

GEM commissioning with PICO

A. Cagnotta - Riunione INFN Gr.1 Napoli

12/01/23

GE1/1 studies: operation in magnetic field (paper in review)

GE2/1 demonstrator: PICO commissioning

Naples Lab activities

Conclusions

CMS Muon Upgrade

2026: HL-LHC

□ Instantaneous Luminosity: $2 * 10^{34} cm^{-2} s^{-1} \rightarrow 5 * 10^{34} cm^{-2} s^{-1}$ □ Pile-up events : $\sim 37 \rightarrow \sim 200$

GEM technology provides:
Good time resolution
High-rate capability

□ GE1/1 station installed

- GE2/1 station slice test ongoing (expected in the next 2 years)
- □ ME0 station R&D almost finalized (expected LS3)

Triple-GEM technology

GEM technology

 2 conductive plates (Copper) spaced out by an insulation material (Kapton)
bi-conical holes are performed in the foil

□ Copper 5µm, Kapton 50µm

Electron amplification in the holes

□ Triple-GEM

- 3 cascade GEM foils
- Gas mixture Ar:CO₂ 70:30
- □ Amplification up to 10⁵ with a modest high voltage (~400V)

Pico-ammeter for triple-GEM monitoring

- High-granularity, high-resolution Pico-ammeter (PICO for friends) 100% made in Naples
- PICO allows a simultaneous monitoring of 7 GEM electrodes, both current and voltage
- □ Sampling 380Hz, typical sampling of CAEN boards O(Hz)
- □ Resolution ≤30pA (much smaller than noise)

Operation in Magnetic field (GE1/1)

Possible sources of damage for the detector:

- \Box High # of electrons \rightarrow current between the two conductive plates \rightarrow discharge event
- □ An elevated number of discharges can damage and/or create a connection between the plates \rightarrow short circuit
- □ To prevent shorts a security system is implemented in the HV board \rightarrow trip

Test at high-intensity magnet **«GOLIATH»** @ CERN:

- □ Reproduce **discharges and trips** of chambers during CMS magnet ramps
- **Define a procedure** for safe operation
- □ Understand how to create and repair **short** circuits

- □ 4 chambers tested, 2 HV boards A1515 □ Data collected with 2 independent tools:
 - □ Sampling from A1515 board @ 10Hz;

Discharge event recorded by PICO Spike without trip **CMS** Muon Preliminary GE1/1@ Goliath magne □ In the upper plot are showed the currents flowing IDrift[nA] G1Bot[nA] G3Bot[nA] Drift on GEM bottom + drift foils, G1Bot G2Bot G3Bot positive polarity **2s** exponential shape 4000 1000 2000 200 □ In the lower plot are showed the currents flowing on GEM top foils, 2000 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ∆time[s] negative polarity **CMS** Muon Preliminary GE1/1@ Goliath magnet G2Top[nA] IG1Top[nA] exponential shape -200 With PICO we have the possibility to check for -4000

-6000

0.00

G1Top

G2Top G3Top

0.50

0.75 1.00

1.25

1.50

1.75 2.00 ∆time[s]

0.25

With PICO we have the possibility to check for consecutive events (more than 1 discharge in 1s) and also to follow eventually minor damages on the foils

4000

-6000

8000

A.Cagnotta-Riunione INFN Gr.1 Napoli

Discharge event recorded by PICO

- Examples of discharge recorded by PICO,
- In the upper plot are shown the currents flowing on GEM bottom + drift foils,
 - positive polarity
 - exponential shape
- In the lower plot are shown the currents flowing on GEM top foils,
 - negative polarity
 - exponential shape
- With PICO we have the possibility to check for consecutive events (more than 1 discharge in 1s) and to follow possible minor damages on the foils

Number of discharges in different operating conditions

- In the plot are reported the moving average number of discharges per magnetic ramp, mediated on 5 ramps.
- the red dashed lines indicates when the magnetic ramps with detector HV OFF were performed
- the black lines indicates when chambers were mechanically stressed
- Main phase of the tests:
 - classic P5 operation
 - machanical stress
 - inversion of the
 - magnetic field

Number of discharges in different operating conditions

- In the plot are reported the moving average number of discharges per magnetic ramp, mediated on 5 ramps.
- the red dashed lines indicates when the magnetic ramps with detector HV OFF were performed
- the black lines indicates when chambers were mechanically stressed
- Main phase of the tests:
 - classic P5 operation
 - machanical stress
 - □ inversion of the
 - magnetic field

Number of discharges in different operating conditions

- In the plot are reported the moving average number of discharges per magnetic ramp, mediated on 5 ramps.
- the red dashed lines indicates when the magnetic ramps with detector HV OFF were performed
- the black lines indicates when chambers were mechanically stressed
- Main phase of the tests:
 - classic P5 operation
 - machanical stress
 - inversion of the
 - magnetic field

Number of discharges in different operating conditions

viscahrges per ramp per chambe

- In the plot are reported the moving average number of discharges per magnetic ramp, mediated on 5 ramps.
- the red dashed lines indicates when the magnetic ramps with detector HV OFF were performed
- the black lines indicates when chambers were mechanically stressed
- Main phase of the tests:
 - classic P5 operation
 - machanical stress
 - inversion of the magnetic field

□ GE2/1 station consists of "superchamber" : a pair of triple-GEM layers of trapezoidal shape

 \Box In total 2 \times 18 = 36 superchambers are needed.

 \Box Coverage extends from $|\eta| = 1.6$ to $|\eta| = 2.4$

Each GE2/1 chamber consists of four modules M1-M4, each being a single CMS triple-GEM detector

Pico commissioning@GE2/1 demonstrator

 Monitoring ongoing during 2022
Results still under study (not public yet!)

Orange cable from CAEN board to pico and then PICO to the chamber

Activities in Naples Lab

HV filter tests for GE2/1

Electric field characterization through PICO

Thanks to Andrea Puglia for the plot

Future plans:

Dedicated study for discharge behaviour with different WP (PICO+Oscilloscope)

12/01/2023

Results & Conclusions

- 2022 has been an intense year for the whole CMS GEM group, with the starting of GE1/1 operation and the commissioning of GE2/1 demonstrator
- Results from Goliath magnet test,
 - One short circuit observed during a magnet ramp with detector HV OFF
 - □ Valdated the procedure to handle the short circuit with a tester → 500V applied for less than 1s in Ar/CO2 mixture
 - Observations compatible with presence of dust in the chamber
- We are fully involved in the GE2/1 monitoring, PICO has been connected to M4 module from March to the end of 2022 LHC operation
- At the moment Pico is here (in Naples) for an upgrade and we are planning to reinstall it in USC before the start of LHC operation

backup

12/01/2023

A. Cagnotta-Riunione INFN Gr.1 Napoli

8

Operation in Magnetic field (GE1/1)

Chambers' settings varied during the test:

□ Gas flux

U WP

□ Chamber orientation wrt magnetic field

□ Order of powering HV electrodes

□ Ramp up values for the single electrodes

Mechanical stress

Currents monitoring description

