

Study of the $K^+ \rightarrow \ell^+ \nu_{\ell} e^+ e^-$ decay

with the NA62 Experiment

Ilaria Rosa Scuola Superiore Meridionale, *Naples*

The $K_{\ell 2ee}$ decay in the ChPT

• In the ChPT program radiative kaon decays can serve both as an important test and as a source of input parameters for the theory

• The $K^+ \rightarrow \ell^+ \nu_\ell e^+ e^-$ processes are assumed to proceed via exchange of a W^+ boson $(\ell^+ \nu)$ and photon $(e^+ e^-)$

 \bullet The theoretical values of the Br for the ${\cal K}_{\mu 2ee}$ process are well predicted in the ChPT framework

Cuts on $m_{e^+e^-}$	Tree level	Higher order correction by ChPT	
Full phase space	2.49×10^{-5}	2.49×10^{-5}	
$\sqrt{0.001} \cdot M_{K^+}$	4.12×10^{-6}	4.20×10^{-6}	
20 <i>MeV</i> /c ²	3.15×10^{-6}	$3.23 imes10^{-6}$	
140 <i>MeV/c</i> ²	$4.98 imes10^{-6}$	$8.51 imes10^{-8}$	

- The earlier experimental measurements of the $K_{\mu 2ee}$ Br have been performed by the Experiment 865 at the Brookhaven National Laboratory in 2002
- 2679 $K^+ \rightarrow \mu^+ \nu_{\nu} e^+ e^-$ events collected including a 19% background contamination

$$Br(K_{\mu 2ee}|m_{e^+e^-} > 140 \text{ MeV}/c^2) = (793 \pm 18|_{stat} \pm 28|_{syst} \pm 0.5|_{model}) \cdot 10^{-10}$$

$$Br(K_{\mu 2ee}|m_{e^+e^-} > 145 \text{ MeV}/c^2) = (706 \pm 16|_{stat} \pm 26|_{syst} \pm 0.4|_{model}) \cdot 10^{-10}$$

$$Br(K_{\mu 2ee}|m_{e^+e^-} > 150 \text{ MeV}/c^2) = (635 \pm 15|_{stat} \pm 23|_{sist} \pm 0.3|_{model}) \cdot 10^{-10}$$

The NA62 setup

Experimental strategy

$$Br_{\mathcal{K}_{\mu2ee}} = \frac{N_{sign}}{N_{norm}} \frac{Acc_{norm}}{Acc_{sign}} \frac{\mathcal{E}_{norm}^{Trigger}}{\mathcal{E}_{sign}^{Trigger}} Br_{norm}$$

- Selection of a $K_{\mu 2ee}$ event
- Acceptance of the signal selection from Monte Carlo
- Trigger efficiency
- Background estimation

 $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ normalization channel

 $Br_{K_{3\pi}} = (5.583 \pm 0.024)\%$ \$\scrime\$ low external error \$\scrime\$ high branching ratio\$

- \diamond only one 3-track vertex ($T_{vertex}(CHOD) T_{trigger} < 6 \text{ ns}$)
- \diamond tracks in geometric acceptance with the STRAW, RICH, NewCHOD, CHOD, LKr and MUV3
- \diamond timing between the track and the trigger time
- \diamond minimum separation between tracks: 15 mm in the STRAW and 200 mm in the LKr \diamond $\chi^2_{\rm vertex}$ < 30

- $\diamond~105~m$ < Z_{vertex} <~180~m
- $\diamond~8~\text{GeV/c}$ <~p < 50 GeV/c
- $\diamond \, P_{\rm 3T} > 85 \ {\rm GeV/c}$
- \diamond conservation of the charge at the vertex
- \diamond good matching between the downstream tracks and upstream reconstructed vertex
- \diamond photons veto in the LAV stations and in the LKr

PID

- **RICH** e^+ positron as most likely hypotesis μ^+ muon as most likely hypotesis
- LKr $E/p \text{ for } \mu^+ < 0.2$ $E/p \text{ for } e^+ > 0.9$ $E/p \text{ for } e^- > 0.9$ $E_{LKr} > 23 \text{ GeV}$

MUV3 μ^+ in time association (± 5 ns)

Kinematic cuts

$$\begin{split} \mathsf{P}_{t} \; (\mathsf{MeV/c}) &> 30 \\ \mathsf{M}^{2}_{\mathsf{miss}}(\mathsf{K}_{2\pi}) \; (\mathsf{GeV}^{2}/\mathsf{c}^{4}) < 0.008 \; \mathsf{or} > 0.026 \\ \mathsf{M}^{2}_{\mathsf{miss}}(\mathsf{K}_{e4})(\mathsf{GeV}^{2}/\mathsf{c}^{4}) < -0.003 \\ \mathcal{M}_{\mu\nu} \; (\mathsf{MeV/c}) > 150 \\ - \; 0.03 < \mathsf{M}^{2}_{\mathsf{miss}}(\mathsf{K}_{\mu 2\mathsf{ee}}) \; (\mathsf{GeV}^{2}/\mathsf{c}^{4}) < 0.03 \\ \mathsf{m}_{\mathsf{e}^{+}\mathsf{e}^{-}} \; (\mathsf{MeV/c}) > 140, \; 145, \; 150 \end{split}$$

$\pi^+ \rightarrow \mu^+ \nu_\mu$ contamination

11 Study of $K^+ \rightarrow \ell^+ \nu_\ell e^+ e^-$ decay

12/1/2023

Normalization selection criteria

Normalization acceptance \rightarrow (5.79 \pm 0.01)%

M_{miss}^2 vs $m_{e^+e^-}$ from 2017-2018 data

- \diamond The results presented in this talk show the possibility to investigate the $K_{\mu 2ee}$ decay in a competitive way w.r.t. the previous measurements
- ♦ Statistic uncertainty can be reduced including the 2021-ongoing data
- More investigations needed on the trigger efficiency, comparison between MC and Data and LKr20 systematic contribution
- \diamond Relaxation of $m_{e^+e^-}$ cut in order to explore a different portion of phase space w.r.t. the E865 measurements
- \diamond Common features between K_{e2ee} and $K_{\mu 2ee}$
- \diamond Form factors estimation

Backup slides

$m_{e^+e^-}$ from 2017-2018 data

 $M_{\mu\nu}$ from $K_{\pi ee}$ MC

Signal acceptance for $m_{e^+e^-} > 140 \text{ MeV} \longrightarrow 2.2 \%$ Signal acceptance for $m_{e^+e^-} > 145 \text{ MeV} \longrightarrow 2.3 \%$ Signal acceptance for $m_{e^+e^-} > 150 \text{ MeV} \longrightarrow 2.3 \%$

Selected events for $m_{e^+e^-} > 140 \text{ MeV} \longrightarrow 2570$ Selected events for $m_{e^+e^-} > 145 \text{ MeV} \longrightarrow 2377$ Selected events for $m_{e^+e^-} > 150 \text{ MeV} \longrightarrow 2202$

Channel		Background contamination
$K^+ o \mu^+ u_\mu \pi_D^0$		22±4
$K^+ ightarrow \pi^+ \pi^- e^+ \nu_e$		18±2
$K^+ \to \pi^+ e^+ e^- (m_{e^+ e^-} > 140 MeV)$		2.9±0.3
other background		< 9 (C.L. 68%)

Trigger efficiency

DataNormalization 96%
Signal Mask4/CTRL → 1213/28

Monte Carlo
Normalization L0 NewCHOD and RICH emulator L1 KTAG and
STRAW exotic
Signal NewCHOD, RICH, LKr20 emulator L1 KTAG and STRAW
exotic

Normalization from MC $\mathcal{E}_{mask5} = (90.79 \pm 0.03)\%$

 $\frac{\mathcal{E}_{mask5}}{\mathcal{E}_{mask4}} = (101.3 \pm 0.5)\%$

Signal from MC $\mathcal{E}_{mask4} = (89.7 \pm 0.5)\%$