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WHAT IS ANOMALY DETECTION?

»> Anomalies: abnormal objects significantly different from other members of a sample.
©  Anomaly Detection refers to ML techniques used to spot these outliers.

» Particle physics scenario — Identification of model-independent of detector data inconsistent with the

expected .
o Related works: PRL 125 131801, arXiv:2105.09274, ATLAS-CONF-2022-045.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.131801
https://arxiv.org/abs/2105.09274
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2022-045/

WHAT ARE GRAPHS?

»  Structured objects composed of entities used to describe and analyze relations and interactions (edges) between
such entities (nodes).
©  Nodes and edges typically contain features specific to each element and each pair.
o Many types of graphs based on the relations: directed, heterogeneous, bipartite, weighted ecc.

pubWhere hasTtile

Title

Conference

‘\’b
& & & & & AR Author Year

Vo Vi V2 V3 V4

\ Undirected graph / \ Bipartite graph / \ Directed graph /

X
ne
QD

©
(0]
=

2




COMBINE: GRAPH ANOMALY DETECTION IN HEP
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[ Application of machine learning to build an anomaly detection algorithm on graphs ]

» Graph Anomaly Detection (GAD) applied to many research
fields (social networks, e-commerce, medicine, and

telecommunications) where graph representation is more nen-gnum
natural than classic data sequencing. m,g,, o h
. D i
o Many successful results obtained. etection

o Yet to be applied in High Energy Physics analysis.

Mllklous Lur Group

Abnormal Relation

Our strategy: represent jets in heavy diboson resonance searches

with hadronic final states as graphs using LHC run-Ill data



https://arxiv.org/abs/2106.07178
https://ieeexplore.ieee.org/document/4781201
https://ojs.aaai.org/index.php/AAAI/article/view/10726
https://arxiv.org/pdf/1802.00543.pdf
https://ieeexplore.ieee.org/document/5767885

Jure Leskovec et al., CS224W: Machine Learning with Graphs Stanford Course, Fall 2021

HOW? GRAPH NEURAL NETWORKS!

> Graph Neural Networks (GNNs) are ML architectures built specifically to make predictions on graphs, exploiting
their relational nature.
o Based on learnt vector representation (embedding) of each node of the input graphs.

» The embeddings are updated at each layer by aggregating the information passed between the target node and the
nodes from its closest neighbourhood — message passing

|
Node level :
Graph-level <— o ComnHiumity i ‘% mmof
icti = TARGET NODE
prediction, : i1 (subgraph) . ______ .\
Sraph ; i level | ‘ ®
generation D N\ : eve i >
: : i GNN Layer2 v
: : Edge-level @ % e o ésE;
................................. L X X
Several task levels, carried out by processing the final INPUT GRAPH Each layer of GNN extends the neighbour range

node embeddings in certain ways.
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https://arxiv.org/pdf/1810.00826.pdf
http://web.stanford.edu/class/cs224w/

Jure Leskovec et al., CS224W: Machine Learning with Graphs Stanford Course, Fall 2021

CNNYVS GNN

» CNNs are special GNNs with fixed neighbour size and nodes ordering of the input graphs.
o Heterogeneous objects can be treated as nodes
o  Graphs typically have arbitrary number of connections between nodes, as opposed to images.
o Possibility to assign any kind of information to nodes and edges (structural and features).

. . O]
> GNN message passing formulation: h{*? = a(w, ZuEN(v)m%n +Bh), Vi€ (0,...,L - 1)

> CNN convolution formulation: h{*? = a(ZueN(v)U{v}W{‘hg)),Vl €{0,..,.L -1} \ X
o Rewritten as: h{*" = 0 (QueNw) wh® + B, vie (o, ..., L — 1} [Po, Z pi]

dabp)
B and W: weight parameters
N(v): set of neighbours of node v
o: non-linear activation function
hl(f): embedding at layer | of node u
Imaage Image CN.N Output Graph
g weights
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http://web.stanford.edu/class/cs224w/

ON-GOING WORK

» Development of a GAD algorithm for the discovery of diboson resonances decaying in fully hadronic final states.

» Collaborative effort between the Napoli and Roma | ATLAS groups. Who Where Role
o Active since after summer, we are in R&D phase.
o  Objective: obtain results on the full run-Ill dataset (2-3 years). Valerio Roma 1 Faculty
Ippolito
Stefano
Giagu Roma 1 Faculty
Graziella PhD
Roma 1 (expected
Russo 2025)
Meet the full team
Francesco .
Conventi Napoli Faculty
Elvira Rossi Napoli Faculty
Francesco .
Cirotto Napoli Post-doc
Antonio . Post-master
Napoli

D’Avanzo fellow




DATASET

»  Benchmark application with LHC Olympics 2020 R&D dataset.
o MC generated dataset built specifically for anomaly detection.
o  |.IM total events, IM background and 100k anomalous signal.

>  Events signature
o Background: QCD di-jet.
o : Z2 — XY — qqqq, particles reconstructed as single jets (Fatjets) with large radius R = 1.

" partide | Mass [GeV]
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https://lhco2020.github.io/homepage/

GRAPH REPRESENTATION OF JETS

» Current definition of a jet
o Entites:
U  Nodes — topoclusters contained in each jet reconstructed with anti-k; algorithm
U Edges — Created only if AR < 0.4 between two topoclusters, no self-loops
o  Features:
U Nodes — pT fraction, 1, ¢.
U Edges — I/(AR + &)

» Transfomation applied for data augmentation and model robustness reasons (arXiv:1903.02032, arXiv:2105.09274).
o Rescaling of the four momenta (mg = 0.25 GeV) — boost so that the energy is E; = | GeV — further rotation of
constituents along jet axis.
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https://arxiv.org/abs/1903.02032
https://arxiv.org/abs/2105.09274

PRELIMINARY FIRST APPROACH : CLASSIFICATION

» Graph Isomorphism Network (GIN) model used as GNN layers for message passing.

> Jet-level signal vs background classification with GNNSs.
o  Supervised optimization of cross entropy with Adam optimizer, results interpreted with predicted labels.
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PRELIMINARY SECOND APPROACH: ANOMALY DETECTION

» Graph Isomorphism Network (GIN) model used as GNN layers for message passing.

> Implementation of pre- and post-processing MLP layers.

» Jet-level anomalous

identification among background with GNNs.

o Unsupervised optimization of DeepSVDD objective with Adam optimizer, results interpreted with anomaly

score.
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https://proceedings.mlr.press/v80/ruff18a.html

HARDWARE SUPPORT

»  Tests run on hardware provided with GPUs, since the input to GNNs is given as data tensors and transformed in other
tensors by each layer.
o  Allows for parallelization of model training.

» Common online tools for ML turned out insufficient for our task (free version of AWS, Google Colab, Kaggle), also hard
to run on personal hardware not dedicated to ML.
o  Currently run on INFN 1.Bi.S.Co cluster.
o GPUs: 2x NVIDIA TeslaV100S PCle 32 GB, 5120 cores.

» GNNs are memory- and time-hungry.
o  Training takes about | hour - | day based on dataset.
o Favored GPUs with dedicated ML chip architecture, more c«
and more RAM depending on the task.
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CONCLUSION

»  Graphs neural networks combined with Anomaly Detection have shown great expressive power in many research fields, with
positive results w.r.t. standard techniques.

o  First application in heavy diboson resonance searches with hadronic final states.

»  Our work is still in a preliminary phase, future developments:
I.  Test of graph definition on benchmark models (transformers, autoencoders).
Optimization of GNN models.

2.
3. Inclusion of full detector info and event-based anomaly score.
4,

Migration to real dataset to explore run-Ill data gathered by the ATLAS detector for new searches (preferably DBL)
or rediscovery of known resonances!
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DEEP SUPPORT VECTOR DATA DESCRIPTION (DEEP SVDD)

> Deep SVDD works by minimizing an objective in order to learn and optimize the radius R of a hypersphere in the
output space F which only cointains outputs from non-anomalous data features X.

> Output space defined by the output of the considered ML architecture (NN, MLP, GNN, ecc.)

> Output from anomalies falls outside of the hypersphere and is identified by its distance from the center c.

A X

objective

N1 Y o A l 12 ; s(x) = ||¢(x; W*) — c||?
. . — — w={wl, . . wh o 2
min N ,-él IGIN(G;; W) — c||* + 5 I_El |W* ||z Anomaly Score



GRAPH ISOMORPHISM NETWORK (GIN)

> GIN formulation employs both message passing and MLPs, making it the most expressive GNN:

UEN (V)

MLP,, ((1 +€) - MLP(c® (v))) + Z MLPf(c(k)(u))> c® ) — p®

learnable parameter Embedding of node u al Iayer (k)

» This expression can be rewritten in a more general way, also allowing for edge weights to be considered in the

graph convolution. /

KD = fo ((1 + €)h! + aggregate ({efhﬂ»,j e N(}))

> Aggregate can be any permutation invariant function (Sum, Mean, Max ecc.)


http://web.stanford.edu/class/cs224w/slides/09-theory.pdf

