SND@LHC The Scattering and Neutrino Detector at the LHC

A. Di Crescenzo

Università di Napoli "Federico II" INFN Napoli

INFN NA Gr1 Meeting - 12 Jan 2023

MOTIVATION

Neutrino physics at the LHC •Klaus Winter, 1990, observing tau neutrinos at the LHC A. De Rùjula, E. Fernandez and J. J. Gòmez-Cadenas, 1993, Neutrino fluxes at LHC F. Vannucci, 1993, neutrino physics at the LHC http://arxiv.org/abs/1804.04413 April 12th 2018

PRL 122 (2019) 041101

CERN is unique in providing energetic v (from LHC) and measure pp $\rightarrow vX$ in an unexplored domain

J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008 (19pp)	https://doi.org/10.1088/1361-6471/ab3f7		
Physics potential of an ex	periment using		
LHC neutrinos			
Eur Phys. I. C (2020) 80:61			
https://doi.org/10.1140/epjc/s10052-020-7631-5	PHYSICAL JOURNAL C		
Regular Article - Experimental Physics			

J. Phys. G: Nucl. Part. Phys. 47 (2020) 125004 (18pp)

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

https://doi.org/10.1088/1361-6471/aba7ad

Further studies on the physics potential of an experiment using LHC neutrinos

LOCATION

SND@LHC

- Charged particles deflected by LHC magnets
- Shielding from the IP provided by 100 m rock
- Angular acceptance: 7.2< η < 8.6
- First phase: operation in Run 3 to collect 250 fb⁻¹

https://cds.cern.ch/record/2750060/files/LHCC-P-016.pdf

- About 480 m away from the ATLAS IP
- Tunnel TI18: former service tunnel connecting SPS to LEP
- Symmetric to TI12 tunnel where FASER is located

THE SND@LHC CONCEPT

Hybrid detector optimised for the identification of three neutrino flavours and for the detection of feebly interacting particles

VETO

SYSTEM

VETO PLANE:

tag penetrating muons

TARGET REGION + ECAL:

- Emulsion cloud chambers (Emulsion+Tungsten) for neutrino interaction detection
- Scintillating fibers for timing information and energy measurement

MUON SYSTEM + HCAL:

iron walls interleaved with plastic scintillator planes for fast time resolution and energy measurement

THE SND@LHC DETECTOR LAYOUT

- Angular acceptance: 7.2< η < 8.4
- Target material: Tungsten
- Target mass: 830 kg
- Surface: 390x390 mm²

EVENT RECONSTRUCTION

FIRST PHASE: electronic detectors

- Event reconstruction based on Veto, Target Tracker and Muon system
 - Identify neutrino candidates
 - Identify muons in the final state
 - Reconstruction of electromagnetic showers (SciFi)
 - Measure neutrino energy (SciFi+Muon)

SECOND PHASE: nuclear emulsions

- Event reconstruction in the emulsion target
 - Identify e.m. showers
 - Neutrino vertex reconstruction and 2ry search
 - Match with candidates from electronic detectors (time stamp)
 - Complement target tracker for e.m. energy measurement

NEUTRINO EXPECTATIONS

- Expectations in 250 fb⁻¹
- Upward/downward crossing angle: 0.43/0.57
- Neutrino production in LHC pp collisions performed with **DPMJET3** embedded in FLUKA
- Particle propagation towards the detector through FLUKA model of LHC accelerator

	Neutrinos in	n acceptance	CC neutrino	interactions	NC neutrino	interactions
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
$ u_{\mu}$	130	$3.0 imes 10^{12}$	452	910	480	270
$ar{ u}_{\mu}$	133	$2.6 imes 10^{12}$	485	360	480	140
$ u_e$	339	$3.4 imes 10^{11}$	760	250	720	80
$ar{ u}_e$	363	$3.8 imes 10^{11}$	680	140	720	50
$ u_{ au}$	415	$2.4 imes 10^{10}$	740	20	740	10
$ar{ u}_{ au}$	380	$2.7 imes 10^{10}$	740	10	740	5
TOT		$4.0 imes 10^{12}$	3	1690		555

SND@LHC INSTALLATION IN TI18

Detector commissioning on surface (North Area @CERN) in September and October 2021 ▶ Installation in TI18 started on November 1st 2021

Detector paper published on *https://arxiv.org/abs/2210.02784* and submitted to the JINST Joint Issue on the LHC experiment upgrades for Run3

• Electronic detector installation completed on December 3rd 2021 Installation of the neutron shield completed on March 15th 2022 Installation of the first emulsion wall on April 7th 2022

DETECTOR INSTALLATION IN TI18

•View of the machine to the IP (left) and of the detector in TI18 (right)

SND@LHC INSTALLATION IN TI18

- 57 emulsion films (B1 in Wall 3) produced in Nagoya (1/20 of the full target)
- April 7th : Installation in the detector
- July 26th : Extraction
- August 3rd to 8th : Emulsion development

Integrated luminosity: 0.5 fb⁻¹

April 7th - Installation

July 26th - Extraction

August 4th – Emulsion development

- Installation of the full emulsion target for a total mass of 830 kg
- **1200** emulsion films: 45% Nagoya, 55% Slavich (Moscow region)
- July 4th-12th : Target wall assembly in the CERN Dark Room
- July 13th : Transportation to the AWAKE tunnel for temporary storage
- July 26th : Installation in the detector
- September 13th: Extraction
- September 14th-21st : Emulsion development

July 26th - Installation

September 13th – Extraction

Total time required for underground operations: **5 hours**

Integrated luminosity: 10.5 fb⁻¹

September 14th – Emulsion development

- Installation of the full emulsion target for a total mass of 830 kg
- **1140** emulsion films: 100% Nagoya
- September 12th : Target wall assembly in the CERN Dark Room
- **September 13th** : Installation in the detector
- **November 4th** : Extraction
- November 11th-21st : Emulsion development

Integrated luminosity: 21.4 fb⁻¹

September 12th – Assembly

September 13th – Installation

Total time required for underground operations: 4.5 hours

November 16th – *Development*

- Installation of the full emulsion target for a total mass of 830 kg
- **1152** emulsion films: 75% Nagoya, 25% Slavich
- November 2nd : Target wall assembly in the CERN Dark Room
- **November 4th** : Installation in the detector
- **December 9th** : Extraction
- December 10th-21st : Emulsion development

Target replacement

Total time required for underground operations: 6 hours

Integrated luminosity: 8.7 fb⁻¹

Target#3 walls installed

Emulsion development

DATA TAKING IN RUN3

Start beam commissioning

First stable beams @6.8TeV

		-							-					
2022	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	INSTRUMENTED TARGET MASS	INTEGRATED LUMINOSITY
EMULSION RUN0				Ļ									39 kg	0.5 fb ⁻¹
EMULSION RUN1													807 kg	10.5 fb ⁻¹
EMULSION RUN2													784 kg	21.4 fb ⁻¹
EMULSION RUN3													792 kg	8.7 fb ⁻¹

End of run

MUON TRACK RECONSTRUCTION

Muon track reconstruction is performed with SciFi tracking stations and with the Downstream Muon System (DS)

2D display: F. Alicante

2500 3000 E_{muon MC true} [GeV]

1000

500

0

1500

2000

MUON TRACK DIRECTION

- Reconstructed tracks by electronic detectors in pp collision runs @13.6 TeV
- Direction compatible with coming from pp collisions at IP1

MUON RATES

Expected muon track rate in SciFi (39x39 cm²):

3.6x10⁴ fb/cm²

Expected muon track rate in DS (60x60 cm²):

4.4x10⁴ fb/cm²

New simulation performed by CERN FLUKA team show a reduction of factor ~2 in the expected rates in TI18

TRACK RECONSTRUCTION IN RUNO

RUN0 emulsion target: April 7th - July 26th (0.51 fb⁻¹)

EMULSION FACILITY

Full renovation funded by CERN for FASER, SND@LHC and other users:

- Removal of asbestos from the floor
- New floor installation
- Electronic lockers to the doors
- Installation of new cooling and ventilation system

EMULSION HANDLING IN THE FACILITY

- **16** walls assembled
- 3522 emulsion films installed (130 m²)
- 3522 emulsion films developed
- 3500 L disposed chemical solutions

PHYSICS GOALS IN 2023

BACKGROUND

- Measurement of the muon flux in TI18 with electronic detectors (S. Ilieva analysis note in preparation)
- Measurement of the muon flux with emulsions (A. Iuliano analysis note in preparation)
- Measurement of muon DIS (D. Centanni)
- Characterisation of high energy neutron interactions

SIGNAL

- Matching between emulsion walls and SciFi tracker (F. Alicante)
- Neutrino event selection with electronic detectors
- First observation of neutrinos with electronic detectors
- Vertex identification in emulsion data (A. Iuliano)
- Neutrino event selection with emulsion data

Emulsion/SciFi matching applied to MC

etectors (S. Ilieva - analysis note in preparation) o - analysis note in preparation)

Muon DIS candidate in RUN3 data

PEOPLE

Ricercatori: 30 (+8) Tecnici: 1 Totale FTE: 13.45 (+5) Totale PhD equivalent: 24 (+5)

Officina meccanica: 3 m.u. Progettazione meccanica: 1 m.u.

Tesi di dottorato in corso: - D. Centanni

Tesi specialistiche in corso: - F. Alicante

- V. Albano

Tesi triennali in corso: - A. Orlando

Richieste personale:

- Assegno di ricerca biennale

cognome	nome	perc
Acampora	Giovanni	40%
Albanese	Raffaele	50%
Alexandrov	Andrey	30%
Arpaia	Pasquale	40%
Asada	Takashi	30%
Buontempo	Salvatore	10%
Canale	Vincenzo	25%
Centanni	Daniele	100%
Davino	Daniele	50%
De Asmundis	Riccardo	20%
De Lellis	Giovanni	40%
De Magistris	Massimiliano	50%
Di Crescenzo	Antonia	50%
Fiorillo	Antimo	50%
Fresa	Raffaele	50%
Golovatiuk	Artem	50%
lengo	Paolo	20%
llieva	Simona	100%
Iuliano	Antonio	100%
Lauria	Adele	20%
Loschiavo	Vincenzo Paolo	50%
Miano	Andrea	50%
Montesi	Maria Cristina	20%
Prota	Andrea	60%
Quercia	Antonio	50%
Scalera	Valentino	50%
Sekhniaidze	Givi	20%
Tioukov	Valeri	30%
Ustyuzhanin	Andrey	50%
Visone	Ciro	50%
Vitiello	Autilia	40%

SUMMARY

SND@LHC was successfully installed at the beginning of 2022 and started data taking with LHC Run 3

- More than 40 fb⁻¹ collected in 2022, with an efficiency of 96%.
- Three full emulsion targets installed, equivalent to 130 m² of emulsions
- Data analysis in progress, consistent results between electronic detectors and emulsions
- Napoli responsibilities
- Spokesperson: G. De Lellis
- Physics Coordinator: A. Di Crescenzo
- Project managers of emulsion target system: S. Buontempo, A. Di Crescenzo
- Tasks assigned to Napoli group
- Emulsion data scanning and analysis (A. Iuliano)
- Optical microscope for emulsion scanning (A. Alexandrov)
- Target mechanical structure design and construction, target replacement (G. Passeggio, F. Cassese)
- Fiber optic sensors for temperature and humidity monitoring (G. Breglio)

BACKUP SLIDES

NEUTRINO PHYSICS PROGRAM IN RUN 3

- 1. Measurement of the $pp \rightarrow v_e X$ cross-section
- 2. Heavy flavour production in pp collisions
- 3. Lepton flavour universality in neutrino interactions
- 4. Measurement of the NC/CC ratio

Measurement

 $pp \rightarrow \nu_e X$ cross-section Charmed hadron yield ν_e/ν_{τ} ratio for LFU test ν_e/ν_μ ratio for LFU test

Uncertainty				
Stat.	Sys.			
5%	15%			
5%	35%			
30%	22%			
10%	10%			

1. MEASUREMENT OF $pp \rightarrow v_e X CROSS-SECTION$

- Simulation predicts that 90% v_e +anti- v_e come from the decay of charmed hadrons
- unfolding the instrumental effects
- Reconstructed spectrum of v_e+anti-v_e flux in SND@LHC acceptance

2. CHARMED HADRON PRODUCTION

• Electron neutrinos can be used as a probe of the production of charm in the relevant pseudo-rapidity range after

Correlation between pseudo-rapidity of the electron (anti-)neutrino and the parent charmed hadron

QCD MEASUREMENTS

The dominant partonic process for associated charm production at the LHC is gluon-gluon scattering

Average lowest momentum fraction: 10⁻⁶

Correlation between x1 and x2 for events *in the SND@LHC acceptance*

Extraction of gluon PDF in very small x-region relevant for: - Future Circular Colliders

- predictions of high energy neutrinos production in cosmic rays

Ratio between the cross-section measurements at different energies and pseudo-rapidities

$$R = \frac{d\sigma/d\eta(13\,TeV)}{d\sigma/d\eta_{ref}(7\,TeV)}$$

$$\eta_{ref} = 4.5$$

Reduction of scale uncertainties Constraint the PDF with data

3. LEPTON FLAVOUR UNIVERSALITY TEST

The identification of three neutrino flavours in the SND@LHC detector offers a unique possibility to test the Lepton Flavor Universality (LFU)

Sensitive to v-nucleon interaction cross-section ratio of two neutrino species

• The measurement of the v_e/v_μ ratio can be used as a test of the LFU for E>600 GeV

BEYOND STANDARD MODEL

Large variety of BSM scenarios describing Hidden Sector

1. Scattering

Production: scalar χ particle coupled to the Standard Model via a leptophobic portal

Detection: χ elastic/inelastic scattering off nucleons of the target

2. Decay of dark scalars, HNLs, dark photons

Production: dark scalars produced in the decay of B mesons, HLNs in the decay of B and D mesons, dark photons via leptophobic mediator

Detection: Decays in a pair of charged tracks or monophotons

10.1007/JHEP03(2022)006

EVENT RATE AND LUMINOSITY

Event rate for one run Start: October 29th 2022, 20:38:17 End: October 30th 2022, 06:23:29

