{+3.36}_{-3.60}$
4661.24	529.63	202^{+20}_{-20}	46.91 ± 0.13	0.814	1.05441	$25.24^{+2.51}_{-2.51}$
4681.92	1669.31	563^{+46}_{-46}	45.38 ± 0.12	0.859	1.05448	$22.04^{+1.81}_{-1.81}$
4698.82	536.45	162^{+16}_{-16}	43.84 ± 0.12	0.895	1.05453	$19.61^{+1.95}_{-1.95}$

MC Studies Efficiency

CONEXC

5 iterations

Sample	Efficiency [%]	ISR*VP Corr. Factor.	d(ISR*VP) Corr. Factor.	VP Corr. Factor
4,612	49,57	0,7281	0,0001	1,05453
4,626	48,99 0,7234 0,000		0,0002	1,05444
4,640	48,30	0,7984	0,0003	1,05442
4,660	45,76	0,8676	0,0004	1,05441
4,680	44,86	0,8531	0,0004	1,05448
4,700	44,83	0,8404	0,0005	1,05453

41

M(π⁺π⁻) (GeV/*c*²)

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - M. Scodeggio

40

20

Extraction of the $\sigma(f_0(980) \psi(2S))$

Weekly Charmonium - December 2022

Extraction of the $\sigma(f_0(980) \psi(2S))$ f₀(980) contribution

_	E_{CoM} (MeV)	$N_{\rm Obs}^{f_0(980)}$	$\epsilon^{f_0(980)}$ (%)	$(1+\delta)$	$\frac{1}{ 1-\Pi ^2}$	$\sigma imes \mathcal{B}$
-	4611.86	14 ± 5	49.57 ± 0.13	0.728	1.05453	9.46 ± 3.38
	4628.00	125 ± 22	48.99 ± 0.13	0.723	1.05444	17.25 ± 3.04
	4640.91	149 ± 21	48.30 ± 0.13	0.798	1.05442	17.83 ± 2.52
	4661.24	131 ± 15	45.76 ± 0.12	0.868	1.05441	15.74 ± 1.81
	4681.92	424 ± 32	44.86 ± 0.12	0.853	1.05448	16.91 ± 1.29
_	4698.82	115 ± 16	44.83 ± 0.12	0.840	1.05453	14.49 ± 2.02

Analysis of the $\pi^{\pm}\psi(2S)$ Invariant Mass Resolution Studies

<i>c</i> ²				Resolution [MeV/c ²]
		√s = 4.612 GeV	4,612	
		√s = 4.626 GeV	4,626	2.33
		√s = 4.640 GeV	4,640	0.77
		√s = 4.660 GeV	4,660	0.69
		√s = 4.680 GeV	4,680	0.67
4.495 4 (2S)) (GeV/ <i>c</i> ²)] .5)	√s = 4.700 GeV	4,700	0.74

