

Dark Sector searches at the Belle II experiment

M.C. for the Belle II Napoli group

Marcello Campajola INFN Napoli – Belle II marcello.campajola@na.infn.it

Gr1 Napoli meeting. January 12, 2023

So far, no evidences for Dark Matter at direct detection experiments or TeV New Physics at LHC.

Motivations & Models

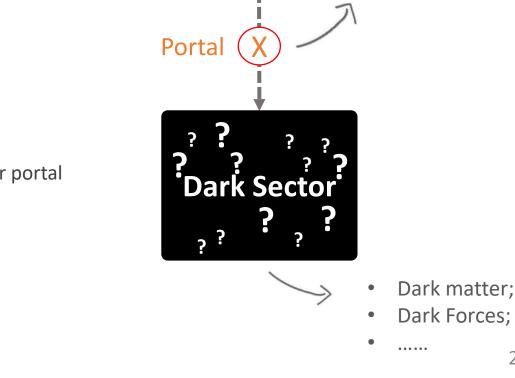
V

Maybe we were just looking in the wrong direction...

Dark Sector searches

Accessible sector of new physics could be **light** and **feebly interacting with SM**.

Dark Sector: a natural framework for physics beyond SM


- Made of particles neutral under SM gauge interactions
- Stable dark particles are good candidates for DM ٠
- New hidden symmetries and particles accessible through portals ۲
- Only a small number of possible portal interactions between DS and SM (e.g. [1]);

$$\mathcal{L}_{\text{portals}} = -\frac{\epsilon}{2} B^{\mu\nu} A'_{\mu\nu} - H^{\dagger} H (AS + \lambda S^2) - Y_N^{ij} \bar{L}_i H N_j + \cdots$$

Vector portal Higgs portal Neutrino portal + Psuedoscalar portal

Not just solving the DM puzzle. Dark Sector could explain:

- some astrophysics anomalies (positron excess, 3.5 keV line, ...)
- the (g-2), anomaly ٠
- some flavour anomalies: $R_{D(*)}$

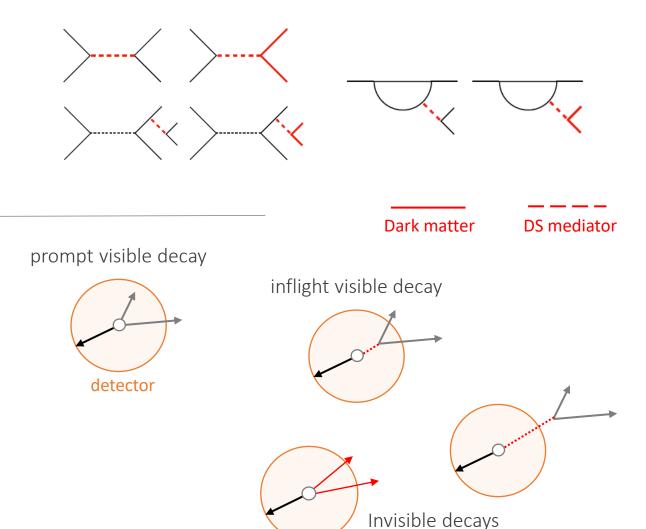
SM

Non-gravitational

2

interaction with

matter


Dark Sector searches

Strategies at colliders

Looking for DS particles production @ Belle II

Directly produced in SM particle collisions or in mesons (*D*, *B*, *Y* or other) decay

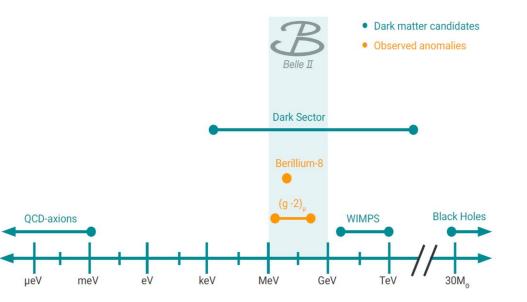
• probe mediator masses up to \sqrt{s} or up to respective meson mass

• Mixed cases

Different signatures depending on DS particles **mass** hypotheses and mediator **life-time** (decay length):

- Prompt decay to SM -> invariant mass bump
- Long lived:
 - decay-length < O(1)m -> displaced vertex
 - decay-length > O(1)m -> missing momentum
- Decay to DM particle -> missing momentum

Dark Sector searches


Strengths of Belle II

Belle II, not just a B-factory... a very good environment for dark sector searches

- Very high luminosity
- Well defined initial state, closed kinematics
- Clean environment and low background
- Hermetic detector
- Excellent PID capability
- Low multiplicity triggers (non trivial)

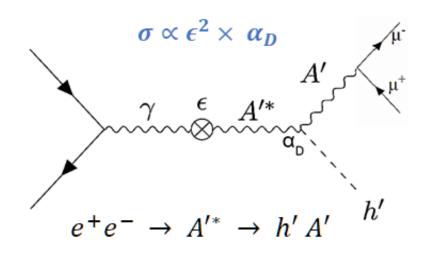
efficient reconstruction of neutrals, recoiling system and **missing energy final state;**

able to access the mass range naturally favored by light DS and very small couplings

Dark Higgsstrahlung search

Introduction

Hypothetical new massive gauge boson A', called **dark photon**, coupling to the SM photons through kinetic mixing with strength ε [1,2].

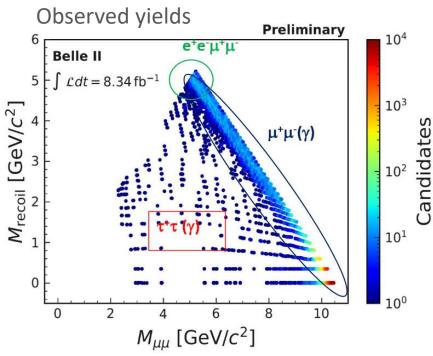

A' mass can be generated via a spontaneous symmetry breaking mechanism, by adding a **dark Higgs boson** *h*' to the theory [3].

Both particles (A' h') can be produced via the dark Higgsstrahlung process.

Different signature depending on the masses relationship:

- $m_{h'} > m_{A'}$:
 - $h' \rightarrow A'A' \rightarrow 4l, 4had, 2l + 2had.$
 - Investigated by <u>BaBar (2012)</u> and <u>Belle (2015)</u>
- $m_{h'} < m_{A'}$:
 - h' is long-lived -> thus invisible.
 - Constrained by <u>KLOE (2015)</u> below 1 GeV/c2
 - Brand new results by Belle II

P. Fayet, <u>Phys. Lett. B 95, 285 (1980),</u>
 P. Fayet, <u>Nucl. Phys. B 187, 184 (1981)</u>
 B. Batell, et al., <u>Phys. Rev. D 79, 115008 (2009)</u>

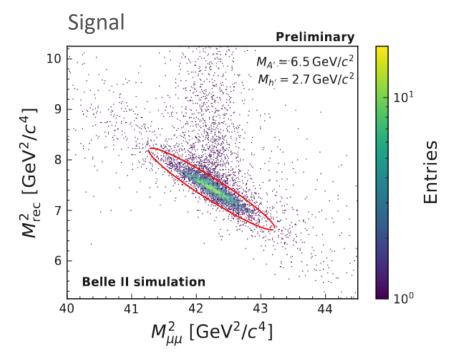

Experimental signature: Two opposite sign muons + missing energy a peak in M²_{uu} vs M²_{recoil}

Dark Higgsstrahlung search

Analysis strategy

Analysis selection in short:

- Two opposite sign muons, $p_T^{\mu\mu} > 0.1~{
 m GeV/c}$
- Recoil points to barrel calorimeter
- Low activity in the calorimeter
- Final suppression exploiting helicity angle
 - $C_{\eta} = |\cos(\vartheta_{helicity})|$ flat for signal, peak at 1 for BKG



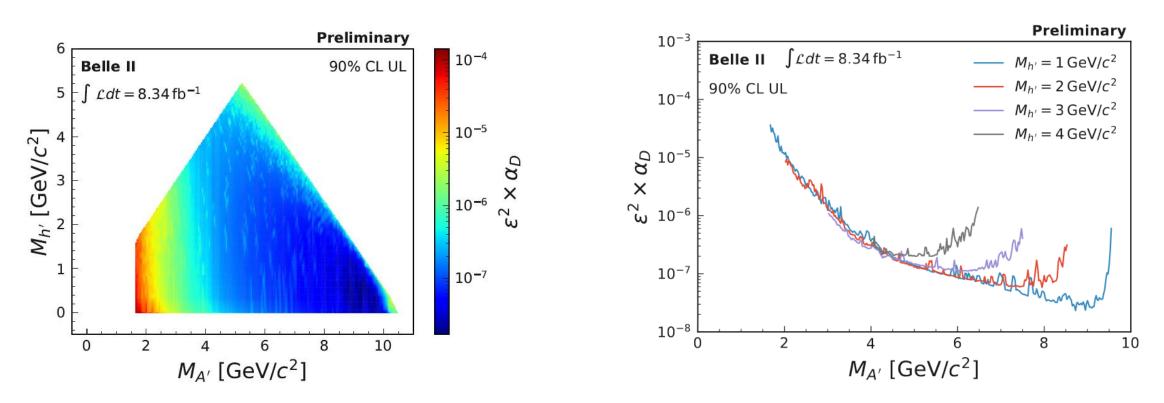
Backgrounds:

SM processes with 2 particles identified as muons and missing momentum. Mainly due to $\mu\mu(\gamma)$, $\tau\tau$, $ee\mu\mu$

Search strategy: masses scan and count in search windows

• ~9000 2D elliptical windows;

Gr1 Napoli meeting – Dark Sector searches at Belle II (M. Campajola)


Dark Higgsstrahlung search

Results

Search performed with 2019 data -> 8.34 fb⁻¹ arXiv:2207.00509 (Accepted by PRL)

No significant excess over the expected background. Set 90% CL exclusion limits on cross section and coupling:

- World's first for $1.65 < M_{A'} < 10.51 \text{ GeV}$ and $M_{h'} < M_{A'}$
- UL on $\epsilon^2 \times \alpha_D$ down to 1.7×10^{-8} in the most sensitive regions

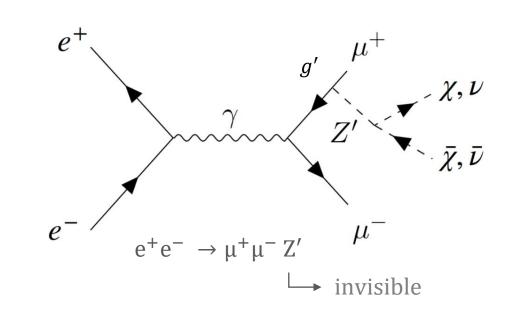
Gr1 Napoli meeting – Dark Sector searches at Belle II (M. Campajola)

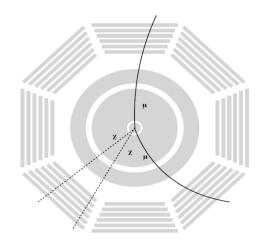
Search for a Z' invisible decay

Introduction

Hypothetical massive gauge boson Z' coupling only to the 2nd and 3rd generation of leptons in the framework of $L_{\mu} - L_{\tau}$ model [1,2].

Seek to explain:


- $(g-2)_{\mu}$ anomaly;
- anomalies in B decays to leptons;
- the Dark Matter puzzle;


State of the art:

- Existing limits from <u>BaBar</u>, <u>CMS</u> and <u>Belle</u> for a Z' visible decay into a couple of muons and from <u>NA64-e</u> for a Z' invisibly decaying;
- Brand new searches Belle II for a Z' invisible decay;

Experimental signature:

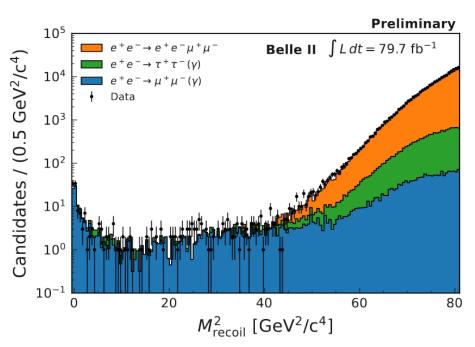
Two opposite sign muons + missing energy a peak in the recoil mass distribution against two muons

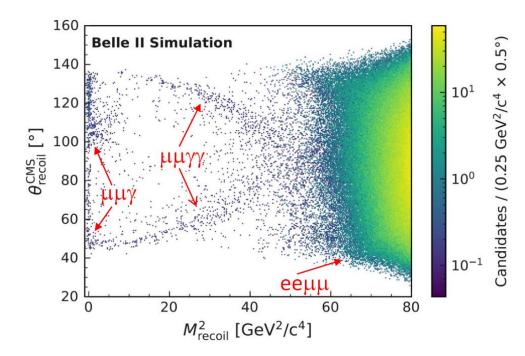
[1] Shuve et al., <u>Phys. Rev. D 89 (2014)</u>
[2] Altmannshofer et al., <u>JHEP 106 (2016)</u>

Search for a Z' invisible decay

Analysis strategy

Analysis selection in short:


- Two opposite sign muon tracks; $p_T^{\mu\mu} > 0.1$ GeV/c
- Recoil points to barrel calorimeter ($M_{recoil} < 2 \text{ GeV}$)
- Low activity in the calorimeter and γ veto
- Neural-Network exploiting FSR nature of Z' production
 >> <u>Eur.Phys.J.C 82 (2022) 2, 121</u> (M. Campajola *et al.*)

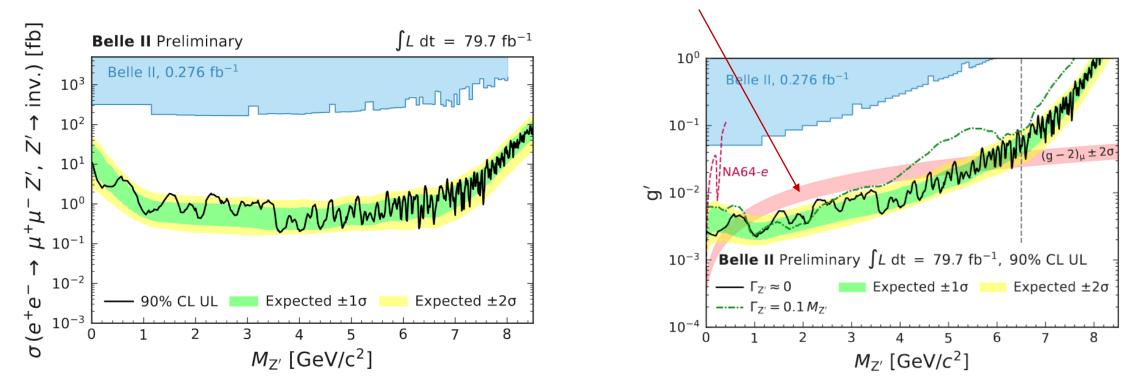

Backgrounds:

SM processes with 2 particles identified as muons and missing momentum. Mainly due to $\mu\mu(\gamma)$, $\tau\tau$, $ee\mu\mu$

Search strategy: mass scan with a fitting technique

• Fitting over the 2d distribution θ_{recoil} vs. M_{recoil}^2

Gr1 Napoli meeting – Dark Sector searches at Belle II (M. Campajola)


Search for a Z' invisible decay

Results

First measurement with 2018 dataset: ~279 pb⁻¹ <u>PRL 124, 141801</u> New analysis with 2019-20 dataset: ~ 79.7 fb⁻¹ <u>arXiv: 2212.03066</u> (Submitted to PRL)

No significant excess over the expected background. Set 90% CL exclusion limits on cross section and coupling:

- World-leading UL for a fully invisible Z' (100% BR to invisible) above 11 MeV/c²
- First excluding a fully invisible Z' boson as an explanation of the $(g-2)_{\mu}$ anomaly for 0.8 < $M_{Z'}$ < 5 GeV/ c^2

Gr1 Napoli meeting – Dark Sector searches at Belle II (M. Campajola)

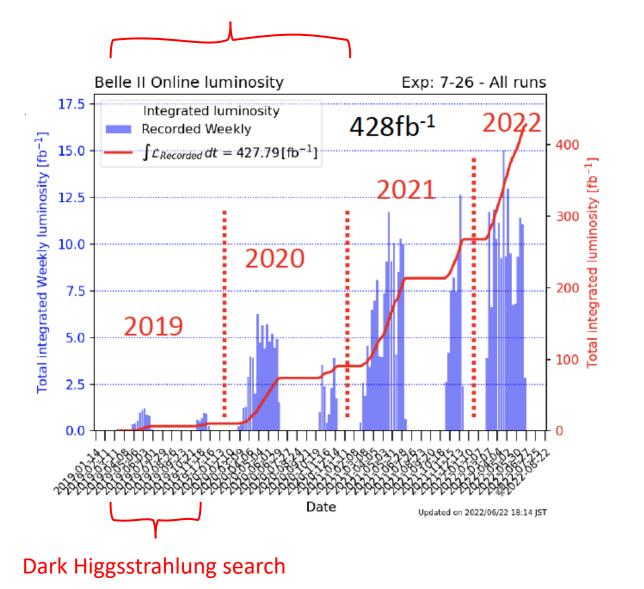
Conclusions

Belle II is exploring Dark Sectors at the luminosity frontier

First (world-leading) results with the early dataset:

- Z' -> invisible:
 - 2018 data PRL 124, 141801 (NA, RM3, PI, DESY, HEPHY)
 - Update: <u>arXiv: 2212.03066</u> (Submitted to PRL) (NA, RM3, HEPHY, CPPM)
- Dark Higgsstrahlung <u>arXiv:2207.00509</u> (Accepted by PRL) (NA, RM3, HEPHY)

and many other searches performed/ongoing:

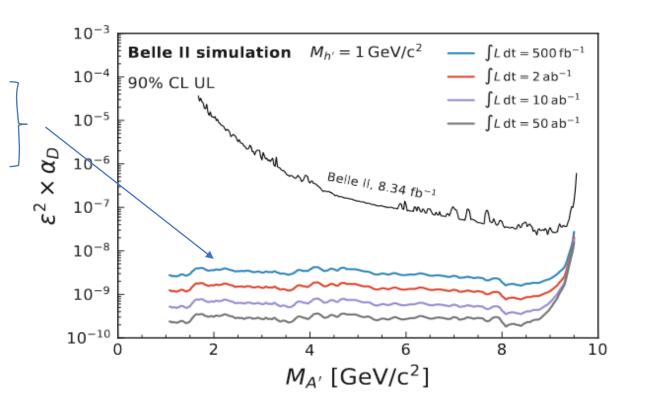

- ALPs -> γγ Phys Rev Lett **125**, 161806
- visible and invisible dark photon;
- visible Z';
- long-lived dark particles;
- Inelastic dark matter;

Stay tuned...

Belle II is expected to lead in the MeV-GeV mass range in the coming years

What's next?

Invisible Z' search

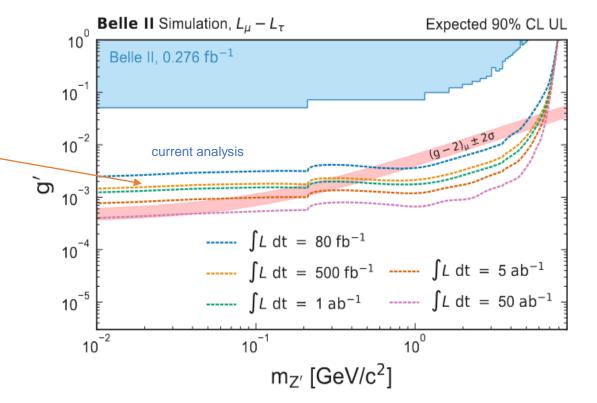

What's next?

Dark Higgsstrahlung search

~450 fb⁻¹

Large room for improvements the full pre LS1 dataset:

- x50 in the dataset
- more inclusive triggers (fy30, cdcklm#) allow probing low mA' region
- $\mu\mu\gamma$ background suppression using KLM as veto for undetected gammas
- extending results to models with h' SM h mixing



What's next?

Invisible Z'

^{~450 fb⁻¹} Still room for improving results with the full pre LS1 dataset:

- x5 in the dataset }
- more inclusive trigger (cdcklm#) improve sensitivity at high m_{Z'}
- μμγ background suppression using KLM as veto for undetected gammas especially in the low-middle mass region;

