

L'esperimento Belle II a SuperKEKB

Mario Merola Riunione GR1 12 gennaio 2023

Babar and Belle achievements

Successful experimental program Established CP violation in B system and remarkable consistency of the CKM mechanism of the SM

INFN

- Current precision is 1-2% on $|V_{cb}|$ and 3-4% on $|V_{ub}|$
- Tension between inclusive and exclusive determinations: $\sim 3\sigma$ for both $|V_{cb}|$ and $|V_{ub}|$
- X_clv decays are a clear test of the SM LFU: NP (charged Higgs in 2HDM models or Leptoquarks) can affect the BR and |V_{cb}|

hflav.web.cern.ch

New physics or theoretical issue ?

Hot topics (2): LFV in B decays

4

Belle II

 $B \rightarrow K^{(*)} \nu \overline{\nu}$ FCNC, with BR ~ 10⁻⁶ Update coming soon !

Phys.Rev.Lett. 127 (2021) 18, 181802

6

- CPV in B decays, **UT angles** $(B \rightarrow J/\psi K^0, K^0 \pi^0 \gamma, K \pi)$
- (Semi)leptonic B decays, **UT sides** (B \rightarrow D^(*)lv, π lv, τ v, μ v)
- Rare B decays $(B \rightarrow K^{(*)}vv, X_s\gamma, X_sll, \gamma\gamma)$
- Charm physics $(D \rightarrow l\nu, mixing, CPV)$
- LFV tau decays ($\tau \rightarrow 31, 1\gamma$)
- Dark Sector, Spectroscopy

Unitarity triangle (UT)

SuperKEKB

- Asymmetric energy
 e⁺e⁻ collider
- Situated at KEK (Tsukuba, Japan), upgrade of KEKB

e/π ($\epsilon \sim 86\%$ @ <1% fake) Tracking PXD + SVD $\sigma_{\rm d_o} \sim 15 \mu {\rm m}$ CDC $\sigma_{r,d} \sim 100 \mu \text{m}, \sigma_{dE/dx} \sim 5\%$ \rightarrow reconstruction of intermediate resonances Clean environment (w.r.t. to hadron machines) allows "full interpretation" of the event \rightarrow powerful tool for physics with missing energy (many neutrinos) or fully inclusive analyses

Large sample of B, D, and t with low background

Good momentum and vertex resolution

- Well-known initial state and large acceptance
- Excellent calorimetry

Belle II

Sophisticated particle ID K/ π separation ($\varepsilon \sim 90\%$ @ 5-10% fake) Lepton identification μ/π ($\epsilon \sim 90\%$ @ 7% fake)

Unique capabilities

Exactly 2 quantum correlated B mesons at Y(4S)

No trigger bias – almost 100% for B pairs

Excellent efficiency and resolution in tracking as well as in detecting photons, K_{I} , π^{0}

 \rightarrow Dalitz plot studies

Belle II

- 85% taken at Y(4S) peak **BB pairs**
- 10% taken 60 MeV below $Y(4S) cont (qq, ll, 2\gamma)$
- 5% taken around 10.75 GeV **spectroscopy**

A long journey ...

- 1st Long shutdown (LS1) in 2022-2023 (PXD, beam pipe, TOP)
- 2nd Long shutdown (LS2) in ~2028 (QCS, RF)
- The target integrated luminosity is 50 ab⁻¹ by ~2034

/01/23

Recent Physics Publications

10

Observation of e⁺e⁻ $\rightarrow \omega_{xbJ}$ and search for $X_b \rightarrow \omega Y(1S)$ at \sqrt{s} near 10.75 GeV Submitted to PRL, <u>arXiv:2208.13189</u>

Measurement of the Ω_c^0 lifetime at Belle II PRD(L) (accepted), <u>arXiv:2208.08573</u>

Search for an invisible Z' in final states with two muons and missing energy at Belle II Submitted to PRL, <u>arXiv:2212.03066</u>

Search for lepton-flavor-violating τ decay to a lepton and invisible boson at Belle II Submitted to PRL, arXiv:2212.03634

Search for a dark photon and an invisible dark Higgs boson in $\mu+\mu-$ and missing energy final states with the Belle II experiment

PRL (accepted), <u>arXiv:2207.00509</u>

Combined analysis of Belle and Belle II data to determine the CKM angle ϕ 3 using B+ \rightarrow D0(K0Sh+h-)h+ decays JHEP 02 2022, 063 (2022)

Measurement of lepton mass squared moments in $B \rightarrow X_c l^+ \bar{\nu}_l$ decays with the Belle II experiment Submitted to PRD, <u>arXiv:2205.06372</u>

Search for $B \rightarrow K^+ v \bar{v}$ using an inclusive tagging method at Belle II Phys Rev Lett **127**, 181802

+ many conference contributions with physics measurements assessing the experiment readiness/ performances in doing real physics analysis

Standard model anomalies: lepton flavour non-universality, g - 2 and W-mass

A. D'Alise, G. De Nardo, M. G. Di Luca, G. Fabiano, D. Frattulillo, G. Gaudino, D. Iacobacci, M. Merola, F. Sannino, P. Santorelli, N. Vignaroli https://doi.org/10.1007/JHEP08(2022)125

Belle II collaboration

11

Belle II: ~1160 collaborators, 124 institutions, 27 regions/countries tra cui 8 sezioni INFN, 108 membri

Anagrafica INFN 2022

Guglielmo De Nardo (PO)	80%
Alberto Aloisio (PO)	30%
Marcello Campajola (AR)	100%
Francesco Di Capua (PA)	30%
Giovanni Gaudino (PhD)	100%
Raffaele Giordano (PA)	50%

Mario Merola (PA)	80%
Marco Mirra (R)	40%
Guido Russo (PO)	70%*
Antonio Ordine (PT)	20%
Silvio Pardi (PT)	60%*

TOTALE: 6.6 FTE

*percentuali su altre sigle di progetti con attività riconducibili a Belle II sono state incluse

Calorimetro elettromagnetico

Mantenimento e operations del sottosistema (De Nardo, Aloisio, Campajola, Di Capua, Giordano, Merola, Mirra)

Sistema di monitoraggio temperatura e umidità (Aloisio, Di Capua, Giordano)

Studio background di fascio

Dosimetria con film radiocromici (installati calorimetro e vertice) sviluppo e installazione sistema di lettura on-line (Di Capua)

Studio rad-hardness di FPGA installati sulla beam-line e su detector (Giordano)

Calcolo

Attività di produzione di simulazioni MC (data center ReCaS/Ibisco) (Russo, Pardi)

Coordinamento dei data center italiani (Pardi)

Fisica

Analisi dati di processi leptonici del B e del dark sector (De Nardo, Merola, Campajola, Gaudino) Misura della produzione di coppie di mesoni B (De Nardo, Merola) Studio delle performance ricostruzione fotoni e π^0 (Gaudino, Mirra)

HIGHLIGHTS ATTIVITÀ NAPOLI

FPGA-Based Hadron Fluence Monitors

14

- Interest of Belle II background community for single-event upset monitoring in on-detector FPGAs and neutron-related background in general
- Novel FPGA-based sensors developed in PHI experiment (CSNV)
- Irradiation tests at the TRIGA nuclear reactor of Jožef Stefan Institute (Ljubljana)
- σ(Energy, V_{DD}) characterization at Trento Institute for Fundamental Physics and Applications

4 sensors + 4 readout boards: 2 at forward (e^+/e^-) plus 2 at backward (e^+/e^-)

Back-end server at INFN NA for data collection and web publication (Grafana)

Attività di computing

Il sito di Napoli è il primo sito della collaborazione per potenza di calcolo fornita dopo i RAW Data Center

Nuovo hardware di Belle II fornito con il progetto IBISCO.

I.Bi.S.Co. (Infrastructure for Big Data and Scientific Computing)

Milestone Italiana per il 2022: fornire il 12% de MC. Italian Share fornito: 13.3%

- Napoli (INFN Unit + University Federico II)
- 10 PB of disk space **1PB per Belle II (590TB Pledged)**
- 110 Server per HTC 16 server renewal pledged Belle II
- Cloud Cluster (that will be part of INFN Cloud)
- HPC Resources with GPU

Datacenter in ulteriore espansione con il PNRR.

(Guido Russo, Silvio Pardi per Belle II. Grazie Alessandra Doria, Bernardino Spisso, Michele Delli Veneri e tutto il gruppo di IBISCO per il supporto)

INFN-Napoli leader nelle nuove tecnologie

- Transizione alla token-based-authentication in sostituzione dei certificati x509
- Transizione al protocollo WebDAV al posto degli storici protocolli GridFTP/SRM
- Implementazione dei Job Multicore

Responsabilità:

Silvio Pardi - Coordinatore Italiano del Computing e Infrastructure Coordinator per Belle II

G. Russo, S. Pardi

Attività performance e analisi

- Neutri (efficienza pi0 e risoluzione fotoni)
- B-counting
- Dark sector searches
- B $\rightarrow \tau v$

π^0 efficiency

> MC/Data comparison of π^0 detection efficiency via the decay chain

$$e^+e^- \rightarrow \omega(782)\gamma_{ISR} \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$$

- Efficiency definition
 - N_{π^0} : number of events with $\pi^0 \to \gamma \gamma$
 - N_{ω} : number of events with meson ω production

•
$$\varepsilon_{\pi^0 MC} = {\binom{N_{\pi^0}}{N_\omega}}_{MC}$$
 and $\varepsilon_{\pi^0 Data} = {\binom{N_{\pi^0}}{N_\omega}}_{DC}$

> Two different efficiencies :

- Fit to $m_{3\pi}$ distribution to evaluate N_{ω} before and after π^0 selection
- Count events in $m_{3\pi}$ distribution for $|m_{3\pi} m_{\omega}| < 3\sigma$ to evaluate N_{ω} before and after π^0 selection (signal MC)

π^0 detection efficiency

M. Mirra

 $\succ \varepsilon_{\pi^0}$ can be evaluated in bin of momentum, θ and φ of the fitted π^0

Photon resolution

$$D^{0*} \to D^0 \gamma$$
 $D^*_s \to D_s \gamma$

This channel is optimal to study the low energy photon resolution. We can extract the photon resolution from $\Delta M = M_{D^*} - M_D$ because the tracking resolution component is negligible: $\sigma_{\rm tr}(\Delta M) \approx 0.5$ MeV.

Fit on ΔM : Crystal ball for the signal and a 3th order Chebychev polynomial for the combinatorial background.

Combining all the channels G. Gaudino

To combine the six decay channels we computed the weighted average of the crystal ball σ

100 - 200	(4.98 ± 0.76)	(5.12 ± 0.17)	(4.91 ± 0.19)	(0.97 ± 0.15)	(1.01 ± 0.16)
200 - 400	(4.74 ± 0.13)	(4.50 ± 0.06)	(4.50 ± 0.05)	(1.05 ± 0.03)	(1.05 ± 0.03)
400 - 600	(4.16 ± 0.06)	(3.77 ± 0.02)	(3.88 ± 0.03)	(1.10 ± 0.02)	(1.07 ± 0.02)
600 - 1000	(3.69 ± 0.17)	(3.27 ± 0.05)	(3.25 ± 0.05)	(1.13 ± 0.06)	(1.14 ± 0.06)
300 - 1000	(4.09 ± 0.05)	(3.85 ± 0.02)	(3.80 ± 0.02)	(1.06 ± 0.01)	(1.08 ± 0.01)

De Nardo, Merola

21

Motivation of B-counting

- N_{BB} important input for branching ratio measurements
- $N_{BB} = L \cdot \sigma_{BB}$ has high uncertainty due to the uncertainty on σ_{BB} (2-5%)
- Indirect measurement of $\sigma_{\scriptscriptstyle BB}$

Dark Sector searches

Dark Sector searches

23

Belle II

Search for an invisible Z' in final states with two muons and missing energy at Belle II Submitted to PRL, <u>arXiv:2212.03066</u>

Search for a dark photon and an invisible dark Higgs boson in $\mu+\mu-$ and missing energy final states with the Belle II experiment

PRL (accepted), <u>arXiv:2207.00509</u>

Search for an Invisibly Decaying Z' Boson at Belle II in $e+e-\rightarrow\mu+\mu-(e\pm\mu\mp)$ Plus Missing Energy Final States Phys. Rev. Lett. 124, 141801 (2020) talk from Marcello Campajola later today

24

Belle II

M. Aversano, G. De Nardo, G. Gaudino, M. Merola

$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$
$$\mathcal{B}(B \to l\nu) = \mathcal{B}(B \to l\nu)_{SM} \times r_H$$
$$r_H = (1 - \tan^2 \beta \frac{m_B^2}{m_H^2})^2$$

in 2HDM type II

- Very clean theoretically, hard experimentally
- SM is helicity suppressed
- Sensitive to NP contribution (for ex: Charged Higgs)

talk from Giovanni Gaudino later today

Aiming at public Belle II result in summer 2023

Luminosity matters

	Past	Soon	Target	Dream
Observable	2022	Belle-II	Belle-II	Belle-II
	Belle(II),	5 ab^{-1}	$50 { m ~ab^{-1}}$	$250 { m ~ab^{-1}}$
	BaBar			
$\sin 2\beta/\phi_1$	0.03	0.012	0.005	0.002
γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°	0.8°
α/ϕ_2 (WA)	4°	2°	0.6°	0.3°
$ V_{ub} $ (Exclusive)	4.5%	2%	1%	< 1%
$S_{CP}(B \to \eta' K_{\rm S}^0)$	0.08	0.03	0.015	0.007
$A_{CP}(B \to \pi^0 K_{ m S}^0)$	0.15	0.07	0.025	0.018
$S_{CP}(B \to K^{*0}\gamma)$	0.32	0.11	0.035	0.015
$R(B \to K^* \ell^+ \ell^-)^\dagger$	0.26	0.09	0.03	0.01
$R(B \to D^* \tau \nu)$	0.018	0.009	0.0045	< 0.003
$R(B \to D\tau\nu)$	0.034	0.016	0.008	< 0.003
$\mathcal{B}(B \to \tau \nu)$	24%	9%	4%	2%
$B(B o K^* \nu \bar{\nu})$	-	25%	9%	4%
$\mathcal{B}(\tau \to \mu \gamma)$ UL	42×10^{-9}	22×10^{-9}	$6.9 imes10^{-9}$	$3.1 imes 10^{-9}$
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	$21 imes 10^{-9}$	$3.6 imes10^{-9}$	$0.36 imes10^{-9}$	$0.073 \times$
				10^{-9}

Snowmass White Paper: Belle II physics reach and plans for the next decade and beyond

https://arxiv.org/abs/2207.06307

Snowmass Whitepaper: The Belle II Detector Upgrade Program

https://arxiv.org/abs/2203.11349

Table 2: Projected precision (total uncertainties, or 90% CL upper limits) of selected flavour physics measurements at Belle II.(The † symbol denotes the measurement in the momentum transfer squared bin $1 < q^2 < 6 \text{ GeV}/c^2$.)

Grazie !

FPGA-Based Hadron Fluence Monitors

- Interest of Belle II background community for single-event upset monitoring in on-detector FPGAs [1] and neutron-related background in general
- Novel FPGA-based sensors developed in PHI experiment (CSNV)
 - Single device: configuration SRAM of FPGA as sensitive element and programmable logic as readout
 - Compact, reprogrammable, low-power, digital output
 - Sensor and interface boards developed and tested
 - Configuration SRAM Cross section characterization in progress, i.e. crosssection for protons/neutrons vs energy (JSI TRIGA and TIFPA beam tests)

[1]Talk at biweekly beam background meeting

Typical cross section from Cypress SRAM-based sensors [1] doi: 10.1109/TNS.2014.2365042

Sensor and Interface Board

- Compact sensor board (6.3cm x 6.5cm)
 - Only COTS components, radiation tolerance studies in [1,2]
 - Dual power input mode: direct or viaregulators
 - Low power consumption (~0.7 W)
- Sensor: Xilinx Artix-7 200T FPGA
 - 28nm CMOS
 - Expected proton(>20MeV)-SEU σ = 9.4·10⁻¹⁵ cm²b⁻¹, sensitivity = 1.4·10⁶ pp/cm²
- Interface board for sensor readout via Ethernet
 - Digilent Cora z7-10 based on Zynq-7000 (FPGA+ARM uP) + custom plug-in board
 - Automatic Cable Delay Compensation for fast JTAG over distances up to 40 m

[1] T. Higuchi et al., 2012, doi: 10.1088/1748-0221/7/02/C02022
[2] Y. Yu Nakazawa et al., 2020, doi: 10.1016/j.nima.2019.163247

Irradiation Testing

- Irradiation tests at the TRIGA nuclear reactor of Jožef Stefan Institute (Ljubljana, Slovenia)
 - Broad neutron spectrum (thermal, epithermal, Dry chamber fast)
 - 2 sensors tested
 - Flux ~ $10^8 10^9 n/(cm^2 \cdot s)$
 - thermal neutron $\sigma N_{bits}=7.0\cdot 10^{-8}\,cm^2$ and neutron tolerance > 10^{12} n_{eq}/cm^2
 - Readout logic $\sigma_{fail} = 5.1 \cdot 10^{-12} \text{ cm}^2$ (thermal n)
- σ(Energy, V_{DD}) characterization at Trento Institute for Fundamental Physics and Applications (Trento, Italy)
 - monoenergetic protons, tunable energy in 70-228 MeV range
 - 6 sensors tested
 - Flux ~ 10⁹ p/(cm²·s)
 - Data analysis in progress

FPGA-based Neutron Fluence Monitors at Belle II

- 4 sensors + 4 readout boards: 2 at forward (e+/e-) plus 2 at backward (e+/e-)
- Installation: 2 travels to KEK for two people in 2023 (before end of LS1)
- EPICS support for integration with other Belle II monitors
- Back-end server at INFN NA for data collection and web publication (Grafana)
- Easy access to data for the whole Collaboration
- System modularity makes it possible to scale number of sensors over time

Attività di computing 2022

Milestone Italiana per il 2022: fornire il 12% de MC. Italian Share fornito: 13.3%

- Attività user analysis aumentata rispetto al 2021
- Picchi di ~40 k jobs running
- Il sito di Napoli è il primo sito della collaborazione per potenza di calcolo fornita dopo i RAW Data Center

32

33

Progetto IBISCO e PNRR

Nuovo hardware di Belle II fornito con il progetto IBISCO.

I.Bi.S.Co. (Infrastructure for Big Data and Scientific Computing)

- Napoli (INFN Unit + University Federico II)
- 10 PB of disk space 1PB per Belle II (590TB Pledged)
- 110 Server per HTC 16 server renewal pledged Belle II
- Cloud Cluster (that will be part of INFN Cloud)
- HPC Resources with GPU

Datacenter in ulteriore espansione con il PNRR.

(Guido Russo, Silvio Pardi per Belle II. Grazie Alessandra Doria, Bernardino Spisso, Michele Delli Veneri e tutto il gruppo di IBISCO per il supporto)

34

INFN-Napoli Leadership sulle nuove tecnologie

Responsabilità:

Silvio Pardi Coordinatore Italiano del Computing e Infrastructure Coordinator per l'esperimento

Attività in corso:

- Transizione alla token-based-authentication in sostituzione dei certificati x509
 - Prototipo del sistema di autenticazione presso il CNAF
 - Testbed gestito da Napoli
- Transizione al protocollo WebDAV al posto degli storici protocolli GridFTP/SRM
 - Sistema di monitoraggio e processo di transizione gestito da Napoli
- Implementazione dei Job Multicore
 - Configurazioni gestite da Napoli

$D^* \rightarrow D\gamma$ sample

This channel is optimal to study the low energy photon resolution. We can extract the photon resolution from $\Delta M = M_{D^*} - M_D$ because the tracking resolution component is negligible: $\sigma_{tr}(\Delta M) \approx 0.5$ MeV. The reconstructed decays are:

$$D^{0*} \rightarrow D^{0}\gamma$$

$$D^{0} \rightarrow K\pi(4\%) \qquad D^{0} \rightarrow K_{s}\pi\pi(2,8\%) \qquad D^{0} \rightarrow K\pi\pi\pi(8\%)$$

$$D^{*}_{s} \rightarrow D_{s}\gamma$$

$$D_{s} \rightarrow K_{s}\pi(1,5\%) \qquad D_{s} \rightarrow \overline{K}^{*}K(2,6\%) \qquad D_{s} \rightarrow \phi\pi(2,2\%)$$

Finally we have performed a fit over ΔM : Crystal ball for the signal and a 3th order Chebychev polynomial for the combinatorial background.

ΔM distribution: 400 – 600 MeV

12/01/23 M. Mirra

Mixing all the channels

To combine the six decay channels we computed the weighted average of the crystal ball σ

γ Energy (MeV)	$\sigma_{Data}(\mathrm{MeV})$	$\sigma_{MCri}({ m MeV})$	$\sigma_{MCrd}({ m MeV})$	Ratio MCri	Ratio MCrd
100 - 200	(4.98 ± 0.76)	(5.12 ± 0.17)	(4.91 ± 0.19)	(0.97 ± 0.15)	(1.01 ± 0.16)
200 - 400	(4.74 ± 0.13)	(4.50 ± 0.06)	(4.50 ± 0.05)	(1.05 ± 0.03)	(1.05 ± 0.03)
400 - 600	(4.16 ± 0.06)	(3.77 ± 0.02)	(3.88 ± 0.03)	(1.10 ± 0.02)	(1.07 ± 0.02)
600 - 1000	(3.69 ± 0.17)	(3.27 ± 0.05)	(3.25 ± 0.05)	(1.13 ± 0.06)	(1.14 ± 0.06)
300 - 1000	(4.09 ± 0.05)	(3.85 ± 0.02)	(3.80 ± 0.02)	(1.06 ± 0.01)	(1.08 ± 0.01)

Strategy

> MC/Data comparison of π^0 detection efficiency via the decay chain $e^+e^- \rightarrow \omega(782)\gamma_{ISR} \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

- **Efficiency definition** \succ
 - N_{ω} : number of events with meson ω production selected using beam, π^+ , π^- and γ_{ISR} information, no requests on π^0 detection (control sample)
 - N_{π^0} : number of control sample events with $\pi^0 \to \gamma \gamma$ detected with standard cuts

•
$$\varepsilon_{\pi^0 MC} = {\binom{N_{\pi^0}}{N_\omega}}_{MC}$$
 and $\varepsilon_{\pi^0 Data} = {\binom{N_{\pi^0}}{N_\omega}}_{Data}$

➤ MC sample (1ab⁻¹ per sample)

- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$
- $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$ $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma_{ISR}$ $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$ $e^+e^- \rightarrow K^+K^-\gamma_{ISR}$ Main backgrounds Negligible contribution

Negligible contributions (< 1.‰)

 \blacktriangleright Data sample (326.6 fb⁻¹)

12/01/23 M. Mirra

Control sample selection

For each triplet $(\pi^+, \pi^- \text{ and } \gamma_{ISR})$ kinematic fits with KFit tool.

> In order to reject the main background $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$: 4CFit: mother particle's 4momentum constrained to the beam 4-momentum

> 1CFit: π^0 fitted requiring $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}p_{miss}$, with $p_{miss}^2 = m_{\pi^0}^2$ and beam energy as constraints

Just the triplet with the highest $P_{\chi_{1C}^2}$ (>0.4) selected in the event

12/01/23 M. Mirra

Efficiency definition

Squared invariant mass of the 3 pion system

$$m_{3\pi}^{2} = (P_{\pi^{+}} + P_{\pi^{-}} + P_{\pi^{0}})^{\alpha} (P_{\pi^{+}} + P_{\pi^{-}} + P_{\pi^{0}})_{\alpha}$$

 P_{π^+} and P_{π^-} from momentum measurement + pion hypothesis, P_{π^0} from kin fit estimate > Two different efficiencies :

• Fit to $m_{3\pi}$ distribution to evaluate N_{ω} before and after π^0 selection - both for data and full MC (signal + main backgrounds)

• Count events in $m_{3\pi}$ distribution for $|m_{3\pi} - m_{\omega}| < 3\sigma$ to evaluate N_{ω} before and after π^0 selection - for $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$ MC sample (to validate fit procedure)

Efficiency uncertainty

- > Counting technique (MCsignal): binomial approximation $(\sqrt{\hat{\epsilon}_{\pi^0}(1-\hat{\epsilon}_{\pi^0})/N_{\omega}})$
- > Fit technique (data and full MC): toy-MC to evaluate the $\hat{\varepsilon}_{\pi^0}$ uncertainty

- Generate Poisson(N_{Den}) events according to the \hat{H}_{ω} histogram \rightarrow fit to compute $\hat{N}_{\omega 1}$
- Generate N_{Num} events according to the \hat{H}_{π^0} histogram; N_{Num} defined to keep the same average $\hat{\varepsilon}_{\pi^0}$ signal efficiency and signal to noise ratio observed in data \rightarrow fit to compute $\hat{N}_{\pi^0 1}$
- Evaluate $\hat{\varepsilon}_{\pi^0 1} = \hat{N}_{\pi^0 1} / \hat{N}_{\omega 1}$
- Repeat the experiment $\rightarrow \hat{\varepsilon}_{\pi^0 i}$ distribution

π^0 detection efficiency

 $\succ \varepsilon_{\pi^0}$ can be evaluated in bin of momentum, θ and φ of the fitted π^0

12/01/23 M. Mirra